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Abstract—In Wireless Sensor Networks, if the Multiple Access
Channel between distributed sensors and multiple antennasis
fading and the envelope of the channel gain distribution is
unknown and time-varying, fusion at the antennas is usually
incoherent. Often, the overall sensor power is upper bounded by
a constraint on the onboard battery power. Then, the optimal
sensor power allocation scheme which minimizes the probability
of missed detection is kno-wn to outperform uniform sensor
power allocation scheme. Further, if the observation signal-to-
noise ratios at the sensors are non-identical, optimizing the prob-
ability of detection must take into account the combined effect of
the differing sensor signal-to-noise ratios and the fadingnature of
the channelas seen by the sensors. Neyman-Pearson formulation
of this problem sets out by setting an upper bound on the
permissible probability of false alarm. Consequently, thedetector
threshold is governed by the power allocation scheme – uniform
or optimal. We examine here the inter-dependencies between
the probability of false alarm, the probability of detection and
the detector threshold. We demonstrate that for robust detection
vis-à-vis variations in detector threshold, there is an additional
compelling case for optimal power allocation over uniform power
allocation.

Keywords-Wireless Sensor Networks; Multiple Access Fading
Channel; Optimal Power Allocation; Detector Threshold; Ro-
bustness.

I. I NTRODUCTION

We address the problem of distributed detection over a
resource constrained Wireless Sensor Network (WSN). The
schematic of the system taken from [1] is shown in Fig 1.
On-board batteries with limited power drive the sensors. The
sensed signal received by the sensors is corrupted by additive
noise, amplified by the sensor gain and transmitted over a
fading channel to the Fusion Centre (FC). To detect the sensed
parameter/event at the FC, we employ the Neyman-Pearson
(NP) formulation.

A. State of the Art

Uniform Power Allocation (UPA) to the sensors is shown
to be sub-optimal when the Multiple Access Channel (MAC)
is fading [1]. The authors there show that Optimal Power
Allocation (OPA) is superior to UPA under the following
conditions: (i) the channel is fading; (ii) the sensor observation
noise is i.i.d.; (iii) the sensor observation Signal-to-Noise Ratio
(SNR) is time-invariant; (iv) there is an overall sensor power
constraint; and (v) the False Alarm (FA) rate has a fixed
acceptable upper bound. Thus, there is a saving in onboard
power even with i.i.d. sensor observation noise and time-
invariant sensor observation SNR. However, with non-identical
sensor observation SNRs, the OPA of [1] may lead to wastage
of system resources. OPA for the case of sensor noise with
different SNRs is addressed in [2].

B. Motivation for this Work

It was seen in Section I-A that UPA is sub-optimal when
the MAC is fading and that OPA is superior to UPA under
some conditions [1]. Suppose the sensor observation SNRs are
non-identical. Then, the OPA of [1] which does not take into
account the combined effect on the overall performance of (i)
the differing sensor SNRs; and (ii) the particular fading char-
acteristic of the channel path seen by the individual sensors,
has been shown to result in wastage of system resources [2].

Within a fixed permissible probability of FA,PFA, the
NP scheme admits a choice of the detector threshold. Of
particular concern that we focus upon here is from a designer’s
perspective. It lies in examining the interval allowable to
choose the detector threshold,τ , within the constraints placed
by the tolerablePFA concurrent with the desired probability of
detection,PD, albeit for a given total sensor power constraint,
PT .
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Moreover, asτ varies within the admissible interval ofτ , it
is desired to study the nature of degradation of performance.
In relation toPFA, the detector threshold,τ , impactsPD. The
natural question that arises here is therefore the ’goodness’ of
the choice ofτ for ’enhanced performance’. To answer this
question, we study the nature of inter-relationships between
PFA, τ and PD. The comparison here is across OPA and
UPA. Thus, equipped with a priori knowledge of the nature
of impact ofτ on system performance, the user can chooseτ
to balance conflicting criteria, dictated by the demands of the
specific application.

The rest of the paper is organized as follows. Section II
describes the system model with the power constraint. The
detection algorithm and its formulation comprise Section III.
Power allocation schemes are discussed in Section IV.
Simulation set up and results are presented and analyzed in
Section V. Concluding remarks form Section VI.

II. SYSTEM DESCRIPTION ANDMODEL

To facilitate readability, we briefly describe the system setup
on the lines of the formulation in [2].

A. The Sensor

The sensor network comprisesL sensors transmitting to
N antennas overNL channels as in Fig. 1 [3]. The sensed
parameter/event isΘ ∈ {0, θ}. Let H0 and H1 be the
hypotheses corresponding respectively toΘ = 0 andΘ = θ.
Further, in terms of the priorsp0 andp1, let

Θ
∆
=

{
H0 : 0 w.p. p0;
H1 : θ w.p. p1.

At the ℓth sensor, the additive noise,ηℓ, is characterized as
ηℓ ∼ CN (0, σℓ

2). Thus the sensor SNRs are not identical. The
gain of theℓth sensor isαℓ ∈ C. Then, the sensor output is

αℓ(Θ + ηℓ); ℓ = 1, 2, · · · , L.
The constraint on the overall sensor power,PT , is given by

PT = E

[
L∑

ℓ=1

| αℓ(Θ + nℓ) |2
]

(1)

=

L∑

ℓ=1

| αℓ |2 (p1θ
2 + σ2

ℓ )

= αH
[
p1θ

2IL +D(σ)
]
α, (2)

in matrix notations. Here,E[·] is the expectation operator;
α, σ ∈ CL×1; xH is the Hermitian ofx; IL is the identity
matrix of sizeL; andD(u) ∈ Cm×m is the diagonal matrix
with the entries of the vectoru ∈ Cm×1 on the diagonal.

B. Multiple Access Channel (MAC)

The sensors feed into a multiple access fading channel. The
random gain from theℓth sensor to thenth antenna ish(n, ℓ).
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Fig. 1. Schematic of the Setup

The channel gain matrix is thusH = [h(n, ℓ)] ∈ CN×L.

C. Antennas and the Fusion Center

There areN antennas at the receiving end. The additive
noise,vn ∼ CN (0, σv

2), at thenth antenna,n = 1, 2, · · · , N ,
is taken to be i.i.d. For simplicity, we assume the antenna noise
to be of unit variance. The output of theN antennas received
by the FC isy ∈ CN×1. Thus,

y = HαΘ+HD(α)η + v, (3)

whereη ∈ CL×1 andv ∈ CN×1. From the observed output,
Θ̂ ∈ {0, θ̂}, at the FC, the problem is to detect the parameter,
Θ ∈ {0, θ}, emitted by the source and to analyze the system
performance.

III. D ETECTION ALGORITHM

For detection, we assumey to be Gaussian. Thus,

H0 : y ∼ CN (0N ,R);

H1 : y ∼ CN (θHα,R). (4)

Here,0N is theN × 1 zero vector andR is theN × N
covariance matrix of the received signal given by

R = HD(α)D(σ)D(α)HHH + IN . (5)

Define

δ
∆
= αHHHR−1Hα (6)

and

Q(x)
∆
= (1/

√
2π)

∫
∞

x

e−t2/2dt.

Then, the probability of false-alarm,PFA, becomes
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PFA ≤ Q

(
θ
√
δ

2
+

τ

θ
√
δ

)
. (7)

In (7), τ is the detector threshold which is a consequence
of the likelihood ratio,

Pr{y | H1}
Pr{y | H0}

.

Specifically,τ influences detection in accordance with

(
θyHR−1Hα

) H1

≷

H0

(
1

2
θ2αHHHR−1Hα+ τ

)
=

θ2δ

2
+τ.

(8)
Finally, the probability of missed detection,PMD, and

hence, the probability of detection,PD, are given by

PMD = 1− PD ≤
[
1−Q

(
Q−1(PFA)− θ

√
δ
)]

. (9)

IV. POWER ALLOCATION ALGORITHMS

We discuss here two schemes, viz., Uniform PA and
Optimal PA. The relations of Section II and Section III are
valid for both these schemes, although they represent different
quantities in the two schemes.

A. Uniform Power Allocation (UPA)

The total sensor power with UPA is equally distributed
amongL sensors asPT /L, thus giving the sensor gains as

αuni,ℓ =
√
PT /L, ℓ ∈ {1, 2, · · · , L}.

Settingα = αuni in (5) and (6), we obtainR andδ. We stip-
ulate the maximum allowable false alarmPFA. Then, taking
the equality in (7), we solve for the corresponding limiting
detector threshold,τ = τuni. Similarly, taking the equality
in (9), we solve for the corresponding limiting probabilityof
detection,PD = PDuni.

It is shown in [1] that this UPA results in wastage of
system resources if the channel is fading and/or if the sensor
observation SNRs are not identical [2], albeit time-invariant.
This brings us to the optimal PA scheme.

B. Optimal Power Allocation (OPA)

In the context of a fading MAC, if the sensor observation
SNRs are time-varying and/or non-identical, the optimal PA
scheme proposed in the setting of [1] is indeed non-optimal.
Even though the channel considered there is fading, the sensor
noise is i.i.d. Hence, if the sensor observation noise is not
identical, due to very poor SNR of a certain sensor, amplified
noise transmitted by it over even a noise-free channel may
lead to (i) missed detection, (ii) false alarm and (iii) wastage
of resources. A comprehensive optimization algorithm must
therefore consider the combined effect on detection of the
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Fig. 2. Distribution of mean detector threshold for UPA and OPA
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differing sensor SNRs and the fading channel, subject to a
total power constraint [2].

In this backdrop, (9) shows that for a fixedPFA, maximiz-
ing δ is equivalent to minimizingPMD. It is clear from (6) that
this requires choosingα that maximizesδ. Thus, the problem
of maximizingPD reduces to finding that optimal sensor gain,
αopt, such that

αopt = argmax

α

[
αHHHR−1Hα

]
, (10)
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Fig. 4. Mean probability of detection vs. Mean detector threshold

subject to the power constraint of (2) rewritten as

PT =

L∑

ℓ=1

[
|αℓ|2

(
p1θ

2 + σℓ
2
)]

∆
=

L∑

ℓ=1

|αℓβℓ|2 ∆
=

L∑

ℓ=1

|γℓ|2. (11)

Here,βℓ =
√
(p1θ2 + σ2

ℓ ). By sampling on a grid on the
surface of the sphere of radius

√
PT and centered at the origin

of theL dimensional complex space, we obtain candidates for
γ. Sincep1, θ andσℓ are known apriori,βℓ can be calculated
∀ℓ and hence,αℓ also usingαℓ = γℓ/βℓ from (11). The
candidates ofα thus derived are used in (10) yieldingαopt.
Now, we may write

αopt,ℓ =
γopt,ℓ
βℓ

=
γopt,ℓ√

(p1θ2 + σ2

ℓ )
. (12)

Clearly,αopt,ℓ from (12) depends onσℓ. Hence, for sensors
with different observation SNRs and for different realizations
of the random channel matrix,H , we run the optimization
algorithm again to find a newαopt. After substituting
α = αopt in (5) and (6), we obtain the correspondingR and
δ respectively. Hereafter, similar to the procedure in Section
IV-A, we specify the desired maximum allowable false alarm
PFA, the same as was stipulated in Section IV-A. Considering
the equality in (7), we solve for the corresponding limiting
detector threshold,τ = τopt. Likewise, taking the equality in
(9), we solve for the corresponding probability of detection,
PD = PDopt, the desired optimum.

It was seen in Section I-B that the question we seek
to answer concerns the ’goodness’ of the choice ofτ for
’enhanced performance’. Towards this end, we study the
nature of inter-relationships betweenPFA, τ andPD, across
both OPA and UPA. The relative computational burden with
OPA over UPA must indeed be justified by commensurate
profit in performance.

V. SIMULATION DETAILS, RESULTS AND DISCUSSIONS

The dependence that we seek to study in Section I-B is
through simulations over a slew ofPFA. Thus, for each of
the several different values of fixedPFA, the goal here is to
compare and analyze the behavior ofτuni and PDuni from
UPA of Section IV-A vis-à-vis the behavior ofτopt andPDopt

from OPA of Section IV-B, for a given power constraint,PT .
We first present the simulation settings.

A. Simulation Details

We simulate with the parameter being sensed,θ = 1, no.
of sensors,L = 5, no. of antennas,N = 3, probability of the
null hypothesis,p0 = 0.4 and the observation SNRs,θ2/σ2

ℓ

being 5 dB, 10 dB, 0 dB, 15 dB and 20 dB respectively for
the sensorsℓ = 1, · · · , L. The power constraint isPT = 1.
We run Monte Carlo simulations with 1000 realizations of
the random channel envelope,H , corresponding to a fixed
PFA. For each of these 1000 realizations, we implement the
following.

1. By the UPA scheme of Section IV-A, obtainτuni and
PDuni throughαuni.

2. By the OPA scheme of Section IV-B, obtainτopt and
PDopt throughαopt.

We run 1000 such epochs after taking 1000 samples ofPFA

drawn from a uniform distribution supported on(0, 0.2). The
choice of this upper bound of0.2 for PFA is such that it is
50% of p0 which has been set to0.4.

B. Results and Discussions

As stated in Section I, we seek to study of the nature
of inter-relationships betweenPFA, τ and PD. Specifically,
we report here the initial results of an ongoing investigation
into the influence of the detector threshold onPFA and
PD. Towards this end, for each of the 1000 instances of
PFA ∈ (0, 0.2), we averageτ andPD over 1000 realizations
of the random channel matrix,H . Let the averaged values for
the UPA scheme beτuni andPDuni, and the corresponding
quantities for the OPA scheme beτopt andPDopt. Thus, we
get 1000 each of the above four averaged quantities.

Fig. 2 shows the histograms ofτuni andτopt. The standard
deviation of the mean of the detector threshold,τuni, is 0.643
with the UPA scheme, whereas the corresponding standard
deviation for the OPA scheme is 1.35. This comparison along
with the mean values ofτuni and τopt is depicted in Fig. 3.
The implication is that in comparison to the UPA scheme,
the OPA scheme admits a greater leeway in the choice of the
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Fig. 5. Probability of false alarm vs. Mean detector threshold

detector threshold. This is empirical evidence in support of the
claim that in relation to the detector threshold, detectionwith
the OPA scheme is more robust than that in the UPA scheme.

The foregoing result has credibility only if thePDopt

compares favorably withPDuni. That it is indeed true is
borne out by Fig. 4. It shows thatPDuni andPDopt vs. their
respectiveτ . We observe four significant features here.

1) The lowest value ofPD for the UPA and OPA schemes
are respectively 0.0172 and 0.2581. That is, the OPA
scheme outperforms the UPA scheme in respect of
the empirical worst case detection. This is after taking
even the outliers into consideration, without which, the
disparity is further pronounced.

2) The highest value ofPD for the UPA and OPA schemes
are respectively 0.7127 and 0.9816. That is, the OPA
scheme improves upon the UPA scheme in respect of
the empirical best case detection.

3) The mean ofPD for the UPA scheme which is 0.5166 is
considerably lower than that for the OPA scheme which
is 0.9216.

4) Finally, on any interval of common support of the
detector threshold, the rate of fall ofPD with the OPA
scheme is smaller than that with the UPA scheme.

Often, the price for a higherPD is a higherPFA. Hence, in
laying claims to a higherPD, one must bring into perspective
the associatedPFA. Fig. 5 showsPFA vs.τuni andτopt. Here
too, we may note these characteristics.

1) For the same distribution ofPFA, the range ofτ over
which PD may be optimized is larger for OPA than it
is for UPA.

2) The probability of false alarm falls more rapidly with
the threshold in the case of UPA than in the case of
OPA. This must be expected in view of the fact that

for optimal detection, the OPA offers a larger interval
for the detector threshold in comparison to the UPA as
borne out by Fig. 4.

3) For the same value ofτ , compared with the UPA
scheme, the OPA scheme yields not merely a higher
probability of detection (vide Fig. 4), but concurrently
operates at a lower probability of false alarm, except
for τ ∈ (2, 4.5). Moreover, even for this interval ofτ ,
it is noteworthty thatPDopt − PDuni > 0.5.

In essence, the investigation here makes a strong prima facie
case for the OPA scheme over the UPA scheme in terms
of robustness of detection w.r.t. the detector threshold when
operating under an overall sensor power constraint. In fact, the
enhancement in performance is concurrently over conflicting
requirements.

VI. CONCLUSION

In Wireless Sensor Networks, we relaxed the AWGN con-
dition on the Multiple Access Channel and considered the
envelope of the channel gain distribution to be unknown
and time-varying. Moreover, the observation SNRs at the
multiple sensors were take to be non-identical. The detector
threshold in the Neyman-Pearson formulation holds a key to
the detection probability in relation to the probability offalse
alarm. With an overall sensor power constraint, we used an
optimal detection scheme which takes into consideration the
combined effect of the sensor noise and the fading MAC on
detection. We examined the impact of the detector thresholdon
the probability of detection and the probability of false alarm
under the uniform and the optimal PA schemes. Optimizing
the probability of detection independently in each of the power
allocation schemes was the common basis. For the case of a
single power constraint, we showed through simulations that
the optimal PA scheme outperforms the uniform PA scheme
concurrently on three counts: (a) Relative robustness of the
probability of detection vis-à-vis the detector threshold; (b)
Comparatively high probability of detection; and notwithstand-
ing this, (c) relatively low probability of false alarm.
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