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Abstract— The important feature selection problem has been 

studied extensively and a variety of algorithms has been proposed 
for data analysis and mining tasks in diverse applications.  As the 
era of “big data” arrives, the development of effective techniques 
for identifying important features or attributes in very large 
datasets will be highly valuable in dealing with many of the 
challenges that come with it.   This paper describes work in 
progress regarding a related general problem: for a given dataset, 
is there a “Critical Dimension” or minimum number of features 
that are necessary for achieving good results?  In other words, for 
a dataset with many features, how many are truly relevant and 
important to be included in, say machine learning and/or data 
mining tasks to ensure that acceptable performance is achieved? 
Moreover, if a Critical Dimension indeed exists, how to identify 
the features that need to be included? The problem is first 
analyzed formally and shown to be intractable. An ad hoc method 
is then designed for obtaining approximate solution; next 
experiments are performed on a selection of datasets of varying 
sizes to demonstrate that for many datasets there indeed exist a 
Critical Dimension.  The significance of the existence or lack 
thereof in datasets is explained. 
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I. INTRODUCTION 
One of the challenges of “big data” is how to reduce the 

size of data without losing information contained therein. In 
that regard, effective feature ranking and selection algorithms 
[1] can guide us in significantly reducing the size of the dataset 
by eliminating features that are insignificant, irrelevant, or 
useless. In some bio- or medical- informatics datasets, for 
example, the number of features can reach tens of thousands. 
This is partly due to the reason that many datasets constructed 
today for intended data mining purposes, without prior 
knowledge about what is to be specifically explored or derived 
from the data, likely have included measurable attributes that 
are actually insignificant or irrelevant, and inevitably resulting 
in large numbers of useless attributes (or features) that can be 
deleted to greatly reduce the size of datasets without any 
negative consequences in data analytics or data mining [6].  

We investigate in this paper the general question: Given a 
dataset with n features, is there a Critical Dimension, or the 

smallest number of features that are necessary for a particular 
data mining application to ensure a minimal performance 
requirement?  The term performance in this context means the 
overall accuracy of the training model. That is, any machine 
learning, statistical analysis, or data mining, etc. tasks 
performed on the dataset must include at least a number of 
features no less than the Critical Dimension − or it would not 
be possible to obtain acceptable results. This is a useful 
question to investigate since feature selection methods 
generally provide no guidance on the number of features to 
retain for a particular task; moreover, for many complex 
problems to which big data brings hope of breakthrough there 
is very little or no prior knowledge which may be otherwise 
relied upon in determining this number. 

The question is analyzed in the next section and shown to 
be intractable.  In Section 3, an ad hoc method is proposed as a 
first attempt to approximately solve the problem.  In Section 4, 
experimental results on selected datasets are presented to 
demonstrate the existence of the Critical Dimension for most of 
them.  Section 5 provides conclusions and discussions. 

II. CRITICAL DIMENSION 
The intuitive concept of the Critical Dimension of a dataset 

with n features is that there may exist, with respect to a specific 
“machine” M and a fixed performance threshold T, a unique 
number µ ≤ n such that the performance of M exceeds T when 
a suitable set of µ features is selected and used (and the rest n − 
µ features discarded); further, the performance of M is always 
below T when any feature set with less than µ features is used. 
Thus, µ is the critical number of features that are necessary to 
ensure that the performance of M meets the given threshold. 

A. Formal Definition of Critical Dimension 
Formally, for dataset Dn with n features, machine M (a 

learning machine, an algorithm, etc.) and performance 
threshold T (the accuracy of training, etc.), we call µ the T-
Critical Dimension of (Dn, M) if the following two conditions 
hold:  
 

1. There exists a µ-dimensional projection of Dn, which 
lets M to achieve a performance of at least T, i.e., (∃Dµ 
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∝  Dn) [PM(Dµ) ≥  T], where PM(Dµ) denotes the 
performance of M on input dataset Dµ.  
 

2. For all j < µ, a j-dimensional projection of Dn fails to 
let M achieve performance of at least T, i.e., 
(“Dj ∝  Dn) [j < µ  ⇒  PM(Dj) < T] 
 

To determine whether a Critical Dimension exists for a Dn and 
M combination is a very difficult problem. Specifically, the 
problem of deciding, given Dn, T, k (k ≤ n), and a fixed M, 
whether k is the T-Critical Dimension of (Dn, M) actually 
belongs to the class DP = {L1 ∩ L2 | L1 ∈ NP, L2 ∈ coNP} 
(C.H. Papadimitriou et al, 1982), where it is assumed that the 
fixed machine M runs in polynomial time in n, the dimension 
of the dataset. In fact, it is shown in the next subsection that 
the problem is DP-hard [4].  

Since NP and coNP are subclasses of DP (note that DP is 
not the same as NP ∩ coNP), the DP-hardness of the Critical 
Dimension problem indicates that it is both NP-hard and 
coNP-hard, and likely to be intractable. 

 

B. Proof That CDP is DP-Hard 
The Critical Dimension Problem (CDP) is stated formally 

as follows: Given Dn, T, k (k ≤ n), and a fixed PM (the 
performance of M). Is k the T-Critical Dimension of (Dn, 
M)? The problem to decide if k is the T-Critical Dimension of 
the given dataset belongs to the class DP under the assumption 
that, given any Di ∝Dn, whether PM(Di) ≥ T  can be decided in 
polynomial time of n, i.e., the machine M  can be trained and 
tested with Di  in polynomial time. Otherwise, the problem 
belongs to some larger complexity class, e.g., Δp

2.   Note here 
that (NP ∪ coNP)  ⊆  DP  ⊆  Δp

2. 
To prove that the CDP is a DP-hard problem, we take a 

known DP-complete problem and transform it into the CDP. 
Let us consider the maximal independent set problem as an 
example. In graph theory, a Maximal Independent Set (MIS) is 
an independent set that is not a subset of any other 
independent set. That is, it is a set S such that every edge of 
the graph has at least one endpoint not in S and every vertex 
not in S has at least one neighbor in S. A MIS is also 
a dominating set in the graph, and every dominating set that is 
independent must be maximal independent, so it is also 
called independent dominating sets. A graph may have many 
MIS’s of widely varying sizes; a largest maximal independent 
set is called a MIS. 

EXACT-MIS problem – Given a graph with n nodes, and k 
≤ n, decide if there is a maximal independent set of size 
exactly k in the graph is a problem is DP-complete as proved 
by Papadimitriou and Yannakakis, 1982. Now we will 
transform this DP-complete to an instance of CDP. To 
construct the instance of the CDP, let: dataset Dn be a 
representation of the given graph with n nodes (e.g., Dn can be 
made to contain n data points, with n features, representing the 

adjacency matrix of the graph), T be the value ‘True’ from the 
binary range {T, F}, µ = k be the value in the given problem 
and M be an algorithm that decides if the dataset represents a 
maximal independent set of size µ, if yes PM = True otherwise 
PM = False, then a given instance of the DP-complete problem 
is transformed into an instance of the CDP. Three examples 
are shown below and explained. If the threshold is T (True) 
from the binary range {T,F}, then the problem is considered to 
be the NP-complete EXACT-MIS problem, and F (False) if it 
is not a NP-complete EXACT-MIS problem. Figure 1 is a 
graph with 5 nodes, containing an EXACT-MIS of size 3. 

 

 
Figure 1.  A Graph with 5 nodes showing exactly one MIS with 3 nodes 

{1,4,5} 

D5=  
    

 
 
 
 
 
  
 
 

 
Figure 2.  The adjecency matrix of graph with 5 nodes 

Example 1: k=3 
Threshold T = ‘True’ from the binary range {T, F}. µ = 3 
exist; i.e., an EXACT-MIS of size 3 exists in D5 and is as 
highlighted in the adjacency table shown in Figure 2. So, M is 
an algorithm that decides if the input dataset represents a 
maximal independent set of size µ, or M “verifies” that some 
Dµ corresponds to a maximal independent set; i.e., PM(Dµ) = 
‘True’  if  Dµ  allows M to construct a maximal independent 
set of G of size µ, where Dµ ∝ Dn  and Dn represents the 
adjacency matrix of G. Since the solution to the EXACT-MIS 
problem is True, solution to an instance of the CPD 
transformed from this is YES.  
 
Example 2: k=4 
Threshold T = ‘True’ from the binary range {T, F}. µ = 4 
exists but is not an EXACT-MIS. From D5 table it can be seen 

1  1  1  0  0  

1  1  1  0  1  

1  1  1  1  0  

0  0  1  1  0  

0  1  0  0  1  
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that there does not exists any independent sets of size 4, so no 
EXACT-MIS of size 4 exists.  Let M be an algorithm that 
decides if the input dataset represents a graph containing a 
maximal independent set of size µ, or M “verifies” that some 
Dµ corresponds to a maximal independent set; i.e., PM(Dµ) = 
‘True’  if  Dµ  allows M to construct a maximal independent 
set of G of size µ, where Dµ ∝ Dn  and Dn represents the 
adjacency matrix of G. In this example since no independent 
set of size 4 exists the solution to the instance of constructed 
CDP is NO, so PM(D4) = ‘False’ for all D4.  
 
Example 3: k=2 
Threshold T = ‘True’ from the binary range {T, F}. µ = 2 
exists but is not an EXACT-MIS. Again, from D5 table it can 
be seen that there exist independent sets of size 2 but they not 
EXACT-MIS. So, algorithm M decides Dµ  \corresponds to a 
maximal independent set if Dµ allows M to construct a 
maximal independent set of G of size µ, where Dµ ∝ Dn  and Dn 
represents the adjacency matrix of G. In this example since no 
independent set of size 2 exists the solution to the EXACT-
MIS is ‘False’ so a solution to an instance of constructed CDP 
is NO, PM(D2) = ‘False’ for all D2. 

     The DP-hardness of the Critical Dimension problem 
indicates that it is both NP-hard and coNP-hard; therefore, it’s 
most likely to be intractable, that is, unless P = NP. 

III. METHOD TO FIND THE CRITICAL DIMENSION 
We can see from the CDP Problem analyzed above that 

even deciding if a given number is a Critical Dimension is 
intractable, to find that number is certainly even more 
difficult. So, a heuristic method is proposed in the following. 
The heuristic method represents a feasible and practical 
approach in attempting to find the Critical Dimension of a 
given dataset and a given performance threshold with respect 
to a fixed machine. Though the heuristic method actually 
corresponds to a different definition of the Critical Dimension, 
it serves to validate the concept that µ exists for datasets, 
though maybe not for all of them; and we will see that for 
most of the datasets with which experiments were conducted a 
Critical Dimension indeed exists. Finally, the µ determined by 
this heuristic method is hopefully close to the theoretical 
Critical Dimension as defined in the formal definition. 

In the heuristic method, the Critical Dimension of a dataset 
is defined as that number (of features) where the performance 
of a specific learning machine would begin to drop below the 
performance threshold significantly, and would not rise again 
when smaller number of features is used. To make the method 
feasible, the features are initially sorted in descending order of 
significance (according to some feature ranking algorithm) 
and the feature set is reduced by deleting the least significant 
feature after each iteration of the experiment when 
performance of the machine is observed. For cross validation 
purposes, therefore, multiple experiments can be conducted 
when attempting to determine the Critical Dimension of a 
dataset:  the same machine is used in conjunction with 

different feature ranking algorithms; also, the same feature 
ranking algorithm is used in conjunction with different 
machines; then we analyze if the different experiments 
resulted in similar numbers for the Critical Dimension. 

A. Heuristic Method to find the Critical Dimension   
The term Critical Dimension of a dataset has been 

described as the minimum number of features required for a 
learning machine to perform prediction or classification with 
high accuracy.  Empirically, the Critical Dimension of a 
dataset can be defined as that number (of features) where the 
performance of a specific learning machine would begin to 
drop significantly, and would not rise again when smaller 
number of features is used.  

In other words, it is postulated that, for a dataset there 
possibly exists a Critical Dimension (µ), which is a unique 
number for a specific machine learning and feature ranking 
combination and which can be determined experimentally. 
Specifically, let A = {a1, a2, …, an} be the feature set where a1, 
a2, …, an are listed in order of decreasing importance as 
determined by some feature ranking algorithm. Let Am ⊆ A 
contains the m most important features, i.e., Am = {a1, a2, …, 
am} where m ≤ n. For a learning machine M and a feature 
ranking method R, we call µ (µ ≤ n) is the Critical Dimension 
of [Dn, M, T], if the following conditions satisfy; If T is a given 
performance threshold that is considered acceptable, when M 
uses feature set Aµ the performance of M is ≥ T, and whenever 
M uses less than µ features its performance drops below Tµ. As 
an illustration, the Hypothyroid disease dataset was classified 
using SMO (Sequential Minimal Optimization) classifier. This 
dataset was ranked using Chi-squared ranking algorithm. 
Figure 3 shows the Critical Dimension and was found to be 18; 
and it can be observed that this point satisfies the heuristic 
methods definition of a Critical Dimension.  

 

 
Figure 3.  The Critical Dimension of Hypothyroid disease dataset 

IV. FINDING THE CRITICAL DIMENSION USING FEATURE 
RANKING METHODS 

To find approximate solutions to the Critical Dimension 
problem, a heuristic method based on feature ranking 
algorithms is applied.  In this method, the performance 
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threshold T will not be specified beforehand but will be defined 
during the iterative process where a learning machine 
classifier’s performance is observed as the number of features 
is decreased. The Figure 4 below shows the method to find the 
Critical Dimension. 

 

 
Figure 4.  Method to find the Critical Dimension 

 

A. Choosing the best classification algorithm  
The dataset is first classified by building a model based on 

six different algorithms, namely, Bayes net, function, rule 
based, meta, lazy and decision tree learning machine 
algorithm [12][8][9]. The machine or model with the best 
prediction accuracy is chosen as the classifier to find the 
Critical Dimension for that dataset. Table 1 shows the 
accuracy results of the learning machine model built based on 
one of the six algorithms discussed above. Figure 5 shows the 
method in which the best classifier is choosen. 

TABLE I.    CHOOSING THE CLASSIFICATION ALGORITHM FOR 
THROMBIN DATASET 

Accuracy 
% 

Method 
Algorithm Learning Machine Best 

42.82 Bayes Naive bayes 

C4.5 with 
69.33% 

18 Functions SMO 

63.59 Lazy kStar 

66.18 Meta Ada Boost 

68.39 Rule Decision table 

69.33 Tree C4.5 

 
Figure 5.  Choosing the best classification model 

 

B. Ranking algorithm 
The Chi-square ranking method [3] evaluates the worth of 

an attribute by computing the value of the chi-squared statistic 
with respect to the class. There are several ways in which a chi-
squared statistics is used; one such is using a contingency table. 
To rank features, we look at the chi-square distribution table 
against its degree of freedom value to find the corresponding 
probability level α; search method ranker, ranks these based on 
higher probability. 

 

V. EXPERIMENTAL RESULTS 
There are three large datasets used in this experiment. The 

datasets are explained and the results are discussed. The dataset 
for the experiments are divided into 60% for training and 40% 
for testing. The model is retrained by changing the parameters 
to decrease the error rate. Six different models are built and 
retrained to get the best accuracy. The model that gives the best 
training accuracy is used to find the Critical Dimension.  

A. Amazon 10,000 dataset results  
The Amazon commerce review dataset [2] is a writeprint 

dataset. Internet users share attractive information with 
openness and anonymity to the online community to freely 
express their opinions. People with vested interests may take 
the opportunity to post biased information in anonymous ways, 
significantly harming the purpose of the open review. 
Therefore, authorship identification of online texts such as 
verifying the authorship of emails and messages on the cyber 
community, plagiarism detection and personal blogs is 
becoming important. Similar to biological fingerprint, the 
unique writing-style hidden in texts is vividly described as 
writeprint. Online writeprint identification is the task of 
predicting the most likely authorship of anonymous texts by 
using stylistic information in language. This can be seen as a 
single-label multiclass text categorization problem where the 
candidate authors represent different classes. The key task of 
writeprint identification is to extract fine-grained features from 
texts for quantifying the style of an author. Character n-grams 
have been proved to be very effective for capturing 
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complicated stylistic information hidden in the texts. For 
example, the most frequent character 4-grams of an 
experimental text indicate lexical (|_the|, |_to_|, |that|), word-
class (|_was|, |ing_|), and punctuation usage (|,_wh|, |,\_s|). This 
dataset are derived from the customers’ reviews in Amazon 
Commerce Website for authorship identification. This dataset 
was originally created to examine the robustness of 
classification algorithms. Studies conducted the identification 
experiments for fifty authors in the online context reviews. 
These are the most active users (represented by a unique ID 
and username) who frequently posted reviews in the Amazon 
newsgroups. The number of reviews collected for each author 
is 30. This is a classification dataset and contains 50 authors x 
30 reviews each = 1500 instances. There are 10,000 attributes 
and they include authors’ linguistic style, such as usage of 
digit, punctuation, words and sentences’ length and usage 
frequency of words and so on. This is a multiclass 
classification problem with 50 classes. The dataset contains 
numerical values for all features. 

The classification results and the Critical Dimension are 
shown below. It can be seen from Figure 6 that the Amazon 
10,000 dataset shows a Critical Dimension at feature size 2486. 
The graph below shows the results of the Amazon dataset and 
the plot shows the Critical Dimension.  

 

 
Figure 6.  Critical Dimension of the Amazon 10,000 dataset 

B. Amazon ad. or non ad. dataset results  
The Amazon commerce reviews Internet advertisement 

dataset represents a set of possible advertisements on Internet 
web pages. The features encode the geometry of the image (if 
available) as well as phrases occurring in the URL, the image’s 
URL and alt text, the anchor text, and words occurring near the 
anchor text. The task is to predict whether an image is an 
advertisement (“ad”) or not advertisement (“nonad”). The 
dataset contains 459 advertisements and 2820 non ad. images, 
hence a total of 3279 instances. The attributes in this dataset 
contains 3 continuous and others binary; one or more of the 
three continuous features are missing in 28% of the instances. 
There are 1558 features in the Internet advertisement dataset. 

 
The classification results and the Critical Dimension of the 

ad. and non ad. dataset is shown below. It can be seen from 

Figure 7 that the Ad dataset shows a Critical Dimension at 
feature size 383.  

 

 
Figure 7.  Critical Dimension of the Amazon ad. or non-ad. dataset 

C. Thrombin dataset results  
The present training data set consists of 1909 compounds 

tested for their ability to bind to a target site on thrombin, a key 
receptor in blood clotting. The chemical structures of these 
compounds are not necessary for our analysis and are not 
included. Of these compounds, 42 are active (bind well) and 
the others are inactive. Each compound is described by a single 
feature vector comprised of a class value (A for active, I for 
inactive) and 139,351 binary features, which describe three-
dimensional properties of the molecule. The definitions of the 
individual bits are not included - we don’t know what each 
individual bit means, only that they are generated in an 
internally consistent manner for all 1909 compounds. 
Biological activity in general and receptor binding affinity in 
particular, correlate with various structural and physical 
properties of small organic molecules. The task is to determine 
which of these properties are critical in this case and to learn to 
accurately predict the class value. Drugs are typically small 
organic molecules that achieve their desired activity by binding 
to a target site on a receptor. The first step in the discovery of a 
new drug is usually to identify and isolate the receptor to which 
it should bind, followed by testing many small molecules for 
their ability to bind to the target site. This leaves researchers 
with the task of determining what separates the active (binding) 
compounds from the inactive (non-binding) ones.  Such a 
determination can then be used in the design of new 
compounds that not only bind, but also have all the other 
properties required for a drug (solubility, oral absorption, lack 
of side effects, appropriate duration of action, toxicity, etc.).  

The classification results and the Critical Dimension of the 
thrombin dataset are shown below. It can be seen that the 
thrombin dataset shows a Critical Dimension at feature size 
8486. Figure 8 below shows the results of the thrombin dataset 
and the graph plot shows the Critical Dimension.  
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Figure 8.  Critical Dimension of the thrombin dataset  

 
Figure 9.  Reduction in the feature size of three large datasets at the Critical 

Dimension 

 
Figure 10.  Prediciton accuracy of three large datasets at the Critical 

Dimension and intial condition (all features included) 

      Three large featured sized datasets namely the Amazon 
10,000, the ad. or non ad. and the thrombin datasets were 
studied in this experiment. All three datasets shows an obvious 
existence of Critical Dimension. Figure 9 shows that the 
feature size has largely decreased at Critical Dimension and 
the performance is of each of these datasets are maintained 
‘high’. Figure 10 shows difference in accuracies at initial 
condition and at Critical Dimension. The initial Amazon 
10,000 dataset contains 10,000 features and the accuracy with 
which the bagging classifier predicted the 50 classes was 
46.39%. However, at the Critical Dimension the number of 

features was reduced to 2486 features and the accuracy to 
predict 50 classes using the bagging classifier was 45.88%. 
Similarly, for the binary class classification ad. or non ad. 
dataset, the initial number of features was 1559 and at Critical 
Dimension was 383 features. The random forest classifier the 
accuracy of classifying the initial dataset into the two classes 
was 96.71% and at Critical Dimension was 92.74%. The 
largest dataset namely the thrombin dataset contained 139351 
features initially and using a bagging classifier, the 
classification accuracy to predict the two classes was 69.33%. 
The Critical Dimension for this dataset was then found and the 
number of feature at this Critical Dimension was found to be 
8487 which is an enormous decrease in the feature size. At 
this Critical Dimension the classification accuracy was 
65.87% using the bagging classifier. The results of this paper 
show us that a Critical Dimension is not only found in smaller 
datasets but also in much larger datasets. Results of 16 
different datasets that were studied earlier are shown below 
[5]. The chart in Figure 11 shows the accuracies of all 
datasets. It can be seen that the accuracies at initial condition 
and at Critical Dimension are not very different; infact for 
some datasets like the Parkinson’s disease and some text 
mining datasets the performance of the model to correctly 
classify has increased at Critical Dimension when compared to 
the performance accuracy measured at the initial condition. 
While the performance is maintained ‘high’, the feature size 
has decreased largely. This is shown in Figure 12. 
 

 
Figure 11.  Accuracies of All Datasets at Initial Condition and at Critical 

Dimension 

 
Figure 12.  Reduction in the feature size of all datasets at the Critical 

Dimension. 
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VI. CONCLUSIONS AND FUTURE WORK 
The concept of a Critical Dimension of datasets and a 

heuristic method for finding it are introduced. Firstly, we ahve 
shown that finding the Critical Dimension is an intractable 
problem, and therefore, justifies the use of heuristic methods 
for finding the Critical Dimension.  We also presented the 
results showing that the heuristic method succeeded in finding 
the Critical Dimension of some large datasets. 

Even though different feature ranking methods are used in 
the heuristic method, it is emphasized that this paper is not 
about feature tanking or selection−rather, it is about finding the 
Critical Dimension. The feature ranking algorithms were 
merely employed in the heuristic method as a means to help 
determine if a Critical Dimension exists for a given dataset. 

 
  However, many interesting questions are raised that 

deserve further investigation: 
 

• The heuristic method may find a Critical Dimension for a 
given dataset and a given machine. In addition, the method 
identifies the features to be included.  But how good the 
solution is (relative to the formal definition of Critical 
Dimension) is really unclear, since the method relies on a 
selected feature ranking algorithm which may well have 
overlooked the effect of combinations of features−though 
this seems inevitable for all general feature ranking 
algorithms that do not take into account prior knowledge 
about the features and/or the specific problem or application 
underlying the datasets. 

• Using different ranking algorithms and different machines 
and apply the same heuristic method may lead to very 
different CD values, what does that mean? 

• What does the existence of a CD mean for a dataset?   Does 
it mean that the quality of data is low−since insignificant 
and/or useless features are included? Or does it mean that 
the amount of data is in fact insufficient−once the dataset is 
expanded with more data, might the CD disappear?   Both 
seem to be possibilities.  

More fundamentally, how do we count features?  What is a 
feature? In many problems, features are developed and 
computed from the collected simple measurements (e.g., the 
TF-IDF feature in text classification). But this seems a different 
issue regarding prior knowledge. The authors are pursuing, as 
the next steps of this work, to develop and experiment with 
more sophisticated (than the linear) heuristic methods for 

finding the features that constitute the Critical Dimension, and 
apply the methods to larger datasets. 
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