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Abstract—This review provides the current dengue surveillance
situation including (i) the factors that contribute to dengue trans-
mission and (ii) the method to combat the disease. Dengue fever
now is the most common mosquito-borne disease that infected
around 100 billion population, mostly from Asia Pacific. This
alboviral disease not only worsens people’s health, but also has a
great social and economic impact in areas where these endemics
arise. Currently, the transmission of this disease is influenced
not only by the climatic factors (e.g., rainfall, temperature,
wind speed and humidity) but also by non-climatic factors like
socio-environmental factors (e.g., population density, land use
activity, vector control and transportation). Previously, prevention
methods such as vector control, were used by public health
agencies in combating the transmission of dengue outbreak.
Recently, with the improvement of knowledge and technology,
new methods and models are developed, not only for detection but
also for prediction of dengue trends and outbreaks. An effective
prediction model would be particularly helpful to detect unusual
occurrences of disease and to allow for targeted surveillance
and control efforts of the disease. In this paper, we review
and summarize the development of dengue outbreak tools by
researchers in the Asia Pacific region.

Keywords–Dengue Outbreak Prediction, Statistical Analysis,
Spatial Analysis, Machine Learning

I. INTRODUCTION

Dengue is a mosquito-borne viral disease that has rapidly
spread in all regions of the world in recent years. This
arboviral disease is transmitted by two main vectors, which
are Aedes Aegypti and Ae. Albopictus [1]. Both mosquitoes
have adjusted to human neighborhood with larval habitats and
ovipositor in natural and artificial (e.g., rock pools, tree holes,
blocked drains, pot plants and food and beverage containers,
and leaf axis) collections in the urban and peri-urban environ-
ment [2].

Dengue can be brought on by any of four viral serotypes
(Dengue Virus (DENV) 14), and is transmitted by day-biting
urban-adapted Aedes mosquito species [3]. After an incubation
period ranging from 4 to 14 days, patients normally can
encounter a range of symptoms, from a sub-clinical disease to
debilitating but transient Dengue Fever (DF) to life-threatening
Dengue Hemorrhagic Fever (DHF) or Dengue Shock Syn-
drome (DSS) [4] [5]. The most severe forms of dengue disease
are DHF and DSS. They are life debilitating, and youngsters
with DENV disease are especially at danger of advancing to
severe DHF/DSS [6]. Until now there is no specific treatment
or vaccine for dengue.

DF is a major public health concern and also re-emerging
infectious disease that affects millions of people worldwide.
It is also a major public health concern for over half of the
world’s population and is a main source of hospitalization
and death especially for youngsters in endemic nations. The
majority of the poor nations are particularly vulnerable to
the transmission of dengue infection [6]. This vector borne
disease always can be found in urban and suburban areas of
regions such as Africa, South-East Asia, Americas, Eastern
Mediterranean and Western Pacific [7]. It is assessed that
consistently, there are 70500 million dengue infections, 36
million cases of DF and 21 million cases of DHF and DSS,
with more than 20000 deaths per year [7].

An expected 50 million cases of dengue diseases occur
annually and approximately 2.5 billion people live in dengue
endemic countries [8]. Other than that, DF inflicts a significant
health, economic, and social burden on the populations of these
endemic areas. A scientific working group report on dengue
published by the World Health Organization (WHO) shows
that nearly 75% of the global disease burden is due to dengue
[9]. Demographic change, urbanization, deficient local water
supplies, relocation led to an increase in the global incidence
of dengue and about 3.6 billion people are currently at risk
[10]. These parameters can also be defined as non-climatic
parameters that have an impact on the dengue outbreak. But
other researches also found that the spread and establishment
of dengue is also mainly facilitated by a changing climate
around the world [11].

The rest of this paper is organized as follow: Section II
provides an overview of different types of dengue data that
were used in previous studies. Section III outlines several
climatic and non-climatic factors that were commonly used
in previous studies for dengue outbreak prediction. Section
IV then summarizes and describes different techniques for
dengue outbreak prediction from the three main streams: (i)
spatial analysis, (ii) statistical and mathematical analysis, and
(iii) machine learning. Finally, the paper discusses potential
directions for future work in Section V and summarizes the
conclusion in Section VI.

II. DENGUE DATA

Dengue data is very important to dengue surveillance study
since it can trace and identify the dengue incident from the
dengue data results. For this review, we considered the data
for both DF and DHF cases as ‘dengue incident’. In many
dengue epidemiology studies, the dengue incident data that was
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collected either in hospitals or medical centers can be classified
into 3 groups, namely suspected, probable and confirmed cases
[4]. A suspected case is a clinically compatible case of dengue-
like illness, dengue, or severe dengue with an epidemiological
linkage. A probable case is a clinically compatible case of
dengue-like illness, dengue, or severe dengue with laboratory
results indicative of probable infection. Lastly, a confirmed
case was a clinically compatible case of dengue-like illness,
dengue, or severe dengue with confirmatory laboratory results.
A confirmed case refers to a dengue case that was confirmed by
the serological tests IgM capture enzyme-linked immunosor-
bent assay (ELISA) with single positive IgM in the lab [12].
Most research reviewed in this paper used the suspected and
confirmed cases.

III. DENGUE FACTORS

Identifying key factors that contribute to dengue infection is
very valuable in controlling and predicting dengue outbreaks.
In this section, we review and summarize the key climatic and
non-climatic factors that were found to have an impact on the
spread of dengue.

A. Climatic Factor
Over the last decade, the climatic changes around the

globe have had a major impact on the transmission of dengue.
Climate change happens when there is an increase in green-
house gases that make the air and Earth’s surface warmer.
This actually happens when there is a high concentration of
greenhouse gases in the atmosphere, including carbon dioxide,
methane, and nitrous oxide. This is due mainly to human
factors, for example, the utilization of fossil fuel, changes in
the use of an area, and agriculture [13]–[15]. These changes
will have an influence on the dynamic pattern of climate
variables around the world, especially the temperature, rainfall,
precipitation and humidity, and extreme weather occurrences
such as El Nino Southern Oscillation (ENSO) [16]–[18].

Studies have demonstrated that a change in these factors
can influence various aspects of the arthropod vector’s life
cycle and survival, the arthropod population, vector pathogen
interactions, pathogen replication, vector behavior and, of
course, vector distribution [19] [20]. For example, tempera-
ture increases not only effect the reproduction and mosquito
activity, but also decrease the incubation time of larvae [16]–
[19]. Various studies recorded different lag times for the larva
incubation period ranging from 4 to 16 weeks [17] [21]–[24].
The increase in the larva incubation period will exacerbate the
rate at which mosquito vectors transmit the disease.

Extremely hot temperatures also impact the DF expansion
by extending the season in which transmission occurs [25]
[26]. This occurs when lengthy drought conditions exist in
endemic areas without a stable drinking water supply. The
storage of drinking water increase the number of breeding
sites for the mosquito vector [27] [28]. These extremely
high temperatures are also a result of the climate change
phenomena and ENSO cycles. Among the studies reviewed,
the ENSO phenomena were associated with local temperature
and precipitation changes. It was showed that a decrease in
ENSO could result in an increased temperature and decreased
rainfall leading to increased water stockpiling. This favors
mosquito reproducing places and, in this way, increases dengue
transmission [16] [29] [30].

The changes in the world climate have also impacted rain-
fall trends, and, in combination with the temperature increase,
it becomes the main regulator of evaporation that directly
affects the availability of water habitats [31]. Rainfall itself,
can influence the conditions in the case of both high and low
precipitation. In the high precipitation conditions, it can flush
away eggs, hatchlings, and pupae from compartments in the
short term [32] [33]. In the longer term situation, residual
water can create breeding habitats, thereby expanding the
adult mosquito population [34]. For the low rainfall condition,
together with dry temperature it can lead to human behavior of
saving water in water storage containers, which may become
breeding sites for Ae. Aegypti [35] [36]. In the end, climatic
conditions can be seen affecting the virus, the vector and
human behavior both directly and indirectly.

Looking into the previous research from years before,
especially the association between climatic factors and the
transmission of dengue, we can see that there is a link between
them either in a positive or negative correlation [37]–[44].
However, the connection between dengue and the climatic fac-
tors still remains debatable because of the potential influence
of other socio-demographic factors that can have an impact on
dengue transmission [13] [45]–[47].

B. Non-Climatic Factor

In recent years, a few authors have begun looking at several
non-climatic factors, such as, human growth, human move-
ment, and socioeconomic constraints as effect to dengue trans-
mission [20] [45] [48] [49]. A recent study done by Gubler
[50] shows that the growing population in developing countries
became a contributing factor to the increase of dengue trans-
mission and expansion. This unprecedented population growth,
mostly in high density population area may provide new man-
made breeding sites through discarded automobile tires, non-
biodegradable plastics, cell phones, and tin [51] [52]. These
consumer products will become ideal breeding sites for the
most potent dengue vector, A. aegypti. Finally the increasing
density of A. aegypti mosquito population combined with
increased human populations contributed to the transmission
of dengue in urban area. The effect of human growth factor
can also be dangerous when it is combined with the rapid
urbanization process that actively happens in the urban areas,
especially in low and middle income countries [20] [53].

Rapid urbanization not only contributes to the population
explosion but also has an impact on people’s socioeconomic
behavior in urban and suburban areas. Recent studies found
that non-climatic factors, such as housing types, poor garbage
disposal, poor water storage, and cross-border travel, strongly
correlate to the number of dengue cases [12] [54]–[56]. It was
also showed that other socioeconomic factors, such as low level
of education and low coverage of infrastructure, can contribute
to the number of dengue cases in urban areas [57]–[59]. People
who live in high population density areas are highly vulnerable
to dengue infection because of poor housing conditions and/or
the lack of public services, such as inadequate drainage or
improper sanitation system [60]–[62]. Indeed, several residual
water containers, which are key mosquito breeding sites, are
naturally or artificially created in these areas. Thus, poor living
conditions play an important role in the spread of dengue [46]
[63] [64].
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In addition, it was showed that the geographical distribution
of dengue is potentially influenced by travel and trade factors
[7] [54] [65]. Urbanization has increased the population mo-
bility and consequently contributes to the spread of dengue
between urban and rural areas [25] [66]. Globally, increases
in international passengers were identified as the main cause
for dengue transmission between countries and continents [67].
This is very dangerous because an infected immigrant or visitor
from a dengue-endemic country can carry a new virus strain
into another country and causes a dengue spread [47] [68].
Global trade was also identified as one main driver in the
global transmission of dengue [66] [69]. Indeed, the higher the
number of cargo and goods are transported around the world,
the higher the chance mosquitoes carrying the virus arrive in a
new place that has suitable environmental conditions for their
survival and breeding.

IV. RESEARCH METHOD

As discussed in the previous section, there are several
factors that have an impact on a dengue outbreak. Several
methods have been developed and studied to comprehend
the complex relationship between these factors and dengue
in order to accurately predict the number of dengue cases
for better prevention and/or proactive mitigation. In general,
the existing methods for dengue outbreak prediction that
we reviewed can be classified into three groups: (i) spatial
analysis, (ii) statistical and mathematical analysis, and (iii)
machine learning system.

A. Spatial Analysis
Kernel density is the most popular method that is used in

dengue transmission studies in the geographical epidemiology
field [70]–[73]. This method was applied to identify and map
out hotspots with a high concentration of reported dengue
cases [74]. It can detect dengue clusters and generate risk
maps based on the correlation with climatic and non-climatic
factors. Another popular method is Geographically Weighted
Regression (GWR) [75]. It can predict the risk levels of a
dengue outbreak and identify the spatial dependency between
DF cases and the factors involved [76] [77]. In addition, Local
Indicators of Spatial Autocorrelation (LISA) has been used
to study the impact of climatic and non-climatic factors on
dengue transmission [78] [79]. LISA can be regarded as a
spatial risk index to identify both significant spatial clusters
and outliers [80]. Thus, it is often used to examine the spatial
temporal patterns of the spread of dengue.

Recently, the integration of spatial statistics and non-spatial
statistics has become more prominent. Although spatial statis-
tics can improve the comprehension of dengue surveillance by
enhancing the detection of patterns , users can potentially mis-
interpret the results. Integration of both statistical approaches
not only maintains the visualization advantage of spatial statis-
tics but also enables the testing of statistical significance of
relationships between dengue parameters and the number of
dengue incidents. In our review, spatial statistical analysis was
mostly integrated with linear regression techniques, such as
logistic regression and Poisson regression [81]–[84].

B. Statistical and Mathematical Analysis
Infectious dengue surveillance and control efforts encom-

pass a wide variety of fields and require integration, synthesis,

and analysis of information. This requirement can be met
by the application of quantitative analysis, especially the
combination of different analytical models. The past decade
has witnessed a large increase in dengue research activities on
statistical and mathematical methods. Following an apparent
trend in surveillance research, statistical methods have become
popular in dengue outbreak detection and control, especially
in generating early warning of dengue outbreaks. A statistical
model can be defined as an empirical relationship between the
location of known virus occurrences and a set of underlying
parameters, such as climatic and non-climatic variables [85]
[86].

The two most popular statistical approaches that are used
in the dengue studies are regression and time series techniques.
The regression technique is a method that has two functions,
one for detecting outbreaks in surveillance process that support
the basis of laboratory reports, and second is for syndrome
surveillance. The regression technique commonly used by the
clinical and epidemiological researchers is Poisson regression
[18] [87]–[90]. It is normally used to analyze the correlation
between the number of dengue cases and one or more dengue
factors in order to predict the number of future dengue cases
[91]. Poisson regression, using a Generalized Additive Model
(GAM), was often used when dealing with nonlinear data
as it can improve the prediction accuracy by automatically
calculating the optimal degree of nonlinearity of the model
directly from the data [92]–[94].

A part from that, time series methods were also commonly
used by the researchers to find the variable that have an
impact on dengue incidents. This approach has been widely
used in the early detection of infectious disease outbreaks,
especially focusing on the emerging or re-emerging infections.
Unlike other statistical approaches, this type of analysis was
chosen based on the assumption that the incidence of infectious
diseases is related to the previous incidence and the population
at risk [95]. One of the most popular time series methods
for studying the correlation between dengue and its variables
is the Autoregressive Integrated Moving Average (ARIMA)
method [96]–[99]. The advantage of this method is that it can
provide a comprehensive set of tools for arrangement model
distinguishing proof, parameter estimation, and gauging. In
addition, it offers incredible adaptability in investigation, which
is added to its prevalence in a few dengue research.

The ARIMA model can be extended to handle occasional
parts of an information arrangement. The seasonal ARIMA
(SARIMA) model is an extension of ARIMA to an arrange-
ment in which a pattern repeats seasonally over time. This
statistical model is particularly interesting when there are
time conditions between observations [100]. The assumption
that each observation is associated to past ones makes it
possible to model a temporal structure, with more dependable
expectations, particularly for regular diseases [101] [102]. The
example research that used this model can be seen in the study
done in Thailand and India [49] [103] [104].

Recently, numerical procedure has been progressively used
as an alternative to statistical models to interpret and antici-
pate the number of future infectious diseases. Many complex
mathematical models have been developed to predict the oc-
currence, dynamics and magnitude of dengue outbreaks using
a combined environmental and biological approach. These
models have the capability to produce an useful approximation
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and thus enable the conduction of conceptual experiments that
would otherwise be difficult or impossible. Mathematical mod-
els allow precise, rigorous analysis and quantitative prediction
of dengue transmission and outbreak [105] [106]. Examples
of mathematical models that were applied in the dengue
surveillance research are the Susceptible-Infected-Recovered
(SIR) model and its extensions [107]–[109].

C. Machine learning system
Technology improvement, in the computer science field,

already gives a new hope in the dengue surveillance research
and study. As mentioned in the previous section, statistical
methods have been widely used in dengue outbreak prediction.
Given a specific theory, statistical tests can be applied to
epidemiological data to check whether any correlations can be
found between different parameters. However, machine learn-
ing systems can do much more. A machine learning system
can automatically hypothesize and derive the associations of
dengue factors directly from the raw data. The advantage of
this approach is that it can be used to develop the knowledge
bases used by expert systems. Given a set of clinical cases, a
machine learning system can produce a systematic description
of those clinical features that uniquely characterize the clinical
conditions. Several machine learning approaches have been
used to predict dengue outbreaks, such as Artificial Neural
Network (ANN), Alternating Decision Tree Method (ADT),
Support Vector Machine (SVM), Fuzzy Inference System (FIS)
and its hybrid model called Adaptive Neuro-Fuzzy Inference
System (ANFIS) [110]–[116]. This new approach has a po-
tential role to play in the development of dengue prediction
and it will be great importance to the relevant decision makers
who are typically responsible for budgets and manpower in the
public health sector.

V. FUTURE WORK

Research into dengue surveillance methods has increased
dramatically over the last two decades. Many new methods
are designed for specific monitoring systems or still in ex-
perimental and developmental stages and not used in real
practical surveillance. From the past research, this review
has noted that there’s need to an advancement of tools to
assist dengue prevention and control. Tools like [117] allow
scientists to easily model data and apply different spatio-
temporal kriging techniques. The combination between spatial,
statistical and mathematical analysis together with machine
learning system can become a holistic solution to this problem.
This hybrid application has the potential to understand the
complex relationship between climatic factors, non-climatic
factors and dengue, and thereby can obtain better prediction.
As information sorts and sources turn out to be progressively
vast and complex, there’s need to procedures to coordinate
dissimilar and frequently inadequate information into fitting
tools. This obstacle can be solved by using Big Data Analytic
(BDA). Big Data is a term used to portray data arrays that
make customary information, or database, preparing risky due
to any combination of their size, frequency of updated, or
diversity [118]. The research team of IBM, teamed up with
the university researchers, used BDA to predict the outbreak
of deadly diseases such as dengue fever and malaria [119].
Another research on the application of BDA in dengue study
was carried out by the Telenor group in collaboration with

Oxford University, the U.S. Center for Disease Control, and
the University of Peshawar [120]. Looking to the sources of
data collection, there’s need to a new platform for catering
the information with current vast technology. The online data
sources such as social media networking like Twitter and
Facebook can become new valuable data sources and can assist
the epidemiologist on real-time dengue scenario. With this
new technology, dengue cases mostly the under reported cases
can be captured and it can overcome the problem such as the
accessibility to public health center.

VI. CONCLUSION

The improvement of dengue prediction frameworks holds
incredible potential for enhancing general well-being through
right on time cautioning and checking of infection. There are
numerous perspectives to consider when pondering techniques
for dengue observation. A hefty portion of the routines de-
picted in this survey are dynamic zones of exploration and new
strategies are continually being produced. As more information
sources get to be accessible, this pattern is relied upon to
proceed, and the systems depicted here give a preview of
alternatives accessible to general well-being investigators and
specialists. We trust that it is essential to create, utilize and
coordinate spatial, factual and scientific examination together
with machine learning framework approaches for dengue trans-
mission perfect with long haul information on atmosphere
and non-climatic changes and this would propel projections of
the effect of both components on dengue transmission. With
progressing upgrades in the information and philosophies,
these studies will assume an inexorably essential part in our
comprehension of the perplexing connections in the middle of
environment and well-being.
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[93] F. J. Colón-González, C. Fezzi, I. R. Lake, and P. R. Hunter, “The
effects of weather and climate change on dengue,” PLoS Negl Trop
Dis, vol. 7, no. 11, 2013, p. e2503.

[94] M.-J. Chen, C.-Y. Lin, Y.-T. Wu, P.-C. Wu, S.-C. Lung, and H.-J.
Su, “Effects of extreme precipitation to the distribution of infectious
diseases in Taiwan, 19942008,” PLoS One, vol. 7, no. 6, 2012, p.
e34651.

[95] U. Helfenstein, “Boxjenkins modelling of some viral infectious dis-
eases,” Statistics in medicine, vol. 5, no. 1, 1986, pp. 37–47.

[96] M. D. Eastin, E. Delmelle, I. Casas, J. Wexler, and C. Self, “Intra-and
interseasonal autoregressive prediction of dengue outbreaks using local
weather and regional climate for a tropical environment in Colombia,”
The American journal of tropical medicine and hygiene, vol. 91, no. 3,
2014, pp. 598–610.

[97] N. C. Dom, A. A. Hassan, Z. A. Latif, and R. Ismail, “Generating
temporal model using climate variables for the prediction of dengue
cases in Subang Jaya, Malaysia,” Asian Pacific Journal of Tropical
Disease, vol. 3, no. 5, 2013, pp. 352–361.

[98] A. Earnest, S. B. Tan, A. Wilder-Smith, and D. Machin, “Comparing
statistical models to predict dengue fever notifications,” Computational
and mathematical methods in medicine, vol. 2012, 2012.

[99] S. Promprou, M. Jaroensutasinee, and K. Jaroensutasinee, “Forecasting
dengue haemorrhagic fever cases in Southern Thailand using ARIMA
models,” Dengue Bulletin, vol. 30, 2006, p. 99.

[100] U. Helfenstein, “The use of transfer function models, intervention anal-
ysis and related time series methods in epidemiology,” International
journal of epidemiology, vol. 20, no. 3, 1991, pp. 808–815.

[101] F. F. Nobre, A. B. S. Monteiro, P. R. Telles, and G. D. Williamson,
“Dynamic linear model and SARIMA: a comparison of their fore-

casting performance in epidemiology,” Statistics in medicine, vol. 20,
no. 20, 2001, pp. 3051–3069.

[102] H. Trottier, P. Philippe, and R. Roy, “Stochastic modeling of empirical
time series of childhood infectious diseases data before and after mass
vaccination,” Emerging themes in epidemiology, vol. 3, no. 1, 2006,
p. 9.

[103] S. Bhatnagar, V. Lal, S. D. Gupta, and O. P. Gupta, “Forecasting
incidence of dengue in Rajasthan, using time series analyses,” Indian
journal of public health, vol. 56, no. 4, 2012, p. 281.

[104] S. Wongkoon, M. Jaroensutasinee, and K. Jaroensutasinee, “Assessing
the temporal modelling for prediction of dengue infection in northern
and northeastern, Thailand,” Tropical biomedicine, vol. 29, no. 3, 2012,
pp. 339–348.

[105] J. E. Mazur, “Mathematical models and the experimental analysis of
behavior,” Journal of the Experimental Analysis of Behavior, vol. 85,
no. 2, 2006, pp. 275–291.

[106] M. Choisy, J.-F. Gugan, and P. Rohani, “Mathematical modeling of in-
fectious diseases dynamics,” M Tibayrene, Encyclopedia of infectious
diseases: modern methodologies, John Wiley and Sons Inc, Hoboken,
2007, pp. 379–404.

[107] M. Aguiar, R. Paul, A. Sakuntabhai, and N. Stollenwerk, “Are we
modelling the correct dataset? Minimizing false predictions for dengue
fever in Thailand,” Epidemiology and infection, vol. 142, no. 11, 2014,
pp. 2447–2459.

[108] S. Polwiang, “The seasonal reproduction number of dengue fever
impacts of climate on transmission,” PeerJ PrePrints, vol. 2, 2014,
p. e756v1.

[109] M. Derouich and A. Boutayeb, “Dengue fever: Mathematical mod-
elling and computer simulation,” Applied Mathematics and Computa-
tion, vol. 177, no. 2, 2006, pp. 528–544.

[110] H. M. Aburas, B. G. Cetiner, and M. Sari, “Dengue confirmed-
cases prediction: A neural network model,” Expert Systems with
Applications, vol. 37, no. 6, 2010, pp. 4256–4260.

[111] T. Faisal, M. N. Taib, and F. Ibrahim, “Neural network diagnostic
system for dengue patients risk classification,” Journal of medical
systems, vol. 36, no. 2, 2012, pp. 661–676.

[112] V. S. H. Rao and M. N. Kumar, “A new intelligence-based approach for
computer-aided diagnosis of dengue fever,” Information Technology in
Biomedicine, IEEE Transactions on, vol. 16, no. 1, 2012, pp. 112–118.

[113] S. A. Fathima and N. Hundewale, “Comparitive analysis of machine
learning techniques for classification of arbovirus,” in Biomedical and
Health Informatics (BHI), 2012 IEEE-EMBS International Conference
on. IEEE, 2012, pp. 376–379.

[114] A. Munasinghe, H. Premaratne, and M. Fernando, “Towards an early
warning system to combat dengue,” International Journal of Computer
Science and Electronics Engineering, vol. 1, no. 2, 2013, pp. 252–256.

[115] A. L. Buczak, P. T. Koshute, S. M. Babin, B. H. Feighner, and
S. H. Lewis, “A data-driven epidemiological prediction method for
dengue outbreaks using local and remote sensing data,” BMC medical
informatics and decision making, vol. 12, no. 1, 2012, p. 124.

[116] T. Faisal, M. N. Taib, and F. Ibrahim, “Adaptive neuro-fuzzy inference
system for diagnosis risk in dengue patients,” Expert Systems with
Applications, vol. 39, no. 4, 2012, pp. 4483–4495.

[117] E. Pebesma, “spacetime: Spatio-Temporal Data in R,” Journal of
Statistical Software, vol. 51, no. 7, 2012.

[118] J. K. Najjar, Planning for Big Data: A CIO’s Handbook to the
Changing Data Landscape. CreateSpace Independent Publishing
Platform, 2014.

[119] IBM uses big data to predict outbreaks of
dengue fever and malaria. [retrieved: September,
2015]. [Online]. Available: http://venturebeat.com/2013/09/29/
ibm-uses-big-data-to-predict-outbreaks-of-dengue-fever-and-malaria/

[120] Telenor research deploys big data against
dengue. [retrieved: September, 2015]. [Online].
Available: http://www.telenor.com/media/press-releases/2015/
telenor-research-deploys-big-data-against-dengue/

13Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-472-5

eKNOW 2016 : The Eighth International Conference on Information, Process, and Knowledge Management


