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Abstract—Spreading Activation algorithms are a well-known tool
to determine relevance of nodes in a semantic network. Although
often used, the configuration of a spreading activation algorithm
is usually very problem-specific, and experience-driven. There
are practically no guidelines or tools to help with the task. In
this paper, we present semantic network skeletons, which are
essentially a structural summary of a semantic network. We show
how to derive the skeleton from a given semantic network, and
how to derive conclusions about good configurations from it. Our
results are then demonstrated in a case study from the automotive
domain.

Keywords–Spreading Activation; Information Retrieval; Seman-
tic Network; Advisory System.

I. INTRODUCTION
Spreading Activation algorithms are a long-known tool to

determine relevance of nodes in a semantic network. Originally
from psychology, they have been used in many other applica-
tion areas, such as databases, artificial intelligence, biology,
and information retrieval [1].

All spreading activation algorithms follow a basic pattern:
chunks of activation are spread pulsewise from nodes to
neighbor nodes, which marks those nodes as being relevant to a
certain degree. However, practically, each known implementa-
tion differs in many details, such as the amount and distribution
of activation. Whether a specific configuration for such an
algorithm is good or bad depends largely on two factors:
the problem to be solved by spreading, and the structure of
the underlying semantic network. Although there are many
working examples of such algorithms, until now there are
almost no guidelines on how to achieve a good configuration.

In this paper, we aim to gain insights on spreading config-
urations by analyzing the structure of the semantic network.
In many cases a semantic network consists of many thousands
of nodes and edges, and is therefore hard to comprehend. We
present a tool called semantic network skeleton that summa-
rizes basic structural information of a semantic network and,
thus, focuses on a few essential pieces of information.

In Section II, we will give a short summary about semantic
networks and spreading activation. In Section III, we will
introduce semantic network skeletons formally and visually,
followed by a description of the necessary steps to retrieve
skeletons from a semantic network in Section IV. Now, that we
have network skeletons available, we can use them to analyze
the underlying semantic network and to derive spreading
effects for different configuration decisions. In Section V,
this skeleton analysis for preconfiguration optimization will
be presented. Section VI is dedicated to a case study on an
advisory systems in the automotive domain. We finish the
paper with conclusions and an outlook on future research
potentials regarding semantic network skeletons.

II. BASICS AND RELATED WORK
We apply spreading activation as semantic search technique

on semantic networks. Therefore, we shed some light on both
concepts.

A. Semantic Network
Historically, the term semantic network had its origin in the

fields of psychology and psycholinguistics. Here, a semantic
network was defined as an explanatory model of human knowl-
edge representation [2][3]. In such a network, concepts are
represented by nodes and the associations between concepts as
links. Generally, a semantic network is a graphic notation for
representing knowledge with nodes and arcs [4][5]. Notations
range from purely graphical to definitions in formal logic.

Technically, among others semantic networks can be de-
scribed by RDF and RDF Schema (RDFS). The RDF data
model [5] is defined to be a set of RDF triples whereas each
triple consists of a subject, a predicate and an object. The
elements can be Internationalized Resource Identifiers (IRI),
blank nodes, or datatyped literals. Each triple can be read
as a statement representing the underlying knowledge. A set
of triples forms an RDF Graph, which can be visualized as
directed graph, where the nodes represent subject and object
and a directed edge represents the predicate [5].

According to the RDF Specification [5], resources such as
IRI and literals carry a particular meaning whereas blank nodes
stand for anything. Therefore, statements containing blank
nodes denote the existence of something with the statements
predicate. In contrast, statements without blank nodes mean
the relationship between concrete resources holds.

For the rest of this paper, we use the terms RDF and
semantic network interchangeably.

B. Spreading Activation
Spreading activation, like semantic networks, has a histor-

ical psychology and psycholinguistic background. It was used
as a theoretical model to explain semantic memory search and
semantic preparation or priming [2][3][6].

Over the years, spreading activation evolved into a highly
configurable semantic search algorithm and found its applica-
tion in different fields. In a comprehensive survey, Crestani
examined different approaches to the use and application
of spreading activation techniques, especially in associative
information retrieval [1]. Spreading Activation is capable of
both identifying and ranking the relevant environment in a
semantic network.

The processing of spreading activation is usually defined as
a sequence of one or more iterations, so-called pulses. Each
node in a network has an activation value that describes its
current relevance in the search. In each pulse, activated nodes
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spread their activation over the network towards associated
concepts, and thus mark semantically related nodes [1]. If a
termination condition is met, the algorithm will stop. Each
pulse consists of different phases in which the activation
values are computed by individually configured activation
functions. Additional constraints control the activation. Fan-
out constraints limit the spreading of highly connected nodes
because a broad semantic meaning may weaken the results.
Path constraints privilege certain paths or parts of them.
Distance constraints reduce activation of distant nodes, because
distant nodes are considered to be less associated to each other.
There are many other configuration details such as decays,
thresholds, and spreading directions.

A challenge, mentioned in spreading activation related
research is the tuning of the parameters, e.g., values associated
with the different constraints as well as weighting or activation
functions [7]. For evaluation of the prototype WebSCSA (Web
Search by Constrained Spreading Activation) in [7], values
and spreading activation settings are identified experimentally,
empirically, or partly manually according to the experiments
requirements. Álvarez et al. developed a framework for the
application and configuration of spreading activation over RDF
Graphs [8]. They state that a deep knowledge of the domain
and the semantic network is necessary and domain-specific
customization configuration is needed. It is a known fact that
spreading activation configuration has a huge impact on the
quality of the spreading results. Currently, there exists no sys-
tematic approach for the determination of proper configuration
settings. Moreover, not even guidelines for the appropriate
configuration are available to potential users. There is a lack of
systematic analyses of the impact and interaction of different
settings and parameters. The semantic network skeleton pre-
sented in this paper aims at facilitating such analyses in order
to gain helpful insights and support appropriate configurations.

III. SEMANTIC NETWORK SKELETON
As stated before, proper configuration of a spreading

activation algorithm is a challenging task. One important
influencing factor for a good configuration is the structure of
the underlying semantic network. Often however, semantic net-
works tend to be very large, and therefore hard to comprehend.

In this paper, we propose a tool called semantic network
skeleton, which is supposed to summarize the structure of
a semantic network. Therefore, using a skeleton shall make
it easier to comprehend their structural properties and draw
conclusions for configurations.

A. Skeleton Introduction
A skeleton of a semantic network is a directed graph that

has been derived from a semantic network. We will call the
semantic network from which the skeleton has been derived
the source (network).

Generally spoken, the skeleton shall represent the semantic
structure of the source. Therefore, similar nodes and edges are
grouped and represented by single node representatives and
edge representatives in the skeleton. Thus, the skeleton hides
all the parts of the source which are similar, and it makes the
structural differences in the network more explicit.

Often, a semantic network contains also nodes and edges
that carry little semantic value and therefore should be ig-
nored by a spreading activation algorithm. An example are
blank nodes, which by definition carry no specific meaning.
Therefore, before creating a skeleton from a source, one first

has to define the semantic carrying set of nodes and edges.
This choice is very problem-specific, and therefore cannot be
generalized. We call the semantic carrying subnetwork of the
source the spread graph.

Since the skeleton is based on the spread graph, it repre-
sents only semantic carrying nodes and edges. The skeleton
usually contains three types of node representatives: those
classes, instances, and literals. Since the relationships between
instance node representatives carry the most structural informa-
tion about the semantic network, we call this part the skeleton
core.

B. Types of Semantic Network Skeletons
We distinguish between two types of skeletons regarding

their completeness and detail level: the maximum and the
effective skeleton of a network.

A maximum skeleton contains all potential nodes and rela-
tions of the source. It is comparable with a UML class diagram
in the sense that it shows everything that is theoretically
possible in that network. However, it does not transport any
information about the actual usage of classes/instances in the
source network. Therefore, the maximum skeleton might con-
tain nodes and relationships that have never been instantiated
in the source.

An effective skeleton represents the structure of a specific
instance of a semantic network. Therefore, it contains only
nodes and relations that are actually part of the source network.
This means, that a class that is part of an RDF schema, but that
has not been instantiated in a concrete instance of that RDF
schema would have a node representation in the maximum
skeleton, but not in the effective skeleton.

Comparing maximum and effective skeletons, we find
advantages and disadvantages for both of them: The maximum
skeleton is the more generalized skeleton version, and therefore
it applies to many different network instances of the same RDF
schema. However, its generality also means, that it carries less
specific information about each single instance, and therefore,
conclusions drawn from a maximum skeleton are weaker than
those drawn from an effective skeleton. The effective skeleton
is specific to one instance of a semantic network. Thus, it
cannot be reused for other instances, but it results in more
precise conclusions.

C. Annotations
While the skeleton structure helps to understand the basic

structure of the source network better, a detailed analysis
often requires more information: It might be useful to know,
how many node or edges are subsumed by a node or edge
representative in the skeleton; The average number of incoming
or outgoing edges for all represented nodes could indicate a
certain spreading behaviour; Maybe there are 10.000 edges
of the same type subsumed by one edge representative, but
actually they all originate in only 10 different nodes. To capture
such (often numerical) information, skeletons can be enhanced
by annotations. Typically, there are four types of annotations:
those, that describe node or edge representatives and those that
describe the source or target of an edge representative.

Since effective and maximum skeletons carry different
information, this also applies to annotations on them. While
annotations on an effective skeleton refer to a concrete network
instance of an RDF Schema (e.g., the concrete count of
instances of a node type), annotations on a maximum skeleton
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describe potential values. Thus, an instance count could have
the value ∗, meaning that any number of instances is possible.

D. Syntax
Let L be a set of labels. A Semantic Network Skeleton S

is defined by
S = (N,E, s, t, l),

where
• N is a non-empty set of node representatives,
• E is a set of edge representatives,
• s : E → N is the source map,
• t : E → N is the target map, and
• l : N × E → L is the labelling.

The node and edge representatives each represent a set of
nodes/edges of the same type from the original semantic
network. Each edge representative e ∈ E has a source
node representative s(e) and a target node representative t(e).
Furthermore, all node and edge representatives have a label
l(n)/l(e) assigned.

Given a semantic network skeleton S = (N,E, s, t, l), and
let n1, n2 ∈ N , e ∈ E, s(e) = n1, and t(e) = n2. Then the
triple

T = (n1, e, n2)

is called a skeleton triple of S. A skeleton triple represents all
corresponding RDF triples of the source network.

It is often useful to annotate statistical values to node or
edge representatives, or sources/targets of edge representatives.
For a skeleton S the skeleton annotation AS is defined as

AS = (An, Ae, As, At),

where
• An : K ×N → V is the node annotation,
• Ae : K × E → V is the edge annotation,
• As : K × E → V is the edge source annotation, and
• At : K × E → V is the edge target annotation.

Here, K stands for a set of annotation keys, and V stands for
a set of annotation values.

E. Graphical notation
The graphical notation for the skeleton corresponds to the

graphical notation of RDF Graphs. In Figure 1, the proposed
graphical notation is depicted. A node representative n ∈ N
is represented by a circle with its label l(n) denoted over
the circle. An edge representative e ∈ E is represented by
an unidirectional arrow with its label l(n) denoted next to
the arrow center. An arrow must connect two circles, with
the arrow start connecting to the circle that represents the
source and the tip of the arrow connecting to the circle that
represents the target. Annotations are denoted in the circles,
or near the start, middle, or end of the arrow, depending on
their annotation type (node, edge, edge source, or edge target
annotation).

F. Formal notation of graphical example
A skeleton S = (N,E, s, t, l) that contains among others

the node and edge representatives depicted in Figure 1 would
be formally denoted by
• the labels Function, Malfunction, hasMalfunction ∈ L,
• two nodes n1, n2 ∈ N with l(n1) = Function, and

l(n2) = Malfunction,

Annotations

6434
20 64

hasMalFunction
64

MalFunctionFunction

Labels

Node 
Representative

Node 
Representative Edge 

Representative

Figure 1. Graphical notation for skeletons.

• an edge e ∈ E with l(e) = hasMalfunction, s(e) =
n1, and t(e) = n2.

Additionally, the skeleton annotation AS = (An, Ae, As, At)
would contain the following mappings:
• An(node count, n1) = 34,
• An(node count, n2) = 64,
• Ae(edge count, e) = 64,
• As(src rep, e) = 20, and
• At(tgt rep, e) = 64.

Here, node count and edge count are the numbers of
nodes/edges that have been subsumed by a node/edge rep-
resentative. The source and target annotations src rep and
tgt rep are the number of represented nodes, that are part of
represented RDF triples. Thus, 20 of the 34 nodes represented
by n1 are connected to nodes represented by n2 via an edge
represented by e.

IV. SKELETON RETRIEVAL
Semantic network structures are as diverse as their poten-

tial applications and user-specific design decisions. Generally,
semantic networks of all kinds can be subject to skeleton
retrieval. However, transformation rules must guarantee that
the semantic definition described in Section III-A holds.

In this paper, we focus on retrieving skeletons from seman-
tic networks based on RDF and RDF Schema, more specifi-
cally, we utilize the RDF statements from the corresponding
RDF Graph. Technically, different approaches are possible
from successively parsing RDF Statements to utilizing query
languages such as SPARQL [9]. A comprehensive technical
description of potential transformations would go beyond the
scope of this paper. Therefore, we rather offer an abstract
method focusing on semantic compliance.

A. Creating Effective Skeletons
For retrieving the effective node and edge representatives

from the spread graph, we apply the following abstract method.
1) Find all resources that are RDF classes. Each class

becomes a node representative in the skeleton.
2) For each class find all its instances. All instances of

one class are subsumed by one node representative.
3) Find all literals. They are subsumed by one node

representative in the skeleton.
4) For each statement, add an edge representative (if

not yet existent) for the predicate between the node
representative of the statements subject and the node
representative of the statements object in the skeleton.

Additionally, during the skeleton retrieval process, the desired
annotation values can be computed.
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We propose to subsume all literals by one node representa-
tive in the skeleton. In RDF, the literals of the class rdfs:Literal
contain literal values such as strings and integers. A literal
consists of a lexical form, which is a string with the content,
a datatype IRI, and optionally a language tag. It is of course
possible to further distinguish dependent on datatype or even
analysing value equality instead of term equality. However, the
content string of the lexical form seems to be most important
and sufficient for the application.

B. Creating Maximum Skeletons
For creating a maximum skeleton, we apply the following

method to retrieve node and edge representatives from a spread
graph.

1) Find all resources that are RDF classes. Each class
becomes a node representative in the skeleton. Ad-
ditionally a node representative for instances of this
class must be created. For resources that are classes
themselves and subclasses of another class all prop-
erties must be propagated from its superclass.

2) Find all properties and their scope (range, domain).
For each property add (if not existent yet) an edge
representative from the node representative for the
instances of the specified domain to the node repre-
sentative for the instances of the specified range. For
each subproperty p1 of a property p2 edge representa-
tives must be created between all node representatives
connected via p2.

Again, required annotation values can be computed during the
skeleton retrieval process.

V. SKELETON ANALYSIS FOR
PRECONFIGURATION OPTIMIZATION

Structural network properties as well as spreading activa-
tion constraints and configuration settings affect spreading acti-
vation results. Each particular network property and spreading
activation setting may have a particular effect. In combination
they even have mutual effects. Knowledge about effects and
their causes allows for pre-configuration analyses in order to
optimize the settings to retrieve the desired effects.

Therefore, in this section, we present some basic skeleton
pre-configuration analysis. First, we examine network proper-
ties as well as node and edge properties, that can be derived
from skeleton annotation analysis. Furthermore, we introduce
two potential effects. The analysis can easily be extended and
deepened by attaching other useful annotations to the skeleton,
developing different metrics and measures.

A. Network Properties - Distance Analysis
Due to its abstraction from a very complex background,

the skeleton view gives a clear overview about potential
spreading routes through the network. Routes between specific
nodes are of special interest. For example, spreading allows
for searching for specific node types initiated from some
starting node(s). Thus, the distance between representatives
of starting and search goal nodes denotes the minimal number
of spreading pulses required to at least arrive at and possibly
distribute any activation to search goal nodes and, therefore,
show relevance between both nodes. In distance analysis,
the distance between interesting pairs of node representatives
can be calculated. Usually, consideration of the environment
semantically contributes to the results and is wanted because
a straight route may neglect additional useful relationships.

Therefore, in order to gain a proper recommendation result,
we propose balancing the pulse step configuration based on
the distance. Moreover, the diameter of the skeleton (maximum
path length between any pair of node representatives) stands
for the minimal number of spreading pulses necessary to at
least spread the entire source represented by this skeleton.
With this knowledge, it is possible to prearrange an appropriate
spreading pulse count, which may decrease efforts made for a
well-spread solution graph.

B. Node and Edge Properties
The presented semantic network skeleton allows for exten-

sible annotation options for customized analyses. Annotations
presented in this paper aim at analyzing how and where nodes
and edges are connected. The provided statistical information
can be utilized for calculation measures describing the state of
specific zones in the network, e.g., the zone around a specific
node representative or the zone of a skeleton triple.

Common basic annotations are those presented in Section
III-F, e.g., node count. From those, one can derive further
more advanced annotations, of which we will present some of
the most useful ones. The presented annotations mostly relate
to a specific skeleton triple, but usually a global version is
possible, too.

For a skeleton triple T = (n1, e, n2), the branching
probability of a node representative n1 denotes the probability
that a represented node of n1 connects with any represented
node of n2 in the underlying network.

bprob(n1) =
As(src rep, e)

An(node count, n1)
(1)

The effective average degree degeff (n1) of a node repre-
sentative n1 is the average number of edges to which each
represented node of n1 is connected to.

For a skeleton triple T , the branching ratio of a node
representative n1 denotes the average number of edges each
represented node of n1 connects with any represented node of
n2 in the underlying network.

b(n1) =
Ae(edge count, e)

An(node count, n1)
(2)

Node representatives with high branching ratios can be
considered to be high connectors, which means their repre-
sented nodes are highly connected to neighbor nodes in the
source network. In contrast, node representatives with low
branching ratios can be considered to be low connectors,
which means their represented nodes are sparsely connected
to neighbor nodes in the source network. Branching ratio 1
indicates a simple connector. It means that averagely one edge
per represented node connects with a neighbor.

C. Potential Effects of Network Properties on the Spreading
Result

Spreading Activation effects result from the impact of con-
figuration settings on network properties. An effect describes
a behavior specific nodes or edges have while spreading, with
respect to the given input.

Two important effects for pre-configuration analysis are
the distributor effect and the sink effect. If a node generously
spreads activation to a number of neighbor nodes above
average the node operates as a distributor. If a node does not
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(or only sparsely) spread activation to neighbor nodes the node
operates as a sink (one-way street).

The distributor and sink effects correlate with connectivity
information as well as configuration settings such as fan-out
constraints and activation thresholds. As an example, a high
connector can operate as a distributor and spread activation
values via many connected edges. Assuming restrictive fan-
out constraints in combination with a low threshold, a high
connector may also operate as a sink because the high branch-
ing values affect potential distribution disadvantageously and
the threshold may be unmanageable.

VI. CASE STUDY
The research of this paper contributes to the enhancement

of recent research on an advisory system for decision-making
support for hazard and risk analysis in the automotive domain,
called HARvESTer (Hazard Analysis and Risk assessment
dEcision Support Tool). This advisory system will be utilized
for first experiments with the skeleton presented in this paper.
Below, the advisory system will be introduced as well as its
skeleton creation and subsequent analyses.

A. Recommendation and Advisory System for Decision-
making Support for Hazard and Risk Analysis

Since 2011, automotive companies have to adhere to the
functional safety standard ISO 26262 [10]. One important
safety activity described in the standard is the hazard analysis
and risk assessment (HARA), which is strongly expert-driven,
and therefore expensive, time consuming, and dependent from
the individual experts opinion. In this analysis, experts ex-
amine the system under consideration with respect to its
functions, possible malfunctions, and the consequences of
those malfunctions in different situations. The result of the
analysis is a certain safety level and safety goals to reduce
the risk introduced by the new system to an acceptable level.
According to [11], the experience of experts is still the main
means to conduct a proper HARA. Without automation and
tool support, a HARA becomes expensive and its results can
become inconsistent with results of earlier analyses conducted
by other experts.

Therefore, the advisory system automatically combines
finished HARA projects and supporting information in a
knowledge base and searches it for useful recommendations
during a new HARA. Useful recommendations are found
by applying spreading activation on the spread graph of the
knowledge base. The algorithm determines the most relevant
nodes for a specific user query with predefined starting nodes
and a search goal, e.g., finding possible hazards for a specific
function.

In our preliminary case study, we examined a spread graph
of this advisory system. This network is based on RDF Graph
and consists of more than 118.000 edges (representing 45
predicates) and more than 48.000 nodes. It contains data from
more than 150 HARA projects. A part of this spread graph is
depicted in Figure 2. Basically, some functions, malfunctions,
hazards, and safety goals are shown. Our expectation is, that
the hazard originating from the unintentional closing of the
sun roof, i.e., contusion of body parts, may also be relevant
for the function close boot lid, as well as the associated
safety goal. For the recommendation query Show safety goal
recommendations for Ins Function 2, we expect the special
semantic relevance to be detected.
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Goal_2

hasSafetyGoal

Ins_Hazard_1

Ins_SafetyRequire
mentsModel_1

Ins_Item_1
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Literal Node
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Class Node

Legend:

Figure 2. HARA Spread Graph - Extract from the Semantic Network.

B. Effective Skeleton of HARA Spread Graph
The spread graph shown partly in Figure 2 is the input

for the skeleton creation process. Since the spread graph is an
instance of a network model with concrete data, it does not
necessarily contain all potential relations between each pair
of nodes. Therefore, we retrieve an effective skeleton of the
spread graph. Figure 3 depicts the effective skeleton of the
HARA spread graph used for the presented advisory system.
The used annotations in this skeleton are those described
in Section III-F. The semantic center of the skeleton is the
skeleton core which only contains representatives of instance
nodes.

The effective skeleton of the network only consists of 37
node representatives and 94 edges. The maximum skeleton
of the network only consists of 37 node representatives and
103 edges. The difference originates from the fact that in the
concrete spread graph not all specified relationships are used
at least once.

C. Analysis
Analyses are performed on the effective skeleton in Fig-

ure 3.
1) Distance Analysis: The diameter of the skeleton core in

the example is 4. The diameter informs us about the necessary
spreading steps for reaching each node representative at least
once.

For the earlier mentioned query, we would start spreading
at some node represented by Ins Function and search for
goal nodes represented by Ins SafetyGoal. The distance
between those two node representatives is 3, which means that
we have to spread for at least 3 pulses before any activation can
reach the goal node. However, for more meaningful activation
values, the influence of the other node representatives on
the result is interesting, too. Therefore, a good spreading
configuration ensures, that the activation values reached all
node representative in the skeleton (6 pulses) before reaching
the goal node representative (again 6 pulses). Altogether 12
pulses are therefore necessary. Of course, other spreading
parameters could heavily influence the number of meaningful
pulses, but at least the diameter provides some first insights.
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Figure 3. Skeleton of HARA Semantic Network.

2) Connectivity Analysis: We distinguish between high and
low connector nodes. Low and high connector nodes are
characterized by a high and low branching ratio, respectively.
A high connector triple would be T1=(HazardousEvent, type,
INS HazardousEvent) with a branching ratio of 4223, whereas
T2=(INS HazardousEvent, hasIsoAsil, INS IsoAsil) is a sim-
ple and low connector with a branching ratio of 1.

With T1 being such a high connector, any configuration
with a strong fan-out constraint would make it a sink, meaning
that it would distribute almost no activation. In combination
with an activation threshold, T1 would probably distribute
no activation at all. Since a sink does not contribute to the
overall spreading result, such a configuration would make T1

meaningless (except as a search goal).

VII. CONCLUSION AND FUTURE WORK
In this paper, we introduced semantic network skeletons

as a new tool for analyzing semantic network properties
and spreading activation configuration settings on semantic
networks. The skeleton syntax was presented formally and
visually. Furthermore, we described how a skeleton can be
retrieved from a semantic network based on RDF Graph and
explained analyses on network, node, and edge properties.
Additionally, we described two effects observable while per-

forming spreading activation and how skeleton analyses may
support effect detection. We then presented our results in a
case study on an advisory system for hazard analysis and risk
assessment in the automotive domain and showed analyses on
a real skeleton in order to optimize pre-configuration.

In this paper, only selected analyses were introduced.
In future, description of more effects and their correlation
with network properties and configuration settings can im-
prove analysis results. Especially, new metric, measure, and
ratio definitions can be helpful. A long term goal may be
self-configured spreading activation, independently performing
spreading activation without manual configuration. A short
term goal is providing extensive guidelines for optimally
configuring the spreading algorithm with respect to a given
network. We furthermore plan on extended case studies exper-
imenting with preconfigured spreading activation. Lastly, po-
tential spreading activation micro-simulation can be examined.
Skeletons can be valuable beyond utilization in the context
of spreading activation. The compressed and summarized
character of network skeletons might be useful for cognate
disciplines also dealing with large semantic networks.
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