
Designing a Situation-aware Movie Recommender System for Smart Devices

Mhd Irvan, Na Chang, Takao Terano
Dept. of Computational Intelligence and Systems Science

Tokyo Institute of Technology
Yokohama, Japan

irvan@trn.dis.titech.ac.jp, changna@trn.dis.titech.ac.jp, terano@dis.titech.ac.jp

Abstract—With the growing number of people using SmartTVs
and Smartphones, designing a recommender system for on-
demand streaming media, such as movie streaming, has been
an attractive, yet challenging work. There are many factors
that influence people to enjoy a movie. Smart devices provide
many kinds of data from its sensors that can help us deduce,
for example, whether it is the time, the day, the location, or the
combination of those that makes a great experience in
watching a particular movie. However, designing the algorithm
to consider all these factors can lead into a very complicated
decision tree. To address this issue, we propose a simple
evolutionary computational approach that can be used to
search through those huge numbers of possible combinations
of solutions, and find the relevant factors when recommending
a movie to particular type of users.

Keywords-Recommender System; Classifier System; Genetic
Algorithm; SmartTV; Smartphone

I. INTRODUCTION
Smart Devices, such as SmartTVs and Smartphones,

provide the integration of various web services into
televisions and mobile phones. One of such services is on-
demand streaming media. On-demand streaming allows
users to choose shows or movies they would like to watch.
However, there are countless choices available from the
streaming providers. This may lead users to confusion, as
they might not know what would be interesting to watch [2].

Recommender systems address this problem. Rather than
waiting for users to choose a movie, the system recommends
movies that it thinks they will like. The recommendations are
usually generated through learning from users’ past behavior
[3], or from other similar users’ interest [5].

Many current recommender algorithms rely on users’
feedback, such as rating, or profile. For example, when a
user liked a movie, the system will search for other users
who liked the same movie, and then, recommend other
movies that those users also liked. While this might work
very well for shopping websites, it might not be suitable for
media streaming.

When a user enjoys a movie, there are many factors that
affect his/her enjoyment at that moment. For example, a user
who usually enjoys action movies on weekend might prefer
watching drama movies on other days at night to relax after
getting tired from work. A user might really like science
fictions, but s/he only enjoys watching them from a large
screen TV at home, and never on smartphones due to the
small screen.

In other words, even if a user liked a movie, s/he might
not be going to enjoy the same movie, had s/he watched it
under different circumstances. Locations, devices, days,
times, and other factors contribute to whether she will enjoy
a movie or not. SmartTVs and smartphones can provide all
these details, and it is only natural to use the information as
basis for recommender systems. However, designing a
recommender system to consider all these factors using
typical recommender algorithms will end with a very
complicated decision-making process. This paper offers a
simple algorithm to address this issue using Learning
Classifier System (LCS) [7], implementing genetic algorithm
(GA) [1] and reinforcement learning (RL) [4].

LCS maintains a population of classifiers that predicts
the best action given its input. The input we use is
information that is available from smart devices, such as
sensory data, geographical and device information, as well as
date and time. GA is used to search the possible solution
space to figure out which part of the inputs, or what kind of
input combination affects the viewing experience. Solutions
proposed by the GA are evaluated by RL, giving feedback
whether they are accurate or not. During training, LCS repeat
this process over and over again until it has a good
population set with high average accuracy.

This paper starts with the introduction to recommender
systems in Section I and reviews some of the literatures
related to this field in Section II. We define our proposed
method using LCS for recommending items in Section III.
Finally, we put our conclusion and the discussion about
future work in Section IV.

II. LITERATURE REVIEW
Mukherjee [3] proposed a movie recommender system

using voting method. Their system tracks users’ preference,
such as favorite actors, actress, genres, etc. Each attribute of
the preferences is given a weight value, which reflects the
relative importance of those attributes. The voting system
calculates these weights according Bayesian learning scheme
and returns a ranking of alternatives when the user asked for
a recommendation.

Salter [2] combined two popular recommender
algorithms, Collaborative Filtering (CF) and Content-Based
Filtering (CBF), into one system. The CBF was used to
address the cold-start problem with CF not being able to
make recommendation for new items.

Symeonidis [5] developed a recommender system with
explanations. Theirs system gives the ability to a user to

24Copyright (c) IARIA, 2014. ISBN: 978-1-61208-329-2

eKNOW 2014 : The Sixth International Conference on Information, Process, and Knowledge Management

check the reasoning behind a recommendation. This allows
users to accurately predict their true opinion of an item.

Those systems managed to make good predictions about
movies that users would like. However, those systems were
designed before the smart devices and streaming media went
mainstream. The way people watch movie has changed,
some people like to watch at home, some prefer to watch on
mobile devices while commuting. They did not consider
these possible factors and other information that can be
provided by smart devices. We tackle this issue with our
proposed method.

III. PROPOSED METHOD

A. Learning Classifier System
LCS [1] is a machine learning paradigm, in which an

intelligent agent is interacting with an environment. LCS
keeps a collection of classifiers, referred as population set.
Each classifier is essentially a rule of condition-action set.
The classifiers have a parameter that predicts the reward that
the agent will receive, should it choose the action proposed
by the relevant classifiers. LCS agent learns to perform the
best action based on the condition. Whenever the agent
performs an action, it receives feedback from the
environment to inform the quality of the action.

There are many models of LCS available today, such as
ZCS [6] and XCS [7]. Different models have different
criteria as what is the “best” action. ZCS model trains the
system to chase high rewards. Over time, the population set
evolves into a set of classifiers that predicts high reward
only. The downside of this model is, although it gets huge
reward when it does predict correctly, many of the classifiers
often predict incorrectly. This led into inconsistent accuracy
[6].

XCS model tackles the issues related to ZCS. Each
classifier in XCS maintains an additional parameter, referred
as accuracy parameter. This parameter job is to keep track of
how often its classifier made inaccurate predictions. XCS
agents prefer actions proposed by classifiers with high
accuracy value, although they may predict low reward. Thus,
XCS is more suitable to problems where consistent accuracy
is important [7]. For this reason, we choose XCS model as
the basis of our proposed method.

Recommendation using LCS means that the systems can,
unlike CF and CBF method [2], consider more factors in
deciding which item to recommend. CF concerns only about
similar users, while CBF concerns about similar items.
While they are good for users of web shopping sites, they
might not be suitable for users of media streaming services,
where users do not simply like an item, but mood factors
affect in a sense for example they might have different
preferences in morning and night time. LCS can be used to
consider these factors when making recommendations. In
addition to recommender systems, our proposed method has
also been applied to simulate security patrol [8].

B. Generating Initial Classifiers
The condition part of the classifiers is a string of input

reflecting the situation that the agent encounters. In our

recommender system, the input string consists of
information that can be provided by smart devices: Day,
time, user’s age, gender, type of device, location, movie’s
release date, movie genres, movie stars, movie ID (Figure
1).

From the training set, when a user “Like”d a movie, the
system generates several classifiers that represent the
situation. It takes into consideration the information
mentioned above.

Figure 1. Classifier Representation

The numbers shown in Figure 1 are interpreted
according to the following schema:

• Day: [0] = Unknown; [1] = Sunday; [2] = Monday;
[3] = Tuesday; [4] = Wednesday; [5] = Thursday;
[6] = Friday; [7] = Saturday.

• Time: [0] = Unknown; [1] = 6 AM ~ 8:59 AM;
[2] = 9 AM ~ 11:59 AM; [3] = 12 AM ~ 2:59 PM;
[4] = 3 PM ~ 6:59 PM; [5] = 7 PM ~ 8:59 PM;
[6] = 9 PM ~ 11:59 PM; [7] = 12 PM ~ 2:59 AM;
[8] = 3 AM ~ 5:59 AM.

• Type of device: [0] = Unknown; [1] = TV; [2] =
Tablet; [3]=Phone.

• Gender: [0] = Unknown; [1] = Male; [2] Female.
• Age: [0] = Unknown; [1] = Below 18; [2] = 18 ~

29; [3] = 30 ~ 39; [4] = 40 ~ 49; [5] = 50 ~ 59; [6] =
60~69; [7]=70~79; [8]=80 and above.

• Location ID (e.g., [5] = Tokyo).
• Release date: [0] = Unknown; [1] = Before 1970;

[2] = 1970 ~ 1979; [3] = 1980 ~ 1989;
[4] = 1990 = 1999; [5] = 2000 ~ 2010;
[5] = 2010 and after.

• Genres ID (e.g., [2] = Drama; [5] = Romance).
• Actor/Actress ID (e.g., [29] = Leonardo DiCaprio;

[21] = Kate Winslet, [34] = Billy Zane).
• Director ID (e.g., [45] James Cameron).
• Language ID (e.g., [1] = English).
• Movie ID (e.g., [27] = Titanic).

Suppose a user likes Titanic (a fact). The system

considers the situation when it happened. On what day?
What time? What kind of user? What kind of movie? Who
are the actors? The classifier shown in Figure 1 can be read
this way: “A female teenagers who live in Tokyo who likes
1990s movies AND likes drama and romantic movies AND
likes movies starring Leonardo DiCaprio, Kate Winslet, and

25Copyright (c) IARIA, 2014. ISBN: 978-1-61208-329-2

eKNOW 2014 : The Sixth International Conference on Information, Process, and Knowledge Management

Billy Zane AND likes movies directed by James Cameron
AND likes English movie WILL enjoy watching Titanic
ON a tablet AT night ON Sunday”.

Since movies are usually related to multiple genres and
have many actors/actresses involved, for each fact the
system generates multiple classifiers picking (in our
example) two random genres and three random
actors/actresses related to the movie. This means that during
learning the system will look for which combination of
genres and actors/actresses are relevant to the user’s profile.

Additionally, for each fact the system also generates
classifiers that have “Wildcard” symbols along the input
string. This means that during learning the system will look
for which parts of the input that are not relevant (the noise)
to the user’s profile. Consider a more generalized classifier
illustrated in Figure 2.

Figure 2. A Generalized Classifier

The classifier illustrated in Figure 2 shows some

wildcard symbols (‘#’ symbols) along the input string. This
classifier thinks that the “Day”, “Device”, “Location”, one
“Genre”, two “Actors/Actresses”, and “Language” parts are
not relevant. This classifier can be read: “Regardless of the
Day, Device and Location, a female teenager who likes
1990s romantic movies AND likes movies starring
Leonardo DiCaprio AND likes movies produced by “James
Cameron”, WILL enjoy watching Titanic at Night”.

The more wildcard symbols a classifier has, the more
generalized it is. After generating all the classifiers from the
initial set of facts, the system will test those classifiers
against users in the testing set. During each learning loop,
the system will evolve classifiers that make accurate
prediction and delete inaccurate classifiers through
evolutionary process. After the learning process is finished,
the population set should consist the generalized classifiers
(but not too generalized) with high accuracy.

The input length for LCS is flexible. If, for example,
more profile data are available from the smart devices, it is
possible to add those details into the input. If necessary,
more metadata about the movies (such as more genres,
studio name, music composer, or other metadata) can be
added too. The longer the classifier, the more details are
taken into consideration.

Obviously, when more details are necessary to be
considered, using general decision process, such as decision
tree, the decision-making process will end up with a very
complicated procedure. LCS simplifies this process by
representing the details as strings of possible solution and
let the evolutionary process search for the good ones.

C. Learning
After the initial population set is generated, the learning

phase begins (Figure 3).

Figure 3. Learning Process

LCS starts by sensing the current environment situation.

Suppose in the training set, LCS encounters a user with the
situation shown in Figure 4, and LCS has a Population Set
[P] of eight Classifiers C shown in Figure 5.

Figure 4. Input sensed from the environment situation

Figure 5. Population Set

From Figure 5, we can see that six classifiers match the

input from environment. The first two digits of the other
two classifiers do not match the input. LCS will select the
six matched classifiers, and put them in a collection called
Match Set [M] (Figure 6).

Figure 6. Match Set collected from the Population Set

26Copyright (c) IARIA, 2014. ISBN: 978-1-61208-329-2

eKNOW 2014 : The Sixth International Conference on Information, Process, and Knowledge Management

Figure 6 shows that the six classifiers inside the Match

Set predicted three different actions (three movies). For each
action, LCS calculate the prediction array P(A) using the
value of reward prediction (C.p) and fitness (C.f) of
classifier C ∈ [P] (1).

 (1)

Essentially, P(A) reflects the average of all reward
prediction of classifiers in [M] that advocate action a. The
algorithm chooses the action that maximizes P(A) (2).

 (2)
Suppose in our example above, Action 1 is calculated as

the best action. Then, LCS puts the three classifiers in [M]
that proposes Action 1 into an Action Set [A].

After LCS applies the action, it receives feedback from
the environment whether if its prediction is correct or not.
Through RL method [4], the classifiers in [A] are credited
with reward r as a result of the action performed. Then, the
prediction error of each classifier in [A] is updated (3).

 (3)
where β is the learning rate.
Next, reward prediction of each classifier in [A] is

updated (4).
 (4)

Unlike generic LCS, XCS classifiers maintain accuracy
parameter that tracks the accuracy of the classifiers\
throughout the learning process. Each rule’s relative
accuracy is determined by dividing its accuracy the total of
the accuracies in [A] (5).

 (5)

Finally, fitness f is updated with respect to the relative
accuracy (6).

 (6)
The dataset is divided into training set and testing set.

The training set is used to train the system to generate a
population of classifiers that predict a recommendation for
existing items. The testing set acts as new items encountered
by the system. This is used to evaluate how well the system
is able make predictions for unknown items.

D. Evolution
GA [1] is used to evolve the rules in [A]. GA is triggered

when the average time period for classifiers within [A] since
the last occurrence of GA is greater than GA’s frequency
parameter. The GA starts by selecting two “parent”
classifiers from [A] with roulette wheel selection (7).

 (7)

Once two parents have been selected, new offspring
classifiers are generated by crossover and mutation.
Crossover operation selects a point on the parent classifier
strings. All digits beyond that point of one parent classifier
are swapped with the digits of another classifier. Finally, the
digits of the resulting strings from the crossover are mutated
into different acceptable values. This means that two new
offspring classifiers are generated maintaining some traits
from their parents. The offspring classifiers are inserted into
the population set, replacing classifiers with low fitness
value. Then, the learning process is repeated again until the
population set evolves into a collection of classifiers with
relatively high accuracy values.

IV. CONCLUSIONS AND FUTURE WORK
This short paper shows preliminary work on how to

apply LCS to recommender system. It shows that LCS can
be used to train for, not only predicting a movie a user will
enjoy, but also finding the reason why s/he might enjoy it.
This is useful to recommend a movie to another user that has
similar profile.

LCS is flexible, in a sense that, if the system designer
decides to change the input types, the learning algorithm
stays the same. S/he may also add more details to the input
string if s/he manages to gather more detailed data from the
sensors of smart devices.

Ongoing work includes testing with real data, as well as
cross-validating the result. Future explorations will include
performance analysis, such as training time, as well as
comparison to other solutions, such as Naïve Bayes
Classifier and k-Nearest Neighbors.

REFERENCES
[1] J. H. Holland, ”Adaptation in Natural and Artificial Systems: An

Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence,” Book ISBN 0262581116, A Bradford Book,
1992.

[2] J. Salter, “CinemaScreen recommender agent: combining
collaborative and content-based filtering,” Intelligent Systems, 2006,
pp. 35-41.

[3] R. Mukherjee, G. Jonsdottir, and S. Sen, “MOVIES2GO: An Online
Voting Based Movie Recommender System,” Proceedings of the fifth
international conference on Autonomous agents, 2001, pp. 114-115.

[4] R. S. Sutton, “Reinforcement Learning: An Introduction,” Robotica,
vol. 17, Issue 2, 1999, pp. 229-235.

[5] P. Symeonidis, and A. Nanopoulos, “MoviExplain: A Recommender
System with Explanations,” Proceedings of the third ACM
conference on Recommender systems, 2009, pp. 317~320.

[6] S. W. Wilson, “ZCS: A Zeroth Level Classifier System,”
Evolutionary Computation, vol. 2, Issue 1, 1994, pp. 1-18.

[7] S. W. Wilson, “State of XCS classifier system research,” Lecture
Notes in Artificial Intelligence (LNAI-1813), 2000, pp. 63-81.

[8] M. Irvan, T. Yamada, T. Terano, “Multi-Agent Learning Approcah to
Dynamic Security Patrol Routing,” Proceedings of SICE Annual
Conference, 2011, pp. 875-880.

€

P(A) =
C.p ×C. f

C .a= a∧C∈[M]∑
C. f

C .a= a∧C∈[M]∑

€

Amax = arg maxA P(A)

€

ε← ε + β r − p −ε()

€

p← p + β r − p()

€

κ '= κ

C..κ
C∈[A]
∑

€

f ← f + β κ '− f()

€

pi =
f
C. f

C∈[A]
∑

27Copyright (c) IARIA, 2014. ISBN: 978-1-61208-329-2

eKNOW 2014 : The Sixth International Conference on Information, Process, and Knowledge Management

