
An Ontology-Aided Process Constraint Modeling Framework for Workflow

Systems

Shasha Liu, Manuel Correa, Krys J. Kochut

Department of Computer Science

The University of Georgia

Athens, GA, USA

{shasha, correa, kochut}@cs.uga.edu

Abstract – Specification of non-functional and domain-

specific constraints in workflow processes and incorporating

them within workflow applications have posed persistent

problems for workflow designers. In order to address these

problems, we propose a constraint handling framework

consisting of a Process Constraint Ontology and a Process

Constraint Language. The extensible ontology allows

workflow designers to specify constraint knowledge and

vocabulary specific to their domain of interest. Subsequently,

process constraints are formulated in the constraint

language by utilizing the constraint concepts from the

ontology. The constraints are connected to the affected

process elements (activities, data, and performers), deployed

along with the process definition, and enforced and handled

at runtime by the workflow enactment system. Based on the

proposed framework, we have implemented a prototype of a

constraint-enabled workflow management system and used

it to incorporate and enforce geospatial constraints for an

emergency management workflow process.

Keywords – process modeling, constraints, non-functional

requirements, ontology, process constraint language

I. INTRODUCTION

As defined by the Workflow Management Coalition
(WfMC), a workflow is “the computerized facilitation or
automation of a business process, in whole or part” [1].
Over the past few decades, workflow systems have been
successfully applied in numerous areas of industries,
including banking, manufacturing and scientific research.
A workflow is often specified by a process definition
language. However, one common disadvantage of current
process definition languages is the lack of the capability of
describing additional process constraints and non-
functional requirements (NFRs). For example, Business
Process Model and Notation (BPMN) does not include
support for NFRs [2]. Nevertheless, functional and non-
functional constraints are vital to process definitions of
virtually all workflow applications during their design and
development [3].

Constraints and NFRs have been a focus in workflow
research since the introduction of workflow management
systems due to their high impact on the overall success of
workflow applications. Quality of service (QoS) is an
important subset of NFRs [4]. Other process constraints
may involve such factors as geographic or network
locations and properties of system resources. For example,
an emergency handling workflow process may require
some of its tasks to be executed in close geographic

proximity. Similarly, a scientific workflow may prohibit
transfers and analysis of the generated experimental data
by external workflows due to privacy or security concerns.
In order to express such application-specific constraints
and other NFRs with a process definition, workflow
designers need an intuitive and clear method to specify the
workflow constraints and NFRs, and these workflow
constraints and NFRs should be enforced at runtime by the
workflow engine to meet users’ needs. Mapping these
high-level requirement specifications to the low-level
workflow execution remains a big challenge for the
researchers and developers of workflow systems.

We summarize the high-level objectives of a
constraint-enabled workflow system as follows: (i)
constraint specifications should be expressed using a
commonly agreed-upon vocabulary; (ii) constraint
specifications should be reusable, extensible and intuitive
to create; (iii) constraint specifications should be attached
to any process elements, and their validation and
enforcement should be supported by workflow runtime.

The main contribution of our work is twofold: (i) we
have created a process constraint ontology, named
ProContO, which enables process designers to express and
share their knowledge of process NFRs and domain-
specific constraints; (ii) we have developed a process
constraint language, named PCL, which can be used to
specify process constraints and NFRs in terms of process
elements (such as BPMN tasks and data objects) and the
constraint vocabulary defined in the ontology. Using our
approach, a workflow process designer can define a
workflow process and clearly specify a variety of
constraints and NFRs that go beyond the expressiveness of
typical process definition languages. An important aspect
of PCL is that the constraint expressions can be deployed
as part of the workflow application, and then evaluated
and handled at runtime under a constraint-enabled
workflow management system.

The rest of the paper is organized as follows. Section
II presents three motivating workflow examples, while
Section III contains a review of the related work. A
process constraint ontology for constraints modeling is
introduced in Section IV. Section V introduces process
constraint language (PCL). Section VI proposes a general
architecture for a constraint-enabled workflow enactment
system and presents our prototype implementation, which
is capable of handling geospatial constraints in workflow
processes. Conclusions and future work are discussed in
Section VII.

178Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

II. MOTIVATING EXAMPLES

In this section, three motivating examples are discussed

to illustrate the importance of specifying constraints and

non-functional requirements in workflow processes.

The first example is a simplified purchase approval

process: a manager requests a new computer purchase, and

this request is approved by another manager. In order to

avoid fraudulent activities, managers who request and

approve should be different. Although BPMN can specify

an actor or a role, such a constraint cannot be specified.
GlycoQuant IDAWG

TM
 workflow is used by scientists

at the Complex Carbohydrate Research Center at the
University of Georgia to perform quantitative glycomics
analysis. One part of the workflow can be represented as
four sequentially connected tasks shown in Fig. 1. The raw
data are produced by the mass spectrometer experiment
task. Transferring raw data directly over the open internet
may not be feasible due to the large data size (e.g., in
gigabytes) and security concerns. Instead, it is preferable
to transfer the data pre-processing task to the computer
storing the raw data, and then only transfer the segmented
and encoded data back to more powerful servers for
further computational analysis.

Figure 1: GlycoQuant IDAWG Workflow

The final example illustrates domain-specific
geospatial constraints in an emergency management
workflow that go beyond those simple constraints like task
performers or the input/output data. Fig. 2 shows a
fragement of the workflow process dealing with tornado
emergencies. Once a tornado warning has been issued,
schools within the tornado path need to be evacuated while
shelters and hospitals that will not be affected but are near
the area need to get prepared. It is apparent that geospatial
constraints, such as the distance between a school and
tornado path, are impacting the task execution.

Figure 2: Tornado Emergency Workflow

III. RELATED WORK

The work on representing constraints and NFRs within
the general software engineering models has received a lot
of consideration. Formalized language and graphical
representation have been applied to define the constraints.
NoFun [5] is a formalized language aiming to facilitate
quantitative analysis of NFRs. A framework consisting of
two languages, the process-NFL and the product-NFL,
was proposed in [6] for building non-functional software
architecture both in software developing phase and for the
final software products. In [7], two additional artifacts,

named Operating Condition and Control Case, have been
introduced to BPMN to better discover and represent
NFRs at an early phase of the business development life-
cycle. In [8], flow model is applied to connect conceptual
activity diagrams in UML and technical activity diagrams
in BPMN for the purpose of design process continuity.

In summary, the formalized language representations
help developers to easily express and document
constraints, while the graphical notations provide an
intuitive way for eliciting and visualizing them. A given
constraint or an NFR can be stated by different vocabulary,
which may lead to imprecise and ambiguous specifications
[5]. This is a difficult problem for the reported modeling
approaches. In [9], the authors addressed this problem by
embedding specific keywords in their modeling
framework to control the concepts and vocabulary used by
developers. However, it is next to impossible to reach a
consensus on a good set of constraint concepts expressive
enough to cover a wide variety of application domains.

Recently, a lot of work has been focused on building
ontologies for QoS, NFRs and domain-specific
requirements in Web services, business and scientific
workflows to promote such consensus regarding the
constraints concepts and relationship among them. In [10],
Dobson, et al. developed an ontology to model non-
functional aspects in service-centric systems, based on
which, he and his colleagues later presented a domain-
independent ontology for NFRs and illustrated its
application in a business trip service [11]. DAML-QoS
[12] is another example of using ontology to model QoS
for web services. However, based on a rapidly developing
interest in scientific workflows, there is an increasing need
for a general-purpose constraint specification framework
that can model both non-functional and other domain-
specific requirements. Our work addresses these issues by
introducing an extensible process constraint ontology and
a process constraint language. We also propose a software
framework suitable for the development and execution of
workflows incorporating constraints and NFRs.

IV. PROCESS CONSTRAINT ONTOLOGY

Specification and handling of process constraints
should be an integral part of a well-designed workflow
application. Our motivating examples presented a few
types of constraints that may be found in many other
processes with similar types of requirements. We believe
that ontologies offer the requisite expressive power to
define the knowledge about process constraints, their
classification and relationships, as well as suitable
relationships connecting them to process components.

The high-level classes of our Process Constraint
Ontology, (ProContO), are shown in Fig. 3. The
ProcessElement class represents components in process
definitions (activities, data objects, and performers). A
ProcessElement may have a number of Constraint-
Attributes, which represent simple constraint properties,
such as the execution time of a task, its geospatial position,
the size of an input data or a host’s network location.
However, many constraint attributes may have to be

179Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

computed by suitable operations (for example the distance
between locations of two tasks). Such operations are
represented by the Constraint-Operation class. A
ConstraintOperation takes Constraint-Attributes as its
parameters and produces a Constraint-Attribute as its
output. The three classes and relationships among them
serve as the backbone of our process constraint ontology,
which will be explained in greater detail in the rest of this
section. An important aspect of our approach is that the
ontology is meant to be extensible and the three classes are
regarded as the roots of their respective hierarchies.

Constraint
Operation

hasAttributetakeAsParameter

producesAsOuput

Constraint
Attribute

Process
Element

Figure 3: Backbone of the Process Constraint Ontology

A. Process Elements

Existing process definition languages, such as BPMN
and XPDL, use different names for the components in a
workflow process, but their functions and relationships are
similar. Following the BPMN specification, ProContO
includes the Activity class, used to represent a task within a
workflow process, as shown Fig. 4. An Activity may input
and output Data. Each Activity is executed by a processing
entity, represented by the Performer class. Process-
Elements can be described by attributes, such as the
execution time of an Activity or the size of a Data object.
Such properties can later be used in defining process
constraints. For example, SizeAttribute and Temporal-
Attribute are types of ConstraintAttributes in Fig. 4.

Process
Element

PerformerData

Activity

isA

isAisA

hasPerformer
hasOutput

hasInput

hasAttribute

Temporal
Attribute

isA

hasDuration

Metric

hasUnit

Size
Attribute

isA

Execution
Time

isA

hasSize

Constraint
Attribute

Figure 4: ProcessElement and ProcessConstraint

B. Constraint Attributes

The ExecutionTime is a subclass of the Temporal-
Attribute and can be used to describe the properties of an
Activity. Similarly, the SizeAttribute can be used to
describe properties of Data elements. As shown in Fig. 4,
Activity within the ProcessElement module is related to
ExecutionTime, a subclass of ConstraintAttribute, by the
object property hasDuration, and Data to SizeAttribute by
hasSize. Both hasDuration and hasSize are defined as
sub-properties of the hasAttribute relationship in the
ontology (not depicted in the figure). Process designers
may extend the ontology by adding additional Constraint-
Attributes suitable for their application domain.

Another important part of the constraint ontology is the
Metric module. It is meaningless to define a numerical

constraint without giving its unit. For example, the
ExecutionTime of an Activity may be specified in
milliseconds or hours. Defining various units of measure
is important but goes beyond the scope of this paper. An
example of a metric ontology called QoSOnto in [10].

C. Constraint Operations

Some process constraint attributes cannot be expressed
as simple properties attached to process elements and must
be calculated via particular operations. The Constraint-
Operation class is introduced to handle such constraints.

Geo
Location

Point

isA

Location
AttributeisA

isA

Constraint
Attribute

Constraint
Operation

Geo
Operation

isA

Distance
isA

hasParam2
hasParam1

takeAs
Parameter

Produces
AsOuput Polygon

isA

isA

Buffer

consistOf

Area

isA

hasLocation

hasOutput

xsd: float

hasOutput

Figure 5: ProcessConstraint and ConstraintOperation

Considering the domain specific constraints in the
Tornado Emergency Workflow depicted in Fig. 2 as an
example, locations of hospitals and schools in the
emergency system are viewed as geographic locations
specified by their longitude and latitude. The distance
between them can be calculated at runtime. The Distance
operation, as shown in Fig. 5, takes two Points as
parameters. The computed distance to the projected
tornado path can later help to determine which nearby
hospitals should be alerted to the tornado. For example,
the hospitals closer than 30 miles to the tornado path
should be prepared for evacuation, while those 30 to 50
miles away should be prepared to accept injured patients.

The Buffer operation is an example of an operation that
produces a ConstraintAttribute as the output rather than a
numeric value. In the context of the Tornado Emergency
Workflow, the Buffer operation can be used to calculate
the buffer area (a zone around a map feature), which is a
Polygon area outlining the tornado path. As explained later,
the operations defined here will have corresponding
executable functions available for the runtime system.

Our process constraint ontology can facilitate the
modeling of process constraints since it (i) serves as a
concept vocabulary enabling process designers to use
common language when specifying constraints, (ii) allows
the specification and correctness validation of process
constraints, (iii) can be easily extended by process
designer to represent a variety of application domains.

V. PROCESS CONSTRAINT LANGUAGE

During process design of control and data flows,
additional constraints are elicited and added as classes and
instances in the constraint ontology. The next step involves

180Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

specifying constraint expressions and connecting them to
suitable elements in the process definition. To enable this,
we have created an ontology-aided process constraint
language (PCL). It serves as a declarative specification
language for formulating and documenting additional
process requirements. PCL constraint expressions are
attached to the designed process and ultimately deployed
to the enactment service for execution. Syntax of PCL is
similar to that of the Object Constraint Language (OCL).
Although the constraints discussed in motivating examples
are difficult to specify via current process definition
languages (e.g., BPMN), they can be defined in PCL
constraints as described in the following subsections.

A. Expressions

A PCL expression is a logical assertion of a constraint,
which evaluates to a Boolean value (true or false). Table I
shows the outline of the syntax of PCL expressions
(defined using the Extended Backus-Naur Form). A literal
is the smallest expression in PCL, which can be a string, a
number, or a name. For brevity, we don’t precisely define
strings and numbers. A name is an identifier referring to a
concept in the constraint ontology or a name of an activity
in the process definition. It is also used to identify a
constraint. Larger expressions are formed with the use of
unary and binary operators (Table II), which include
arithmetic, logical operators and navigation operators. The
two navigation operators are used to traverse relationships
in the ontology. The difference between “.” and “” is that
the “.” operator navigates the ontology by class names on
the other side of associations, while the “”operator uses
the name of a specific relationship.

TABLE I. PCL EXPRESSIONS

expression ::= logical_expr

logical_expr ::= relational_expr {logical_op

 relational_expr }

relational_expr ::= arithmetic_expr [relational_op

 arithmetic_expr]

arithmetic_expr ::= unary_expr {arithmetic_op
 unary_expr }

unary_expr ::= [unary_op] navigation _expr

navigation_expr ::= primary_expr [navigation_op name]

primary_expr ::= “(” expression “)” | if_expr |

 constraint_call | literal

if_expr ::= “if” expression “then” expression

 “else” expression “end if”

constraint_call ::= name “(” [constraint_parameters] “)”

constraint_params ::= expression {“,” expression }

literal ::= string | number | name | “true” | “false”

A constraint call is an invocation of a constraint
operation defined in the constraint ontology (an instance of
a class in the ConstraintOperation hierarchy). The name
should always starts with a lower case letter. As an
example, consider a call buffer(tornado.geoLocation),
where Buffer is the name of a ConstraintOperation, while
tornado is an alias of the Tornado Assessment activity in

the process shown in Fig. 2. The LocationAttribute of a
tornado is accessed through the “.” navigation operator.
An alias of an activity can be declared in the context
declaration of a process constraint, which will be
explained in the next subsection. Due to space limitations,
additional PCL elements, such as quantifiers to deal with
constraints on sets of process elements or their attributes,
are not discussed here.

TABLE II. PCL OPERATORS

Operator Associativity

unary_op ::= “not” right-to-left

logical_op ::= “and” | “or” | “xor”

left-to-right
relational_op ::= “=”|“>”|“<”|“>=” |“<=” | “<>”

arithmetic_op ::= “+” | “-” | “*” | “/”

navigation_op ::= “.” | “”

B. Constraint Declarations

Connections between constraints and processes are
specified in the context definition part, which is used to list
the process activities involved in the constraint. As the
name of an activity can be long, activity aliases can be
introduced at the same time. A constraint is identified by
its name and includes one or more conditions, which are
either invariants, pre-, or post-conditions. The syntax of
constraint definitions is shown in Table III.

TABLE III. PCL CONSTRAINT DECLARATION

constraint_declaration ::= “constraint” name

 context_definition

 condition { condition }

context_definition ::= “context” [alias “:”] name

 {“,” [alias “:”] name}

condition ::= constraint_type [name]

 expression {“,” expression}

constraint_type ::= “inv” | “pre” | “post”

An invariant condition (inv) must hold during a
workflow instance execution. More specifically, it is
checked before and after the execution of all activities
listed in the context definition. In case not all of the
constraint attributes used in the expression are available
(have already been established) due to the relative ordering
of activities determined by the process control flow
definition, the assertion is considered true. Consider an
example shown in Table IV. Before and after the
execution of the PurchaseRequest activity, the constraint is
true, as the Performer of PurchaseApproval is not available
yet. The actual verification of such a constraint can only be
performed once the activity of PurchaseApproval starts
and its Performer has been determined.

Pre-conditions (pre) define the required status of
process elements before they start to execute. If more than
one activity is declared in the context definition, the
constraint expression specified within the pre clause needs
to be verified at the starting point of each activity instance.
Again, the constraint is trivially asserted as true if some
attributes are not available yet (task has not executed yet).

181Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

Examples of pre-condition definitions are shown in Table
V. Similarly, post-conditions (post), are evaluated after the
execution of each involved activity.

The name given to a constraint not only facilitates the
documentation and serialization of constraints along with
the process definition, but also makes it easier to connect
constraints with suitable exception handling methods
within the process. If a constraint fails during a process
instance execution, an exception is thrown and made
available to the workflow engine and handled in a proper
way, according to the defined exception handler. PCL is a
declarative language used to specify constraints, while the
process definition language, such as BPMN, is the proper
place to provide detailed logic for handling of failed
constraints. This issue will be further discussed next.

TABLE IV. CONSTRAINT DEFINITION OF THE PURCHASING WORKFLOW

constraint ApprovalPermission

context t1: PurchaseRequest, t2: PurchaseApproval

inv t1hasPerformer <> t2hasPerformer

TABLE V. CONSTRAINT DEFINITION OF GIS AND IDAWGTM
 WORKFLOW

constraint GeoLocationProximity

context tornado: TornadoDetection,

 shelter: ShelterActivation

pre not withIn(shelter.geoLocation,

 buffer(tornado.geoLocation))

 and distance(tornado.geoLocaion,

 shelter.geoLocation)) < 50 mile
constraint DataTaskCoLocation

context t1: MassSpectrometerExperiment,

 t2: DataPreProcess

pre if t1hasOutput > 1GB

 then t2.networkLocation =
 t1hasOutput.networkLocation

 else true endif

VI. PROTOTYPE IMPLEMENTATION

In this section, we introduce a general architecture for
a constraint-enabled workflow system and describe our
prototype implementation based on the jBPM 5 workflow
management system. jBPM 5’s process definition is based
on BPMN 2.0 and our prototype implementation adds the
constraint specification and handling to a BPMN process
definition by linking the PCL constraints to BPMN
process elements and enforcing them during execution.

A. System Architecture

As shown in Fig. 6, our architecture has three layers:
(i) the User Interface Layer, (ii) the Process Constraint
Engine Layer, and (iii) the Context Awareness Layer. The
User Interface Layer manages the interactions between a
process designer and the underlying process-constraint
engine. It not only provides intuitive graphical notation to
define processes, but also provides a way of uploading the
related constraint ontologies, as well as defining
constraints using PCL. The Context Monitor module in the
Context Awareness Layer is responsible for runtime

context information, such as the network status, workload
balancing statistics of the system and the geospatial
information of a newly formed tornado in an emergency
reaction workflow during the execution. The information
is further processed by the Context Handler and fed to the
Constraint Validator.

User
Interface
Layer

Constraint
Design

Interface

Constraint
Design

Interface

Context
Awareness
Layer

Process-
Constraint
Engine
Layer

Process
Engine

Process
Engine

Constraint Engine

Ontology
Store

Ontology
Store

Constraint
Validator

Constraint
Validator

Constraint
Language
Processor

Constraint
Language
Processor

Context MonitorContext Monitor

Context HandlerContext Handler

Process Design
Interface

Process Design
Interface

Constraint
Service

Repository

Constraint
Service

Repository

Figure 6: Prototype Architecture

The Process-Constraint Engine Layer is the core
component of the constraint-enabled workflow system. It
consists of the Constraint Engine and Process Engine.

Within the Constraint Engine module, there are four
sub-components. The Ontology Store contains the created
ProContO ontology, including process elements, constraint
attributes and constraint operations, while the Constraint
Service Repository serves as a registry to manage the
services related to the constraint operations and provide
references to the Constraint Language Processor and
Constraint Validator about how to interact with these
services. The Constraint Language Processor parses the
constraints specified in PCL and validates the syntax and
semantics using the constraint ontology. It translates the
constraints into executable constraint objects stored in the
Constraint Service Repository. The translation keeps track
of the mapping between the constraint operations defined
in the ontology and the actual implementation of such
operations (e.g., the code for calculating the distance
between two points). This mapping enables process
designers to focus on the constraint design without
worrying about the underlying implementation.

The Constraint Validator is responsible for validation
of constraints against the context information. It
determines whether the constraint is satisfied and provides
the validation results to the process engine.

One part of the Process Engine’s functionality is to
accept a process definition from the user interface layer,
deploy it within the engine and execute process instances.
In addition, since it is constraint-enriched, the Process
Engine also receives input from the Constraint Engine
concerning the constraints validation, and adapts its
behavior accordingly, if needed. To be more specific, if
the Constraint Validator does not detect any failed
constraints, the Process Engine continues the normal
sequence flow defined in the process. However, if one of
the constraints fails, the Constraint Validator throws an

182Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

exception corresponding to the name of the constraint. The
Process Engine catches the exception and invokes the
corresponding exception handler, if one has been defined
in the process. If no suitable exception handler has been
defined for the exception thrown by the failed constraint, a
default action, such as suspend or terminate the execution
of the current process instance is triggered.

B. A Prototype Implementation

Based on the general architecture, we have
implemented a constraint-enabled workflow system
prototype, focusing on enforcing geospatial constraints for
emergency response processes [13]. It utilizes the existing
jBPM 5 (from Redhat’s jBoss) as the Process Engine.
Domain specific constraint operations are implemented as
Web services coded in Python. User defined geospatial
constraints defined in PCL, are translated into JSON
strings and mapped to the corresponding constraint
operations. Every time a process instance is created by the
process engine, the Constraint Validator generates a
validator instance based on the associated constraint
specification and evaluates them based the given runtime
context information. The whole procedure is illustrated in
Fig. 7. BPMN exception handling mechanism to is used to
signal and handle runtime exceptions.

Process Engine
(jBPM5, Jboss)

Process Definition

Constraints (defined in PCL)
constraint GeoLocationProximity
context t1: TornardoAccessment, t2: Shelter Activation
pre distance(t1.geoLocation, t2.geoLocation) < 50 miles

Constraint Language Processor (parsed in JSON):
{ “constraints”: [
 { “task” : [“t1”, “t2”],
 “constraint” : {
 “id”: “GeoLocationProximity”,
 “parameter”: [“geoLocation”, “geoLocation”],
 “operation”: “distance”,
 “relation”: “<”,
 “value”: 50
 }
 }, { … …

Ontology Store
(Process Constraint
Ontology)

Constraint
Validator

Constraint
Attribute

Constraint
Operation

Process
Element

Constraint Service
Repository
Distance service, … ...

Context
Handler

Figure 7: Procedure of constraint-enabled workflow system

VII. CONCLUSION AND FUTURE WORK

In this paper, we have addressed the problem of
modeling and specifying domain-specific constraints and
NFRs in workflow processes and incorporating them
within workflow applications. We introduced a process
constraint handling framework consisting of a process
constraint language (PCL) and an extensible process
constraint ontology (ProContO). ProContO allows
workflow designers to specify constraint knowledge and
vocabulary specific to their domain of interest, which we
illustrated with examples. Process constraints are
formulated in PCL, utilizing the constraint concepts
defined in ProContO. PCL constraints are connected to
process elements and deployed along with the process
definition for execution. We have implemented a
prototype of a constraint-enabled workflow management

system and used it to create an emergency management
workflow incorporating to handle geospatial constraints.

In the near future, we plan to integrate user interface of
extending the ontology and creating PCL constraints with
existing process definition tool. We also intend to integrate
the framework with Web service composition methods.

ACKNOWLEDGMENT

This work was funded in part by the National Institutes
of Health grant RR018502 for the Integrated Technology
Resource for Biomedical Glycomics.

REFERENCES

1 WfMC: ‘Terminology & Glossary’ (Winchester, 1999, 3rd
edn. 1999)

2 Gorton, S., and Reiff-Marganiec, S.: ‘Towards a task-
oriented, policy-driven business requirements specification
for web services’, Proc. The 4th International Conference
on Business Process Management (BPM 2006), 2006, pp.
465-470

3 Chung, L., and do Prado Leite, J.: ‘On Non-Functional
Requirements in Software Engineering’: ‘Conceptual
Modeling: Foundations and Applications’ (Springer-
Verlag, 2009), pp. 363-379

4 Cardoso, J., Sheth, A., Miller, J., Arnold, J., and Kochut,
K.: ‘Quality of service for workflows and web service
processes’, Web Semantics: Science, Services and Agents
on the World Wide Web, 2004, 1, (3), pp. 281-308

5 Franch, X., and Botella, P.: ‘Putting non-functional
requirements into software architecture’, Proc. The 9th
International Workshop on Software Specification And
Design, 1998, pp. 60-67

6 Rosa, N.S., Justo, G.R.R., and Cunha, P.R.F.: ‘A
framework for building non-functional software
architectures’, Proc. The 2001 ACM Symposium on
Applied Computing, 2001, pp. 141-147

7 Pavlovski, C.J., and Zou, J.: ‘Non-functional requirements
in business process modeling’, Proc. The 5th Asia-Pacific
Conference on Conceptual Modelling (APCCM 2008),
2008, 79, pp. 103-112

8 Al-Fedaghi, S.: ‘BPMN Requirements Specification as
Narrative’, Proc. 3rd International Conference on
Information, Process, and Knowledge Management
(eKNOW 2011), 2011, pp. 68-75

9 Cysneiros, L.M., and do Prado Leite, J.C.S.:
‘Nonfunctional Requirements: From Elicitation to
Conceptual Models’, IEEE Trans. Softw. Eng., 2004, 30,
(5), pp. 328-350

10 Dobson, G., Lock, R., and Sommerville, I.: ‘QoSOnt: a
QoS Ontology for Service-Centric Systems’, Proc. The 31st
EUROMICRO Conference on Software Engineering and
Advanced Applications (EUROMICRO-SEAA 2005),
2005, pp. 80-87

11 Dobson, G., Hall, S., and Kotonya, G.: ‘A Domain-
Independent Ontology for Non-Functional Requirements’,
Proc. The IEEE International Conference on e-Business
Engineering (ICEBE 2007), 2007, pp. 563-566

12 Zhou, C., Chia, L.T., and Lee, B.S.: ‘DAML-QoS Ontology
for Web Services’, Proc. The IEEE International
Conference on Web Services (ICWS 2004), 2004, pp. 472-
479

13 Correa, M.: ‘Geospatial context awareness in business
pocess modeling’, The University of Georgia, 2012

183Copyright (c) IARIA, 2013. ISBN: 978-1-61208-254-7

eKNOW 2013 : The Fifth International Conference on Information, Process, and Knowledge Management

