
AmITest: A Testing Framework for Ambient Intelligence Learning Applications

Nikolaos Louloudakis, Asterios Leonidis and
Constantine Stephanidis

Foundation for Research and Technology – Hellas
(FORTH) - Institute of Computer Science

N. Plastira 100, Vassilika Vouton, GR-700 13
Heraklion, Crete, Greece

e-mail: {luludak, leonidis, cs}@ics.forth.gr

Constantine Stephanidis
University of Crete, Department of Computer Science

Heraklion, Crete, Greece
e-mail: cs@csd.uoc.gr

Abstract— As the Ambient Intelligence (AmI) paradigm
emerges and develops, applications in education are attracting
increasing attention. For maximum educational efficiency,
extensiveness and adaptation to the needs of their users, AmI
systems in education need to be easily programmable.
Considering that their users are primarily non-computer
professionals, giving them the ability to program those
environments is a task difficult by itself, as those environments
are of high architectural and computational complexity. In
addition, it is of high importance that those environments work
as expected, making the testing and the validation of their
behavioral aspects a crucial part of the development process.
In this paper, we propose AmITest, a framework that
effectively allows the testing and the validation of behavioral
programs written by users in a simple, yet direct and effective
way. AmITest is part of a complete end-user development suite
named AmIClass, which allows the effective programming of
AmI educational environments by non-computer professionals.

Keywords-visual programming; end-user testing; ubiquitous
environments; smart learning environment; ambient intelligence
testing

I. INTRODUCTION
As Information Technology evolves, the traditional

interaction paradigm where humans are just the operators of
stationary machines is revolutionized by the concepts of
Ambient Intelligence [1] and Pervasive Computing [2] that
introduce innovative ecosystems in which humans are
surrounded by ubiquitous technological artifacts (e.g.,
sensors, actuators, smart devices, etc.) and computational
units, that enrich their environment in a smart, transparent
and unobtrusive way. In such environments (i.e., AmI
Environments), ubuquitous artifacts can reason, collaborate
and interact proactively in order to improve the quality of life
of humans, by satisfying their needs and offering assistance
in their daily activities.

The list of the application domains whose users could be
benefited by such intelligent environments is rather endless,
ranging from the automation of repetitive tasks (i.e., daily
routines) in order to offer more spare time to their inhabitants
for other activities, to improving the overall quality of life of
specific groups of people (e.g., people with disabilities,
elderly, etc.) by assisting them with their daily activities.
Such a domain with promising potentials is the domain of

education, particularly regarding the concept of Just-in-Time
Learning [3] (i.e., the provision of learning material at the
right time, the right place and the appropriate format).

An Intelligent environment that promotes learning by
offering to its users educational material when and where
they are ready to espouse knowledge the most, based on the
current task at hand and the available technological artifacts
that could be used in order to make the information as easily
adoptable as possible (e.g., sensors, actuators, interactive
devices, etc.), is called a Smart Learning Environment
(SLE) [4].

A key requirement of SLEs is that their behavior and
interaction policies need to be easily programmed by their
end-users, who most likely will not be computer
professionals. In this respect, Leonidis et al [5] have
proposed AmIClass, a framework for end-user visual
programming aiming primarily to users that are non-
computer professionals. An important aspect is that such
environments are of high architectural and computational
complexity. Therefore, not only programming is a
challenging task, but also the proper testing and validation of
the behavior of those environments is of utmost importance.
Towards such objective, this paper proposes the AmITest
Framework, a testing framework for AmI environments, with
its main focus on SLEs.

AmITest aims to support the users that define the
behavior of the SLE (i.e., SLE programmers), rather than the
end-users of the SLEs themselves (e.g., teachers, students,
school principals, etc.). The programming expertise of
AmITest users however may vary greatly ranging from
motivated teachers who want to modify the intelligent
environment they work into, to experienced IT professionals
who determine in detail the behavior of the environment and
the contained learning facilities. To accommodate both
groups, while considering that the majority of the target users
will not be experts, AmITest makes the testing process as
straightforward as possible, by offering a visual
programming tool for the end-users to define their tests. The
AmITest framework is a novel part of the AmIClass
Framework [5] that provides testing capabilities using the
dynamic scripting language of AmIClass in order to test the
artifacts of the SLE being tested as subject.

The AmITest framework is mainly consituted of two
main components: (1) The ClassScript Testing Agents, a
framework for testing and validating the behavior of SLEs

76Copyright (c) IARIA, 2016. ISBN: 978-1-61208-471-8

eLmL 2016 : The Eighth International Conference on Mobile, Hybrid, and On-line Learning

defined in an imperative domain-specific language named
ClassScript and (2) The Tests Management and Deployment
Suite, a suite that facilitates end-users to visually program a
number of tests regarding the AmI environment behavior
using a building block-based Graphical User Interface
(GUI). These components interoperate in order to provide
the best programming options to the end-users so that they
can configure parts of the behavior of the system (e.g.,
articulate user input for a certain scenario, transcript the
behavior of a fictional user, etc.) and validate whether the
intended behavior meets the original expectation.

The paper is organized as follows. Section II describes
relevant approaches to the AmITest framework. Section III
outlines the requirements that should be met to apply
successful testing of a SLE. Section IV describes the
implementation details. Section V presents a proof-of-
concept scenario. Section VI focuses on the biggest
challenges met in order for AmITest to do efficient testing,
and Section VII concludes the paper by discussing the
current status of the framework and discussing a list of
potential improvements and additions.

II. RELATED WORK
AmITest focuses on the creation of tests that aim to

validate the behavior of an SLE. The behavior itself is
defined in AmIClass using the ClassScript language [5], a
dynamic, untyped language used specifically for the
definition of the behavior of particular artifacts inside an
SLE, and macroscopically, the behavior of the SLE as a
whole [5]. AmITest introduces a library that enables testing
of ClassScript. AmITest is based on similar testing
frameworks for untyped languages, and in particular on two
testing frameworks for the JavaScript programming language
[6], Jasmine [7] and QUnit [8].

As aforementioned, non-computer professionals will
mainly be asked to program and test the behavior of an SLE,
thus mechanisms that facilitate programming by such users
with little or no experience are supplied, including visual
tools that can be easily learnt and used in order to design
programs and validation tests [9]. This paradigm is
effectively used in order to provide programming capabilities
to systems that target non-professional users in various
systems with diverse objectives. AmIClass [5] enables the
definition of the behavior of SLEs via visual programming
even by novice users (e.g., teachers). Scratch [10] is a visual
programming environment primarily targeted to users in ages
between 8 and 16 years old, with limited to none
programming experience, that aims to teach them
programming while working on meaningful projects such as
animated stories and games via a visual programming editor.
Virtuoso [11] is a visual tool for creating educational games
aiming primarily non-professional users, based on Valve’s
game engine. TouchDevelop [12] is a system for developing
applications directly from a mobile device through the cloud
using a custom visual editor that adapts its functionality
based on the knowledge and programming skills of its user.
App Inventor [13] is a platform from MIT which provides a
web-based visual programming tool for designing mobile
applications online. Automator [14] is a visual scheduling

tool providing capabilities of repetitive automation tasks in
the Mac OSX platform.

All the aforementioned systems facilitate programming
of various kinds to users with very little or no programming
experience via employing the visual programming paradigm.
However, only AmIClass targets AmI environments where
common testing techniques (i.e., Unit Testing) may not
suffice as most of them lack the necessary testing and
validation mechanisms to allow the verification of the
behavior of the programs by their end-users.

AmITest aims to address those pitfalls as it not only
supports testing of the behavior of an SLE, but also offers
both visual and script editing facilities to accommodate users
with different levels of expertise. Consequently, any user
will be able to program her own test cases and test the
behavior of the SLE easily. Text-based scripting support for
end-user programmers is inspired by many well-established
incarnations in the domain of electronic games development,
with languages such as Lua [15] and JavaScript [6] having
played an important role in the widespread adoption of
extensible game engines (such as Unity [16]), and even
further, to the introduction of games that players can freely
customize (e.g., the game “Second Life” offered the Linden
Scripting Language [17] through which players were able to
create in-game elements).

III. FRAMEWORK REQUIREMENTS
Considering that SLEs are complex systems with a

considerable number of collaborating artifacts composing
them, it is necessary to validate the behavior of each artifact
individually, but also the SLE behavior as a whole.

In order for the proposed system to efficiently test the
functionality of each individual artifact and the behavior of
the SLE as a whole, each artifact should have installed a
lightweight service, the ClassScript Testing Agent (CTA),
which facilitates the orchestrator of the testing operations
done in the artifacts, and works as the delegate of the Tests
Management and Deployment Suite (TMDS), which is
responsible for the definition of the testing actions on each
artifact. The CTAis practically a service communicating
with the Service Mediator Agent of the AmIClass framework
and is responsible for the installation, deployment and
execution of the test scripts on that artifact.

Each artifact should also implement a lightweight
Application Programming Interface (API) called
ISchoolArtifact in order to allow the system execute certain
operations necessary for testing, such as requesting the form
of the information provided from each artifact (i.e., the
information schema), accessing that information to
determine the status of the artifact, etc,.

As aforementioned, artifacts of an SLE interoperate with
each other in a distributed manner [18], as they are different
remote sub-systems that coexist inside the SLE. To satisfy
the increased communication needs stemming from both the
“normal” SLE operation and the testing purposes, the
proprietary FAmINE middleware [19] was used. The
ISchoolArtifact interface is defined as a FAmINE component
and via that interface the distributed systems can
communicate with each other.

77Copyright (c) IARIA, 2016. ISBN: 978-1-61208-471-8

eLmL 2016 : The Eighth International Conference on Mobile, Hybrid, and On-line Learning

Finally, since the testing framework will be a part of the
AmIClass Framework, each artifact should meet the
requirements of AmIClass as described in [5].

IV. SYSTEM ARCHITECTURE
The AmITest system is an integral part of the AmIClass

suite, thus it follows a similar architectural structure from an
engineering perspective. The AmiTest framework consists
of: (1) the delegate ClassScript Testing Agents (CTA), which
get installed on every artifact and are responsible for the
installation and local execution of the testing scripts, and (2)
a master web-based suite, the Tests Management and
Deployment Suite (TMDS), responsible for the creation,
overview and management of the testing procedure. The
overall architecture is depicted in Fig. 1 below.

Figure 1. Architecture of the AmITest framework

In Addition, CTA is responsible for managing any locally
installed scripts (i.e., update, delete). Before its initial

execution, each script is cached locally to minimize its
startup time since for every subsequent execution there will
be no need to retrieve it from the main repository. The CTA
also ensures that the local version is always the latest one,
thus on any update it replaces the old version with the new.

The Standard Development Kit (SDK) of AmITest is a
native library of the AmIClass framework – part of the
language implementation, and the test scripts of the AmITest
framework are ClassScript language scripts. Therefore, they
are executed by the installed AmIClass interpreter without
any modifications. The SDK consists of three specially-
purposed APIs: the Artifacts API, the Invoker API and the
Tester API.

The Artifacts API handles the information retrieval of the
data structures and the actual data of an artifact. Upon
launch, it loads the information schema of the underlying
artifact, and then periodically collects any data used from the
test scripts to validate its behavior and provides them to the
Tests Management and Deployment Suite for updating the
artifact’s overview, enabling test editing, and for logging
purposes. Its objective is two-fold: (1) provide the server-
side TMDS with information that will assist and enhance the
development process of the end-users, and (2) retrieve and
use the artifacts data for assertions checking when validating
the behavior of a component or of the SLE as a whole.

The Invoker API let programmers schedule valid
invocations of a function or triggering of events, in order to
check whether the correct behavior has been applied based
on the respective “expectations” (i.e., assertions) of the
artifact(s) of the SLE. Considering that the Invoker API will
mainly focus on the invocation of asynchronous functions, a
mechanism that address any dirty object instances existence
has been considered. The Invoker API is designed and
implemented based on the Promises pattern. A Promise is a
pattern which represents the result of an asynchronous, long
running and potentially, but not necessarily, complete
operation, using an object instance which represents the
promised result of the operation. This concept is common on
asynchronous programming, and various frameworks
implement it for both typed and untyped programming
languages, such as C++ Promises [20] and Javascript
Promises [21].

The Tester API is responsible for the evaluation of any
assertions, named Expectations, relevant to that artifact or
the overall SLE. The most common use of Expectations is in
combination with Promises, in order to apply checks on the
data of one or more artifacts within an SLE: considering that
the testing process is an asynchronous task by itself, artifact-
specific promises are used to ensure that expectation
checking on the artifacts will be performed when the objects
are in a ready, clean state and not before. Such an example is
depicted in Fig. 2; when all the necessary events are handled
by the respective components -the promises are satisfied-,
only then the expectations will be evaluated. The Tester API
offers a variety of checking options, such as numerical and
string checking, shallow and deep object equality
comparison, regex checking, etc.

All the components of a CTA are orchestrated effectively
via the Main Agent Controller, which orchestrates all the

78Copyright (c) IARIA, 2016. ISBN: 978-1-61208-471-8

eLmL 2016 : The Eighth International Conference on Mobile, Hybrid, and On-line Learning

components aforementioned for a proper functionality. The
controller is responsible to enable all the components
required for any actions needed to be done, such as script
installation, script execution, server briefing about the scripts
and the artifact status etc.

Figure 2. Flow of Information across core SLE (blue boxes) and AmITest

(green boxes) components

A. The Tests Management and Deployment Suite
The Tests Management and Deployment Suite (TMDS)

is responsible for the management of all the testing scripts
that exist in the SLE. The suite has two main components:
the ClassScript Integrated Development Environment
(CIDE) and the Management Suite (MS). CIDE is an
environment for the development of the scripts that define
the behavior of the artifact (i.e., its business logic) and
testing scripts that will validate it. MSis a Graphical Suite
that facilitates the overview, remote installation, supervision
and execution of any testing scripts and consists of the
following components: the Application Controller, the
Graphical User Interface, the Database Manager, the Logger
and the Communications Manager.

The Application Controller is the main controller of the
server-side application, which orchestrates all the operations
of every component with respect to the testing procedure.
The Graphical User Interface is the main Graphical
Component of the system, and consists of the Test Scripts
Editor and the Overviewer components.

The Test Scripts Editor provides the end-users with an
environment where they can create new scripts from scratch
or edit existing ones, either visually or via textual scripting
since both modes are interoperable. In Visual Editing Mode,
the end-user can create and/or modify existing tests using a
visual tool of building blocks (based on a Google’s Blockly
project [22]), as depicted in Fig. 3. This mode is more
suitable for users with very little or no programming
experience giving them the capability of creating effective
test scripts. This tool will eventually generate valid
ClassScript code (as shown in Fig. 4) and any artifact will be
able to execute it directly using its installed ClassScript
interpreter. In Scripting Mode, the end-user can write the
tests for the application directly in the ClassScript language,
using an integrated WYSIWYG text editor. This mode
increases the expressiveness of the scripting tests, it is
considered to be more difficult for novice users, but more
powerful for users with some programming experience. The
system though attempts to assist the end-user programming
as much as possible, providing auto-completion capabilities
along with syntax highlighting capabilities.

The Overviewer is the graphical tool that presents the
overview of the Artifacts and the Scripts existing in the SLE.
In particular, apart from their aggregated statistics, for each
SLE it provides an overview of the installed, deployed and/or
currently executing behavioral and testing scripts. This
component also consists of two smaller components, the
Artifacts Overviewer, responsible for the overview and
management, from a testing perspective, of the various
artifacts present in an SLE (e.g., activation and deactivation
of facilities) and the Scripts Overviewer, responsible for the
overview and the management of the scripts installed in the
main repository, or cached locally in every artifact. The end-
users can use this component in order to install more scripts
on each artifact, but also to monitor a script’s execution, its
outcomes or even interact with it in real-time (e.g., inspect its
status, breakpoint or stop it etc.).

Figure 3. Definition of a test using AmITest Visual Editor

TMDS also contains the Database Manager component
for the manipulation of the database operations regarding the
test scripts and any relevant information about them (e.g.,
logging information, information schema, history, etc.). This
component is responsible for all the Create-Read-Update-
Delete (CRUD) operations of the Database Management
System (DBMS) held in the server where the application is
installed. The Logger is a component responsible for
managing the logging operations, and works in close
collaboration with the Database Manager component.

79Copyright (c) IARIA, 2016. ISBN: 978-1-61208-471-8

eLmL 2016 : The Eighth International Conference on Mobile, Hybrid, and On-line Learning

Finally, the suite contains the Communications Manager,
a component for the two-way communication between the
artifacts and the Suite on the server. This component receives
all the data needed in order to inform the Suite Graphical
User Interface, logging data, scripts data, etc., and
propagates any commands to the artifacts including user-
oriented commands (e.g., resulting from the interacting with
the Suite, such as new scripts installations, scripts executions
on an artifact, etc.) or system-oriented commands (e.g.,
predefined reaction of a fictional user to a certain event, etc.).

V. PROOF OF CONCEPT

A. Test Case Scenario
AmISchool [23] is an ambient educational test bed which

consists of a number of artifacts: four touch-enabled
AmIDesks [24][25], an interactive teacher workstation, a
large projection screen, a Heating, Ventilation, and Air
Conditioning (HVAC) controller, alights control system, a
sophisticated vision-based user tracking system [26] and
various AmI-oriented learning applications [23][27][28]. It
employs the ClassScript framework [5] in order to enable the
definition of learning plans (i.e., scripts) that control its
behavior by the teachers themselves, thus it provides the
context for our test case scenario.

Mrs. Smith is a 42-years old history teacher, with very
limited programming experience mostly related to formulas
creation in a spreadsheets processor to calculate her students
grades, who teaches the 5th grade in that school. After a few
unsuccesfull attempts, shehas managed to define and validate
the general behavior of the classroom both in terms of
physical conditions and privacy; she has created scripts that
instruct: (1) the classroom to automatically turn on the lights
when students are present and control the room’s
temperature to maximize students’ convenience, (2) the
AmIDesks to initiate the login procedure when a student is
sitting in front of them and show the contents of her
presentation if the relevant application is on the foreground
on her workstation.

Today, she wants to use for the first time the available
Student Attention Monitoring and Intervention system,
which in case of inattention can actively intervene, thus she
needs program eventually validate a simple intervention that
will aim to motivate a distracted student. Therefore, she
instructs the vision component to track the gaze of each
individual student and notify the teacher if inattention is
detected. Upon notification, she wants to be able to either
virtually poke that student or activate a quick educational
mini-game to regain attention and increase interest for
participation.

B. SLE Behavior Programming and Testing
The SLE behavior is defined using the ClassScript’s

visual editor, while the AmITest framework facilitates its
simulation and validation via the Tests Management and
Deployment Suite. In order for Mrs. Smith to validate the
behavior described above, she can use the AmITest
framework in order to simulate the actions of virtual
students in order to and validate if the SLE performs as

expected. For that to be achieved, firstly she defines two
auxiliary testing blocks (i.e., functions), one that checks
whether the teacher’s workstation displays a notification
when inattention is detected and another that validates that
whenever the teacher launches a mini-game in a student’s
desk, then that game is the only active application (Fig. 3 and
Fig. 4 present those functions in the user-friendly visual
format and the automatically generated ClassScript code
respectively). Afterwards, she creates a virtual student, in
order to simulate a student distraction behavior for SLE
behavior validation purposes. This virtual student will
simulate a distraction after a few seconds in order to trigger
the overall detection and reaction process, as depicted in
Figure 2.

Figure 4. Portion of the automatically generated ClassScript code to test

SLE reaction to a student’s lapse of attention

Upon programming of the classroom’s behavior and the
testing methodology, Mrs. Smith launches the validation
process. She uses the TMDS component of the AmITest
framework to create an instance of that test and execute it
right away in order to check whether or not the SLE behaves
as expected.

VI. CHALLENGES
One of the most challenging issues in order to perform

testing operations is the complexity of the system; there is a
considerable number of distributed, interoperating
components, applying operations asynchronously between
their operations most of the time, but also acting
asynchronously between each other. Considering the artifacts
as isolated units and testing them that way would be
incorrect, as there is a high level of dependency between the
artifacts.

What we attempted though was focusing mainly on
isolating and performing assertions on the values of the
artifacts, thus practically checking all the individual
components operated as expected. For instance, if a student
gets distracted during a lecture, then the teacher should be
offered the opportunity to motivate her to participate. In
order to validate that these operations function as intended,
one could observe the situation of the class, something that it

80Copyright (c) IARIA, 2016. ISBN: 978-1-61208-471-8

eLmL 2016 : The Eighth International Conference on Mobile, Hybrid, and On-line Learning

is not possible in a simulation scenario. On the other hand,
this observation could be done via value checking of all the
affected artifacts. Therefore a complete test would assert
that: (1) the status of the teacher’s workstation would change
from “classroom overview”, to “inattention detected” and
eventually to “mini-game launched” and (2) the AmIDesk of
the distracted student would disable interaction with every
application but the mini-game initiated by the teacher.

To support such tests, we have implemented a
sophisticated monitoring mechanism through which we
ensure that value checking (i.e., Expectations) is performed
only after the necessary handling actions have completed
(i.e., Promises).

VII. CONCLUSIONS AND FUTURE WORK
This paper has described a testing suite for Smart Learning
Environments in order to check the validity of operations
programmed by end users in a Smart Learning Environment.
The suite aims primarily at non-programming professional
users, and supports testing via scripting and Visual
Programming. Even though well-established user-friendly
visualization techniques have been currently applied (e.g.,
Blockly), following the iterative approach of the User-
Centered Design (UCD) process [29], both educators and
experienced developers of AmI servicers will be actively
involved in the design process of the visual tools, through
preliminary evaluation sessions and participatory design
sessions, to maximize their usability for both groups.
Whereas, upon the release of version 1.0 of AmITest, we
plan to conduct an extensive in-vivo full-scale evaluation
experiment both with HCI experts and educators in order to
examine and improve the usability of the AmITest editing
facilities.

Finally, as regards our future plans for the overall
framework, we have already laid the foundations to extend
its application to support testing, in a scalable and effective
way, in other domains beyond its initial target domain (i.e.,
SLEs), such as Smart Homes, Technologically-enhanced
Cultural Monuments, Smart Cities, etc.

REFERENCES
[1] J. Krumm, Ubiquitous Computing Fundamentals. Boca

Ragon: Chapman & Hall/CRC Press, 2010.
[2] F. Adelstein, Fundamentals of Mobile and Pervasive

Computing. New York: McGraw-Hill, 2005.
[3] G. M. Novak, Just-in-time Teaching: Blending Active

Learning with Web Technology. Upper Saddle River, NJ:
Prentice Hall, 1999.

[4] M. Chang, and Y. Li. Smart Learning Environments.
Springer, 2014.

[5] A. Leonidis, M. Antona, and C. Stephanidis, "Enabling
Programmability of Smart Learning Environments by
Teachers." Distributed, Ambient, and Pervasive Interactions
Lecture Notes in Computer Science, 2015, pp. 62-73.

[6] D. Crockford, JavaScript: The Good Parts. Beijing: O'Reilly,
2008.

[7] P. Ragonha, Jasmine JavaScript Testing: Leverage the Power
of Unit Testing to Create Bigger and Better JavaScript
Applications. Birmingham: Packt, 2013.

[8] D. Sheiko, Instant Testing with Qunit. S.l.: Packt Publishing
Limited, 2013.

[9] M. Maleki, R. Woodbury, R. Goldstein, S. Breslav, and A.
Khan. "Designing DEVS Visual Interfaces for End-user
Programmers." Simulation 91, no. 8 (2015), pp. 715-734.

[10] M. Resnick et al, "Scratch: Programming for All."
Communications of the ACM Commun. ACM 52, no. 11
(2009), pp. 60-67.

[11] O. Gray and M. Young, 2007. “Video Games: A New
Interface for Non-Professional Game Developers”. In ACM
International Conference on Computer-Human Interaction
(CHI 2007), USA: San Jose.

[12] N. Tillmann, M. Moskal, J. De Halleux, and M. Fahndrich,
"TouchDevelop: Programming Cloud-connected Mobile
Devices via Touchscreen." Proceedings of the 10th SIGPLAN
Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software - ONWARD '11, 2011, pp. 49-
60.

[13] D. Wolber, "App Inventor and Real-world Motivation."
Proceedings of the 42nd ACM Technical Symposium on
Computer Science Education - SIGCSE '11, 2011, pp. 601-
606.

[14] B. Waldie, Automator for Mac OS X 10.6 Snow Leopard.
Berkeley, CA: Peachpit Press, 2010.

[15] R. Ierusalimschy, Programming in Lua. Rio De Janeiro:
Lua.org, 2006.

[16] W. Goldstone, Unity 3.x Game Development Essentials:
Game Development with C♯ and Javascript. Birmingham,
UK: Packt Publishing, 2011.

[17] R. J. Cox, and P. S. Crowther, "A Review of Linden
Scripting Language and Its Role in Second Life." Lecture
Notes in Computer Science Computer-Mediated Social
Networking, 2009, pp. 35-47.

[18] E. Mangina, J. Carbo, and J. M. Molina, Agent-based
Ubiquitous Computing. Paris, France: Atlantis Press, 2009.

[19] I. Georgalis, Y. Tanaka, N. Spyratos, and C. Stephanidis,
Programming Smart Object Federations for Simulating and
Implementing Ambient Intelligence Scenarios. In C.
Benavente-Peces and J. Filipethe (Eds.), Proceedings of the
3rd International Conference on Pervasive and Embedded
Computing and Communication Systems (PECCS 2013),),
Barcelona, Spain, 19-21 February 2013, pp. 5-15. Portugal:
SciTePress.

[20] A. Williams, C++ Concurrency in Action: Practical
Multithreading. 1st ed. Manning Publications, 2012.

[21] D. Parker, JavaScript with Promises. O'Reilly Media, 2015.
[22] "Blockly | Google Developers." Google Developers.

Accessed January 25, 2016.
https://developers.google.com/blockly/.

[23] A. Leonidis et al, "A glimpse into the ambient classroom."
Bulletin of the IEEE Technical Committee on Learning
Technology 14.4, 2012, 3.

[24] M. Antona et al, Ambient Intelligence in the classroom: an
augmented school desk. In the Proceedings of the 2010 AHFE
International Conference (3rd International Conference on
Applied Human Factors and Ergonomics), Miami, Florida,
USA, 17-20 July 2010. CRC Press [CD-ROM].

[25] C. Savvaki et al, "Designing a Technology–Augmented
School Desk for the Future Classroom." HCI International
2013-Posters’ Extended Abstracts. Springer Berlin
Heidelberg, 2013, pp. 681-685.

[26] G. Galanakis, X. Zabulis, P. Koutlemanis, S. Paparoulis, and
V. Kouroumalis, "Tracking persons using a network of
RGBD cameras." In Proceedings of the 7th International
Conference on PErvasive Technologies Related to Assistive
Environments, ACM, 2014, 63.

81Copyright (c) IARIA, 2016. ISBN: 978-1-61208-471-8

eLmL 2016 : The Eighth International Conference on Mobile, Hybrid, and On-line Learning

[27] M. Korozi et al. "Ambient educational mini-games."
Proceedings of the International Working Conference on
Advanced Visual Interfaces. ACM, 2012.

[28] G. Mathioudakis et al. "Ami-ria: real-time teacher assistance
tool for an ambient intelligence classroom." Proceedings of

the Fifth International Conference on Mobile, Hybrid, and
On-Line Lerning (eLmL 2013). 2013.

[29] D. A. Norman and S. W. Draper. "User centered system
design." Hillsdale, NJ, 1986.

82Copyright (c) IARIA, 2016. ISBN: 978-1-61208-471-8

eLmL 2016 : The Eighth International Conference on Mobile, Hybrid, and On-line Learning

