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Abstract—With the growing number of people using SmartTVs 
and Smartphones, designing a recommender system for on-
demand streaming media, such as movie streaming, has been 
an attractive, yet challenging work. There are many factors 
that influence people to enjoy a movie. Smart devices provide 
many kinds of data from its sensors that can help us deduce, 
for example, whether it is the time, the day, the location, or the 
combination of those that makes a great experience in 
watching a particular movie. However, designing the algorithm 
to consider all these factors can lead into a very complicated 
decision tree. To address this issue, we propose a simple 
evolutionary computational approach that can be used to 
search through those huge numbers of possible combinations 
of solutions, and find the relevant factors when recommending 
a movie to particular type of users.  

Keywords-Recommender System; Classifier System; Genetic 
Algorithm; SmartTV; Smartphone  

I.  INTRODUCTION 
Smart Devices, such as SmartTVs and Smartphones, 

provide the integration of various web services into 
televisions and mobile phones. One of such services is on-
demand streaming media.  On-demand streaming allows 
users to choose shows or movies they would like to watch. 
However, there are countless choices available from the 
streaming providers. This may lead users to confusion, as 
they might not know what would be interesting to watch [2]. 

Recommender systems address this problem. Rather than 
waiting for users to choose a movie, the system recommends 
movies that it thinks they will like. The recommendations are 
usually generated through learning from users’ past behavior 
[3], or from other similar users’ interest [5]. 

Many current recommender algorithms rely on users’ 
feedback, such as rating, or profile. For example, when a 
user liked a movie, the system will search for other users 
who liked the same movie, and then, recommend other 
movies that those users also liked. While this might work 
very well for shopping websites, it might not be suitable for 
media streaming. 

When a user enjoys a movie, there are many factors that 
affect his/her enjoyment at that moment. For example, a user 
who usually enjoys action movies on weekend might prefer 
watching drama movies on other days at night to relax after 
getting tired from work. A user might really like science 
fictions, but s/he only enjoys watching them from a large 
screen TV at home, and never on smartphones due to the 
small screen. 

In other words, even if a user liked a movie, s/he might 
not be going to enjoy the same movie, had s/he watched it 
under different circumstances. Locations, devices, days, 
times, and other factors contribute to whether she will enjoy 
a movie or not. SmartTVs and smartphones can provide all 
these details, and it is only natural to use the information as 
basis for recommender systems. However, designing a 
recommender system to consider all these factors using 
typical recommender algorithms will end with a very 
complicated decision-making process. This paper offers a 
simple algorithm to address this issue using Learning 
Classifier System (LCS) [7], implementing genetic algorithm 
(GA) [1] and reinforcement learning (RL) [4]. 

LCS maintains a population of classifiers that predicts 
the best action given its input. The input we use is 
information that is available from smart devices, such as 
sensory data, geographical and device information, as well as 
date and time. GA is used to search the possible solution 
space to figure out which part of the inputs, or what kind of 
input combination affects the viewing experience. Solutions 
proposed by the GA are evaluated by RL, giving feedback 
whether they are accurate or not. During training, LCS repeat 
this process over and over again until it has a good 
population set with high average accuracy. 

This paper starts with the introduction to recommender 
systems in Section I and reviews some of the literatures 
related to this field in Section II. We define our proposed 
method using LCS for recommending items in Section III. 
Finally, we put our conclusion and the discussion about 
future work in Section IV. 

II. LITERATURE REVIEW 
Mukherjee [3] proposed a movie recommender system 

using voting method. Their system tracks users’ preference, 
such as favorite actors, actress, genres, etc. Each attribute of 
the preferences is given a weight value, which reflects the 
relative importance of those attributes. The voting system 
calculates these weights according Bayesian learning scheme 
and returns a ranking of alternatives when the user asked for 
a recommendation. 

Salter [2] combined two popular recommender 
algorithms, Collaborative Filtering (CF) and Content-Based 
Filtering (CBF), into one system. The CBF was used to 
address the cold-start problem with CF not being able to 
make recommendation for new items. 

Symeonidis [5] developed a recommender system with 
explanations. Theirs system gives the ability to a user to 
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check the reasoning behind a recommendation. This allows 
users to accurately predict their true opinion of an item. 

Those systems managed to make good predictions about 
movies that users would like. However, those systems were 
designed before the smart devices and streaming media went 
mainstream. The way people watch movie has changed, 
some people like to watch at home, some prefer to watch on 
mobile devices while commuting. They did not consider 
these possible factors and other information that can be 
provided by smart devices. We tackle this issue with our 
proposed method.   

III. PROPOSED METHOD 

A. Learning Classifier System 
LCS [1] is a machine learning paradigm, in which an 

intelligent agent is interacting with an environment. LCS 
keeps a collection of classifiers, referred as population set. 
Each classifier is essentially a rule of condition-action set. 
The classifiers have a parameter that predicts the reward that 
the agent will receive, should it choose the action proposed 
by the relevant classifiers. LCS agent learns to perform the 
best action based on the condition. Whenever the agent 
performs an action, it receives feedback from the 
environment to inform the quality of the action. 

There are many models of LCS available today, such as 
ZCS [6] and XCS [7]. Different models have different 
criteria as what is the “best” action. ZCS model trains the 
system to chase high rewards. Over time, the population set 
evolves into a set of classifiers that predicts high reward 
only. The downside of this model is, although it gets huge 
reward when it does predict correctly, many of the classifiers 
often predict incorrectly. This led into inconsistent accuracy 
[6]. 

XCS model tackles the issues related to ZCS. Each 
classifier in XCS maintains an additional parameter, referred 
as accuracy parameter. This parameter job is to keep track of 
how often its classifier made inaccurate predictions. XCS 
agents prefer actions proposed by classifiers with high 
accuracy value, although they may predict low reward. Thus, 
XCS is more suitable to problems where consistent accuracy 
is important [7]. For this reason, we choose XCS model as 
the basis of our proposed method.  

Recommendation using LCS means that the systems can, 
unlike CF and CBF method [2], consider more factors in 
deciding which item to recommend. CF concerns only about 
similar users, while CBF concerns about similar items. 
While they are good for users of web shopping sites, they 
might not be suitable for users of media streaming services, 
where users do not simply like an item, but mood factors 
affect in a sense for example they might have different 
preferences in morning and night time. LCS can be used to 
consider these factors when making recommendations. In 
addition to recommender systems, our proposed method has 
also been applied to simulate security patrol [8]. 

B. Generating Initial Classifiers 
The condition part of the classifiers is a string of input 

reflecting the situation that the agent encounters. In our 

recommender system, the input string consists of 
information that can be provided by smart devices: Day, 
time, user’s age, gender, type of device, location, movie’s 
release date, movie genres,  movie stars, movie ID (Figure 
1). 

From the training set, when a user “Like”d a movie, the 
system generates several classifiers that represent the 
situation. It takes into consideration the information 
mentioned above.  
 

 
 

Figure 1. Classifier Representation 
 

The numbers shown in Figure 1 are interpreted 
according to the following schema: 

• Day: [0] = Unknown; [1] = Sunday; [2] = Monday; 
[3] = Tuesday; [4] = Wednesday; [5] = Thursday; 
[6] = Friday; [7] = Saturday. 

• Time: [0] = Unknown; [1] = 6 AM ~ 8:59 AM;  
[2] = 9 AM ~ 11:59 AM; [3] = 12 AM ~ 2:59 PM; 
[4] = 3 PM ~ 6:59 PM; [5] = 7 PM ~ 8:59 PM; 
[6] = 9 PM ~ 11:59 PM; [7] = 12 PM ~ 2:59 AM; 
[8] = 3 AM ~ 5:59 AM. 

• Type of device: [0] = Unknown; [1] = TV; [2] = 
Tablet; [3]=Phone. 

• Gender: [0] = Unknown; [1] = Male; [2] Female. 
• Age: [0] = Unknown; [1] = Below 18; [2] = 18 ~ 

29; [3] = 30 ~ 39; [4] = 40 ~ 49; [5] = 50 ~ 59; [6] = 
60~69; [7]=70~79; [8]=80 and above. 

• Location ID (e.g., [5] = Tokyo). 
• Release date: [0] = Unknown; [1] = Before 1970; 

[2] = 1970 ~ 1979; [3] = 1980 ~ 1989; 
[4] = 1990 = 1999; [5] = 2000 ~ 2010; 
[5] = 2010 and after. 

• Genres ID (e.g., [2] = Drama; [5] = Romance). 
• Actor/Actress ID (e.g., [29] = Leonardo DiCaprio; 

[21] = Kate Winslet, [34] = Billy Zane). 
• Director ID (e.g., [45] James Cameron). 
• Language ID (e.g., [1] = English). 
• Movie ID (e.g., [27] = Titanic). 
 
Suppose a user likes Titanic (a fact). The system 

considers the situation when it happened. On what day? 
What time? What kind of user? What kind of movie? Who 
are the actors? The classifier shown in Figure 1 can be read 
this way: “A female teenagers who live in Tokyo who likes 
1990s movies AND likes drama and romantic movies AND 
likes movies starring Leonardo DiCaprio, Kate Winslet, and 
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Billy Zane AND likes movies directed by James Cameron 
AND likes English movie  WILL enjoy watching Titanic 
ON a tablet AT night ON Sunday”. 

Since movies are usually related to multiple genres and 
have many actors/actresses involved, for each fact the 
system generates multiple classifiers picking (in our 
example) two random genres and three random 
actors/actresses related to the movie. This means that during 
learning the system will look for which combination of 
genres and actors/actresses are relevant to the user’s profile. 

Additionally, for each fact the system also generates 
classifiers that have “Wildcard” symbols along the input 
string. This means that during learning the system will look 
for which parts of the input that are not relevant (the noise) 
to the user’s profile. Consider a more generalized classifier 
illustrated in Figure 2. 

 

 
 

Figure 2. A Generalized Classifier 
 
The classifier illustrated in Figure 2 shows some 

wildcard symbols (‘#’ symbols) along the input string. This 
classifier thinks that the “Day”, “Device”, “Location”, one 
“Genre”, two “Actors/Actresses”, and “Language” parts are 
not relevant. This classifier can be read: “Regardless of the 
Day, Device and Location, a female teenager who likes 
1990s romantic movies AND likes movies starring 
Leonardo DiCaprio AND likes movies produced by “James 
Cameron”, WILL enjoy watching Titanic at Night”. 

The more wildcard symbols a classifier has, the more 
generalized it is. After generating all the classifiers from the 
initial set of facts, the system will test those classifiers 
against users in the testing set. During each learning loop, 
the system will evolve classifiers that make accurate 
prediction and delete inaccurate classifiers through 
evolutionary process. After the learning process is finished, 
the population set should consist the generalized classifiers 
(but not too generalized) with high accuracy. 

The input length for LCS is flexible. If, for example, 
more profile data are available from the smart devices, it is 
possible to add those details into the input. If necessary, 
more metadata about the movies (such as more genres, 
studio name, music composer, or other metadata) can be 
added too. The longer the classifier, the more details are 
taken into consideration. 

Obviously, when more details are necessary to be 
considered, using general decision process, such as decision 
tree, the decision-making process will end up with a very 
complicated procedure. LCS simplifies this process by 
representing the details as strings of possible solution and 
let the evolutionary process search for the good ones.  

C. Learning 
After the initial population set is generated, the learning 

phase begins (Figure 3). 
 

 
 

Figure 3. Learning Process 
 
LCS starts by sensing the current environment situation. 

Suppose in the training set, LCS encounters a user with the 
situation shown in Figure 4, and LCS has a Population Set 
[P] of eight Classifiers C shown in Figure 5. 

 

 
 

Figure 4. Input sensed from the environment situation 
 

 
 

Figure 5. Population Set 
 
From Figure 5, we can see that six classifiers match the 

input from environment. The first two digits of the other 
two classifiers do not match the input. LCS will select the 
six matched classifiers, and put them in a collection called 
Match Set [M] (Figure 6). 

 

 
 

Figure 6. Match Set collected from the Population Set 
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Figure 6 shows that the six classifiers inside the Match 

Set predicted three different actions (three movies). For each 
action, LCS calculate the prediction array P(A) using the 
value of reward prediction (C.p) and fitness (C.f) of 
classifier C ∈ [P] (1). 

 (1) 

Essentially, P(A) reflects the average of all reward 
prediction of classifiers in [M] that advocate action a. The 
algorithm chooses the action that maximizes P(A) (2). 

 (2) 
Suppose in our example above, Action 1 is calculated as 

the best action. Then, LCS puts the three classifiers in [M] 
that proposes Action 1 into an Action Set [A]. 

After LCS applies the action, it receives feedback from 
the environment whether if its prediction is correct or not. 
Through RL method [4], the classifiers in [A] are credited 
with reward r as a result of the action performed. Then, the 
prediction error of each classifier in [A] is updated (3). 

  (3) 
where β is the learning rate. 
Next, reward prediction of each classifier in [A] is 

updated (4). 
   (4) 

Unlike generic LCS, XCS classifiers maintain accuracy 
parameter that tracks the accuracy of the classifiers\ 
throughout the learning process. Each rule’s relative 
accuracy is determined by dividing its accuracy the total of 
the accuracies in [A] (5). 

   (5) 

Finally, fitness f is updated with respect to the relative 
accuracy (6). 

  (6) 
The dataset is divided into training set and testing set. 

The training set is used to train the system to generate a 
population of classifiers that predict a recommendation for 
existing items. The testing set acts as new items encountered 
by the system. This is used to evaluate how well the system 
is able make predictions for unknown items. 
 

D. Evolution 
GA [1] is used to evolve the rules in [A]. GA is triggered 

when the average time period for classifiers within [A] since 
the last occurrence of GA is greater than GA’s frequency 
parameter. The GA starts by selecting two “parent” 
classifiers from [A] with roulette wheel selection (7). 

   (7) 

Once two parents have been selected, new offspring 
classifiers are generated by crossover and mutation. 
Crossover operation selects a point on the parent classifier 
strings. All digits beyond that point of one parent classifier 
are swapped with the digits of another classifier. Finally, the 
digits of the resulting strings from the crossover are mutated 
into different acceptable values. This means that two new 
offspring classifiers are generated maintaining some traits 
from their parents. The offspring classifiers are inserted into 
the population set, replacing classifiers with low fitness 
value. Then, the learning process is repeated again until the 
population set evolves into a collection of classifiers with 
relatively high accuracy values.  

IV. CONCLUSIONS AND FUTURE WORK 
This short paper shows preliminary work on how to 

apply LCS to recommender system. It shows that LCS can 
be used to train for, not only predicting a movie a user will 
enjoy, but also finding the reason why s/he might enjoy it. 
This is useful to recommend a movie to another user that has 
similar profile. 

LCS is flexible, in a sense that, if the system designer 
decides to change the input types, the learning algorithm 
stays the same. S/he may also add more details to the input 
string if s/he manages to gather more detailed data from the 
sensors of smart devices. 

Ongoing work includes testing with real data, as well as 
cross-validating the result. Future explorations will include 
performance analysis, such as training time, as well as 
comparison to other solutions, such as Naïve Bayes 
Classifier and k-Nearest Neighbors. 
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