
Grouped Queries Indexing For Relational Database

Radosław Boroński

Dept. of Electronics and Computer Science

Koszalin University of Technology

Koszalin, Poland

radoslaw.boronski@tu.koszalin.pl

Grzegorz Bocewicz

Dept. of Electronics and Computer Science

Koszalin University of Technology

Koszalin, Poland

bocewicz@ie.tu.koszalin.pl

Robert Wójcik
Institute of Computer Engineering, Control and Robotics

Wrocław University of Technology

Wrocław, Poland

robert.wojcik@pwr.wroc.pl

Abstract-This paper discusses the problem of minimizing the

response time for a given database workload by a proper

choice of indexes. We propose to look at the database queries

as a group and search for good indexes for the group instead of

an individual query. We present condition for applying the

concept of grouped queries index selection. Such condition is

illustrated by three practical examples.

Keywords-database;index;ISP;grouped queries;related queries

I. INTRODUCTION

Getting database search result quickly is one of the
crucial optimization problems in a relational database
processing. The major strength of relational systems is their
ease of use. Users interact with these systems in a natural
way using nonprocedural languages that specify what data
are required, but do not specify how to perform the
operations to obtain those data [8]. Online Internet shops,
analytics data processing or catalogue search are examples of
structures where data search must be processed as quick as
possible with minimal hardware resources involved.
Common practice is to minimize the database search process
at minimal cost. A database administrator (or a user) may
redesign the physical hardware structure or reset the database
engine parameters, or try to find suitable table indexes for a
current query. Most vendors nowadays offer automated tools
to adjust the physical design of a database as part of their
products to reduce the DBMS’s total cost of ownership [3].
As adding more CPUs or memory may not always be
possible (i.e. limited budget) and maneuvering within
hundreds of database parameter may lead to a temporary
solution (wrong settings for other database queries), index
optimization should be considered as being foremost.

Indexes are optional data structures built on tables.
Indexes can improve data retrieval performance by providing
a direct access method instead of the default full table scan
retrieval method [7]. In the simple case, each query can be
answered either without using any index, in a given answer
time or with using one built index, reducing answer time by
a gain specified for every index usable for a query [14].
Hundreds of consecutive database queries together with large

amount of data involved lead to a very complex
combinatorial optimization problem. Two sample tables in a
data warehouse of an international automobile factory
contain over 1 billion records each (Fig. 1). Time needed to
obtain result of both index-less tables joined together may be
up to 45 minutes. Such delays are not acceptable for
production environment processes. Indexes in such cases
may reduce the response time of 50% (depending on which
columns are used for the indexing). The classic index
selection method focuses on a tree data structure, which
could limit the search area as much as possible. Literature
acknowledges us with such B-tree types as:

 Sorted counted B-trees, with the ability to look
items up either by key or by number, could be
useful in database-like algorithms for query
planning [5],

 Balanced B*-tree that balances more neighboring
internal nodes to keep the internal nodes more
densely packed [12],

 Counted B-trees with each pointer within the tree
and the number of nodes in the subtree below that
pointer [19].

The B-tree and its variants have been widely used in
recent years as a data structure for storing large files of
information, especially on secondary storage devices [11].
The guaranteed small (average) search, insertion, and
deletion time for these structures makes them quite appealing
for database applications.

The topic of current interest in database design is the
construction of databases that can be manipulated
concurrently and correctly by several processes. In this
paper, we discuss a simple variant of the B-tree (balanced
B*-tree, proposed by Wedekind [20] especially well-suited
for use in a concurrent database system [15].

Figure 1. Example of large number of rows for two data warehouse tables

123Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

While the selection of indexes structure have a very
important role in the design of database management tools so
far avoided interference in the structure of indexes at the
stage of the database operation. In such situations more
important is to ask a question “how to choose a set of
indexes for the selected query sets?”. It turns out that the
proper selection of indexes can bring significant benefits for
the database query execution time. Typical approaches found
in the literature mainly focus on the search indexes only for
single column or single query [16], [10], [9], [17], [4]. In this
paper, an approach associated with the search query indexes
for groups called blocks is presented.

In this case we will consider B-tree indexes. A B-tree
index allows fast access to the records of a table whose
attributes satisfy some equality or range conditions, and also
enables sorted scans of the underlying table [18].

The rest of the paper is organized as follows: in Section
II we describe a problem statement. In Section III, we briefly
present classic index selection approach together with simple
examples that will illustrate the subject. In Section IV, we
demonstrate new method of grouped queries index selection
and compare examples results with the classic approach.
Section V and VI present our conclusions and future works.

II. PROBLEM STATEMENT

Motivation for this work is to suggest an approach of
multi-queried SQL block where sub-optimal or optimal
solution is to be found that gives decision makers some
leeway in their decisions. The main goal is to choose a subset
of given indexes to be created in a database, so that the
response time for a given database workload together with
indexes used to process queries are minimal.

The index selection problem has been discussed in the
literature. Several standard approaches have been formulated
for the optimal single-query and multi-query index selection.
Some past studies have developed rudimentary on-line tools
for index selection in relational databases, but the idea has
received little attention until recently. In the past year, on-
line tuning came into the spotlight and more refined
solutions was proposed. Although these techniques provide
interesting insights into the problem of selecting indexes on-
line, they are not robust enough to be deployed in a real
system [18]. The problem is known in a literature as Index
Selection Problem (ISP) According to [8] it is NP-hard. Note
that in practice the space limit in the ISP is soft, because
databases usually grow, thus the space limit is specified in
such way that a significant amount of storage space remains
free [13].

In a real life scenario, for thousands database queries
(Fig. 2) compromising hundreds of tables and thousands of
columns, the search space is huge and grows exponentially
with the size of the input workload.

Considered case of Index Selection Problem can be
defined in following way.

Given is a set of tables:

 , (1)

described by a set of columns included in the tables:

 () () , (2)

where: is a -th column of table .

Each column corresponds to set of values ()

(tuples set) included in this column.

Figure 2. Example of number of database queries in a given day for a

production data warehouse

For set of tables various queries can be formulated
(in SQL these are SELECT queries). These queries are put
against the specified set of columns . The result of
query is set as:

 ∏ () , (3)

where: ∏

 is a cartesian product of

sets .

For a given database it is taken into account that is a

result of following function:

 (
 ()) , (4)

where: is a subset of available indexes, () is set of
operators available in database of which relation
describing query is built.

The time associated with the determination of the set is
depended on the DB database used (search algorithms,
indexes structures) and adopted set of indexes ()
(where () - is a power set of). It is therefore assumed
that the query execution time in given database , is
determined by the function: (). In short the value
of execution time for query , data base and set of
indexes will be define as: ().
In the context of the so-defined parameters, a typical
problem associated with the ISP responds to the question:

What set of indexes () minimizes the query
execution time: () ?

124Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

When a multi-component set of queries is
considered, question takes the form:

What set of indexes () minimizes the queries block

Q execution time: ∑ () ?

III. CLASSIC INDEX SELECTION APPROACH

Classic index selection approach focuses on individual
query and tries to find good index or indexes set for tables in
a single query in a given block. Such approach does not take
into consideration queries in a block as a whole. By doing so,
a database user may expose database to create excess number
of indexes which could be redundant or not used for more
than one query in an examined block. This could also result
in utilizing too much disk space and time needed for the
indexes creation. Finding good index group for a large
database queries’ block was never an easy task to do and
usually users and database administrators rely on their
experience and good practice. In the commercial use one
may find tools that support the index selection process, such
as SQL Access Advisor (Fig. 3) [6], Toad, SQL Server
Database Tuning Advisor [1].

Let us consider three examples where given is a group of
three database queries :

 : SELECT * FROM , WHERE < AND

 =[const],

 : SELECT * FROM , WHERE = ,

 : SELECT * FROM WHERE > [const].

Interpretation of this type of queries (according to (4)) is as
following:
 searching for a set of triples: ()

 () () ()
[] ,
set .

 searching for a set of pairs: ()
 () () ,
set .

 searching for a set: ()
[] ,
set .

Tables , , contain 1*10
6

records each. No indexes
are built on either table: . With the first test run,
database returned following response times: () s,
 () s, () s respectively, resulting in full
table scans for each . Queries ran on database Oracle
11.2.0.1 installed on server with Redhat 6 operating system
with 64GB memory and ASM used for disk storage.

Figure 3. Oracle’s 10g2 SQL Access Advisor

125Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

The classic approach requires treating every database
query individually. Hence indexes are built: and on

table ; , on table on table . This kind of

indexes are represented by the

set: {{ } { } { } { }} containing four

sets. Each element (set) of contains the columns which are

used to build the indexes. For example, the set { }
means that we have to build one index for columns .

The set of indexes is built for three different tables,
resulting in use of 2GB of additional disk space. With the
second test run, database returned following response times:
 () s, () s, () s respectively. As
the response time is better by approximately 10%, there is
still unreasonable disk space used and time needed for
creating 4 large indexes. Creating 4 indexes forced query
optimizer to use them, and instead of decreasing
execution time, it got increased. This is because optimizer
decided to read column index content first and because it

couldn’t find values for column, it performed full table

scan for table . Examples shows that selected indexes may
increase the query execution performance where in other
cases may have the opposite effect.

IV. GROUPED QUERIES APPROACH

In this paper we focus on related queries group and
because of this relation and the number of indexed columns.
We take into account the search for a good index for the
entire queries’ block. We propose a new approach by using
multi-query SQL block selection. Such block consists tabular
relations between queries, meaning that the number of tables
columns used in previous query is present in other queries.
The proposed approach could be an alternative to the classic
index selection method, where one common index set could
be found. Grouped queries approach has to be studied for its
effectiveness and authenticity via a series of numerical tests.
Furthermore, to compare the performance of the method
commercial tools will have to be used and results compared.

For previous examples, we suggested to create a pool of
all columns taking part in all queries in a group and build
sub-optimal indexes set for queried tables. Such task will
involve creating the weighted list that will include all the
index candidate query-related columns and their number of
occurrence in the examined queries block:

 (() () () () ()). (5)

Of course, only column (marked by the box in (5)) is

a query-related candidate column that could be used for the
index creation. Nevertheless, other columns from remaining
tables could also be revised. In that context, we suggest to
create composite index for the same table on columns

and : {{ }} . By doing so, user not only

speeds up block execution but also saves significant volume
of disk space. With the third test run, database returned
following response times: () s, () s,
 () s, respectively, decreasing total execution time of

35% and saving disk space of 60%. This is due to the fact
that only index is used or full table scan for non-indexed
table resulting in smaller response times for and .
Database optimizer does not need to perform an additional
read operation (separate for index and if values not found
and separate for a table). This proves that indexes should be
selected with care.

Determining the answers to a set of queries can be
improved by creating some indexes.

Classic index selection focuses on each query
individually and final indexes set is a sum of indexes sub-
sets for each query.

We show that groups of queries, one can get better
indexes set if such group is treated as a whole.

Grouped queries index search can only benefit and have
an advantage over single query search, only if queries in the
group satisfy the condition of mutual dependence. Queries
 , , , from previous examples are dependent so below
statement applies. Such dependency must be clearly defined.

In the present case, the dependence set of queries is
determined by connectivity of hypergraph ().

Example of a hypergraph for considered queries is
presented on Fig. 4.

Figure 4. Hypergraph for considered set of queries

In this type of graph vertices represent the columns used
in queries , edges connect those vertices which combined
make table (dashed line hyper edge) or related queries
(solid line hyper edge). For example, hyper edge connecting
vertices represents relation with query .

It is assumed that the query set is related if

corresponding hypergraph () is consistent.

In this context, the group queries indexes set creation can

benefit compared to classic index selection only for related
sets.

As a counterexample, given is a group of three database
queries

 :

𝑘 𝑘

𝑘 𝑘

𝑘 𝑄

𝑄

𝑄

𝑇

𝑇

𝑇

Legend:

𝑘𝑖 𝑗 - vertex representing column 𝑘𝑖 𝑗

𝑘𝑖 𝑗 𝑘𝑖 𝑛 - columns: 𝑘𝑖 𝑗 , 𝑘𝑖 𝑛 belonging to table 𝑇𝑎

- 𝑇𝑎

𝑘𝑖 𝑗 𝑘𝑚 𝑛

𝑄𝑎

- columns: 𝑘𝑖 𝑗 𝑘𝑚 𝑛 connected by query 𝑄𝑎

-

126Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

 : SELECT * FROM , WHERE > ,

 : SELECT * FROM , WHERE = ,

 : SELECT * FROM WHERE > [const].

Example of a hypergraph for considered queries is

presented on Fig. 5. This kind of hypergraph presented is
inconsistent. For this reason queries are treated as the
unrelated queries.

Unrelated queries for index selection process means they
cannot be treated as a group. In such cases best index set is a
set determined for each query individually:

 {{ } { } { } { }}. (6)

Figure 5. Hypergraph for considered set of queries

Weighted list for that that includes all the index
candidate columns:

 (() () () () ()) (7)

One can notice there are no query-related candidate

columns (single column occurrence) that could be used for
the grouped queries index set creation. Each table will
have to be indexed separately for each individual query .

V. CONCLUSION

Finding a good index or indexes set for a table is very

important for every relational database processing not only

from the performance point but also cost aspect. Indexes can

be crucial for a relational database to process queries with

reasonable efficiency, but the selection of the best indexes is

very difficult.

Presented examples shows that there is a need for

finding an automatic index selection mechanism with

grouped queries-oriented rather than a classic (single query)

approach. Practice shows that index focus on grouped

queries gives better results and enables user to save time

needed for index creation. It also saves system hardware

resources. In the examples we show that grouped queries

indexes set are more effective than individual queries

indexes because queries satisfy the relation

condition (Table 1).

For the automatic index selection, the system

continuously monitors queries block and gathers

information on columns used in queries. The administrator

(or user) can summon the automatic system at any time to

be presented with the current index recommendation, or

tune it to the queries’ block needs. The system also presents

the user index set and allows user to choose best option.

User decides whether to reject or accept proposed set. Due

to index interactions, the user's decisions might affect other

indexes in the configuration, so the recommendation would

need to be regenerated, taking the user's constraints into

account.
In the presented examples we considered three situations

of database queries block execution, one without indexes,
one with classic separate queries indexing and one with
grouped queries indexing. Examples showed that one should
create grouped indexes only for related queries. In that
context presented relationship may be treated as sufficient
condition for the evaluation of grouped queries indexing.

TABLE I. CLASSIC AND GROUPED QUERIES APPROACH FOR

CORRELATED DATABASE QUERIES

Database queries:

 : SELECT * FROM ,

WHERE < AND

 =[const];

 : SELECT * FROM ,
WHERE = ;

 : SELECT * FROM

WHERE > [const];

Classic approach:

CREATE INDEX k1_col1_idx

ON ();

CREATE INDEX k1_col3_idx

ON ();

CREATE INDEX k2_col1_idx

ON ();

CREATE INDEX k2_col2_idx

ON ();

CREATE INDEX k3_col2_idx

ON ();

Grouped queries approach:

CREATE INDEX

k2_col1_col2_idx ON

 (,);

VI. FUTURE WORK

Our current works are focused on grouped queries index

selection method with the use of genetic algorithm [2] that

analyzes database queries, suggests indexes’ structure and

tracks indexes influence on the queries’ execution time. We

work on the system that will be used in an attempt to find

better indexes for a critical part of long-running database

queries in testing and production database environment.

𝑘

𝑘 𝑘

𝑘
𝑄

𝑄

𝑄

 𝑇

𝑇

Legend:

𝑘𝑖 𝑗 - vertex representing column 𝑘𝑖 𝑗

𝑘𝑖 𝑗 𝑘𝑖 𝑛 - columns: 𝑘𝑖 𝑗 𝑘𝑖 𝑛 belonging to table 𝑇𝑎

- 𝑇𝑎

𝑘𝑖 𝑗 𝑘𝑚 𝑛

𝑄𝑎

- columns: 𝑘𝑖 𝑗 𝑘𝑚 𝑛 connected by query 𝑄𝑎

𝑇

𝑘

𝑇

127Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

Recording queries with good indexes together with their

total execution time is a starting point for broader searches

in the future. Simple test presented in this article proves

reasonableness of this method. The developed system is

scalable: there is a potentiality of combining smaller

queries’ blocks into larger series and finding better solution

based on execution history.

REFERENCES

[1] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe, V.
Narasayya, and M. Syamala, “Database Tuning Advisor for
Microsoft SQL Server 2005”. In Proceedings of the 30th
International Conference on Very Large Databases, 2004.

[2] T. Back, “Evolutionary algorithms in theory and practice:
evolution strategies, evolutionary programming, genetic
algorithms”, Oxford University Press Oxford, UK, 1996.

[3] N. Bruno and S. Chaudhuri, “Automatic physical database
tuning: a relaxation-based approach”, SIGMOD '05
Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, ACM New York, NY,
USA, 2005, pp.227-238.

[4] S. Chaudhuri and V. Narasayya, “An efficient Cost-Driven
Index Selection Tool for MS SQL Server”, Very Large Data
Bases Endowment Inc, 1997.

[5] D. Comers, “The Ubiquitous B-Tree”, Computing Surveys 11
(2), doi:10.1145/356770.356776, pp. 123–137.

[6] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and M.
Ziauddin, “Automatic SQL Tuning in Oracle 10g”. In
Proceedings of the 30th International Conference on Very
Large Databases, 2004.

[7] C. Dawes, B. Bryla, J. Johnson, and M Weishan, “OCA
Oracle 10g Administration I”, Sybex, 2005, pp.173.

[8] S. Finkelstein, M. Schkolnick, and P. Tiberio, “Physical
database design for relational databases”, ACM Trans.
Database Syst. 13(1), (1988), pp.91–128.

[9] M. Frank and M. Omiecinski, “Adaptive and Automated
Index Selection in RDBMS”, Proceedings of EDBT, 1992.

[10] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman,
”Index Selection for OLAP”, In Proceedings of the
Internatoinal Conference on Data Engineering, Birmingham,
U.K., April 1997, p. 208-219.

[11] D. Knuth, “The Art of Computer Programming”, vol. 3,
Sorting and Searching. Addison- Wesley, Reading, Mass.,
1973.

[12] D. Knuth, “Sorting and Searching, The Art of Computer
Programming”, Volume 3 (Second ed.), Addison-Wesley.

[13] P. Kołaczkowski and H. Rybiński, “Automatic Index
Selection in RDBMS by Exploring Query Execution Plan
Space”, Studies in Computational Intelligence, vol. 223,
Springer, 2009, pp.3-24

[14] J. Kratica, I. Ljubic, and D. Tosic, “A Genetic Algorithm for
the Index Selection Problem”, EvoWorkshops'03 Proceedings
of the 2003 international conference on Applications of
evolutionary computing, 2003.

[15] P.L. Lehman, “Efficient locking for concurrent operations on
B-trees”, ACM Transactions on Database Systems (TODS),
Volume 6 Issue 4, Dec. 1981, pp.650-670.

[16] Y. Maggie, L. Ip, L. V. Saxton, and Vijay V. Raghavan, ”On
the Selection of an Optimal Set of Indexes”, IEEE
Transactions on Software Engineering, 9(2), March 1983,
p.135-143.

[17] M. Schkolnick, “The Optimal Selection of Indices for Files”,
Information Systems, V.1, 1975.

[18] K. Schnaitter, “On-line Index Selection for Physical Database
Tuning”, ProQuest, UMI Dissertation Publishing, 2011.

[19] S. Tatham, “Counted B-Trees”,
http://www.chiark.greenend.org.uk/~sgtatham/algorithms/cbtr
ee.html, 11.02.2013.

[20] H. Wedekind, “On the selection of access paths in a data base
system. In Data Base Management”, J.W. Klimbie and K.L.
Koffeman, Eds. North-Holland, Amsterdam, 1974, pp. 385-
397.

128Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

http://www.chiark.greenend.org.uk/~sgtatham/algorithms/cbtree.html
http://www.chiark.greenend.org.uk/~sgtatham/algorithms/cbtree.html

