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Abstract — This paper presents work towards a new architecture 

for trustworthy autonomic systems (different from the 

traditional autonomic computing architecture) that includes 

mechanisms and instrumentation to explicitly support run-time 

self-validation and trustworthiness. The state of practice does 

not lend itself robustly enough to support trustworthiness and 

system dependability. For example, despite validating system’s 

decisions within a logical boundary set for the system, there’s the 

possibility of overall erratic behaviour or inconsistency in the 

system. So a more thorough and holistic approach, with a higher 

level of check, is required to convincingly address the 

dependability and trustworthy concerns. Validation alone does 

not always guarantee trustworthiness as each individual decision 

could be correct (validated) but overall system may not be 

consistent or dependable. A new approach is required in which, 

validation and trustworthiness are designed in and integral at 

the architectural level, and not treated as add-ons as they cannot 

be reliably retro-fitted to systems. In this paper we analyse 

current state of practice in autonomic architecture and propose a 

different architectural approach for trustworthy autonomic 

systems. To demonstrate the feasibility and practicability of our 

approach, a case example scenario is examined. The example is a 

deployment of the architecture to an envisioned Autonomic 

Marketing System that has many dimensions of freedom and 

which is sensitive to a number of contextual volatility.  

Keywords - trustworthy architecture; trustability; validation; 

autonomic marketing; autonomic system; dependability 

I.  INTRODUCTION 

The autonomic architecture as originally presented in the 

autonomic computing blueprint [1] has been widely accepted 

and deployed across an ever-widening spectrum of autonomic 

system (AS) design and implementations. Research results in 

the autonomic research community are based, predominantly, 

on the architecture’s basic MAPE (monitor-analyse-plan-

execute) control loop, e.g., [13][14][15][16]. Although several 

implementation variations of this control loop have been 

promoted, alternative approaches (e.g., [17]) have also been 

proposed. In [17], Shuaib et al. presented an ‘alternative’ 

autonomic architecture based on Intelligent Machine Design 

(IMD), which draws from the human autonomic nervous 

system. However, research [11] shows that most approaches 

are MAPE [2] based. Despite progress made, the traditional 

autonomic architecture and its variations is not sophisticated 

enough to produce trustworthy ASs. A new approach with 

inbuilt mechanisms and instrumentation to support 

trustworthiness is required. 

At the core of system trustworthiness is validation and 

this has to satisfy run-time requirements. In large systems 

with very wide behavioural space and many dimensions of 

freedom, it is close to impossible to comprehensively predict 

possible outcomes at design time. So it becomes highly 

complex to make sure or determine whether the autonomic 

manager’s (AM’s) decision(s) are in the overall interest and 

good of the system. There is a vital need, then, to dynamically 

validate the run-time decisions of the AM to avoid the system 

‘shooting itself on the foot’ through control brevity. The 

traditional autonomic architecture does not explicitly and 

integrally support run-time self-validation; a common practice 

is to treat validation and reliability as add-ons. Identifying 

such challenges, the traditional architecture has been extended 

(e.g., in [3]) to accommodate validation. Diniz et al. [3] 

extended the MAPE control loop to include a new function 

called test. By this it defines a new control loop comprising 

Monitor, Analyse, Decision, Test and Execute –MADTE 

activities. The main point here is that a self-test activity is 

integrated into the autonomic architecture to provide a run-

time validation of AM decision-making processes. But the 

question is can validation alone guarantee trustworthiness.   

The peculiarity of context dynamism in autonomic 

computing places unique and complex challenges on 

trustworthy ASs that validation alone cannot sufficiently 

address. Take for instance; if a manager (AM) erratically 

changes its mind, it ends up introducing noise to the system 

rather than smoothening the system. In that instance, a typical 

validation check will pass each correct decision (following a 

particular logic or rule) but this could lead to oscillation in the 

system resulting in instability and inconsistent output. A 

typical example could be an AM that follows a set of rules to 

decide when to move a server to or from a pool of servers. As 

long as the conditions of the rules are met, the AM will move 

servers around not minding the frequency of changes in the 

conditions.  An erratic change of mind (high rate of moving 

servers around) will cause undesirable oscillations that 

ultimately detriment the system. What is required is a kind of 

intuition that enables the manager to carry out a change only 

when it is safe and efficient to do so – within a particular 

safety margin. A higher level of self-monitoring to achieve, 

e.g., stability over longer time frames, is absent in the MAPE-

oriented architectures. This is why ASs need a different 

approach. The ultimate goal is not just to achieve self-

management but to achieve consistency and reliability of 

results through self-management. These are the core values of 

the proposed architecture. 

We look at the current state of practice in the work 

towards AS trustworthy architecture in Section II. We propose 

an AS trustworthy architecture in Section III and present a 

case example in Section IV. Section V concludes the paper. 
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II. CURRENT STATE OF PRACTICE TOWARDS 

TRUSTWORTHY ARCHITECTURE 

In this section, we look at the current state of practice 

and efforts directed towards AS trustworthiness. We analyse 

few proposed trustworthy architectures and some isolated bits 

of work that could contribute to trustworthy autonomic 

computing. Trustworthiness requires a holistic approach, i.e., 

a long-term focus as against the near-term needs that merely 

address methods for building trust into existing systems. This 

means that trustworthiness needs to be designed into systems 

as integral properties. 

A trustworthy autonomic grid computing architecture is 

presented in [4]. This is to be enabled through a proposed fifth 

self-* functionality, self-regulation. Self-regulating capability 

is able to derive policies from high-level policies and 

requirements at run-time to regulate self-managing 

behaviours. One concern here is that proposing a fifth 

autonomic functionality to regulate the other functionalities as 

a solution to AS trustworthiness assumes that trustworthiness 

can be achieved when all four functionalities perform 

‘optimally’. The four self-* functionalities alone do not 

ensure trustworthiness in ASs. For example, the self-* 

functionalities do not address validation which is a key factor 

in AS trustworthiness. Amongst effort focused on validation 

include [3][5][6]. As explained earlier, Diniz et al. [3] has 

extended the MAPE-based autonomic architecture to 

incorporate a self-test activity to guarantee run-time validation 

of AM decisions. This is a huge step towards AS 

trustworthiness. The approach in [5][6] is another extension 

of the MAPE-based structure to include self-testing as an 

integral and implicit part of the AS. The same model for AS 

management using autonomic managers (AMs) is replicated 

for the self-testing. In the self-test structure, test managers 

(TMs) (which extend the concept of AMs to testing activities) 

implement closed control loops on AMs (such as AMs 

implement on managed resources) to validate change requests 

generated by AMs. Although not a ‘trustworthy’ solution in 

itself, King et al. [5] introduces an important concept (nested 

control looping) useful for the proposed trustworthy 

architecture as explained in Section III. 

Another idea is that trustworthiness is achieved when a 

system is able to provide accounts of its behaviour to the 

extent that the user can understand and trust. But these 

accounts must, amongst other things, satisfy three 

requirements: provide a representation of the policy guiding 

the accounting, some mechanism for validation and 

accounting for system’s behaviour in response to user 

demands [7]. The system’s actions are transparent to the user 

and also allows the user (if required) the privilege of 

authorising or not authorising a particular process. This is a 

positive step (at least it provides the user a level of confidence 

and trust) but also important is a mechanism that ensures that 

any ‘authorised’ process does not lead to oscillation and/or 

instability in the system resulting in misleading or unreliable 

results. One powerful way of addressing this challenge is by 

implementing a dead-zone (DZ) logic presented in [8]. A DZ, 

which is a simple mechanism to prevent unnecessary, 

inefficient and ineffective control brevity when the system is 

sufficiently close to its target value, is implemented in [8] 

using Tolerance-Range-Check (TRC) object. The TRC object 

encapsulates DZ logic and a three-way decision fork that flags 

which action (left, null or right) to take depending on the rules 

specified. The size of the DZ can be dynamically adjusted to 

suit changes in environmental volatility. A key use of dead-

zones is to reduce oscillation and ensure stability despite high 

extent of adaptability. A mechanism to automatically monitor 

the stability of an autonomic component, in terms of the rate 

the component changes its decision (for example when close 

to a threshold tipping point), was presented in [12]. The 

DecisionChangeInterval property is implemented in the 

AGILE policy language [12] on decision making objects such 

as rules and utility functions. This allows the system to 

monitor itself and take action if it detects instability at a 

higher level than the actual decision making activity. 

A. Trustworthy architecture life-cycles representing current 

practice 

We argue that trustworthiness cannot be reliably 

retrofitted into systems but must be designed into system 

architectures. We track autonomic architecture (leading to 

trustworthiness) pictorially in a number of progressive stages 

addressing it in an increasing level of detail and 

sophistication. Figure 1 provides a key to the symbols used. 

 

 

 

 

 

 

 

 

 

 

Figure 2 illustrates the progression, in sophistication, of 

autonomic architectures and how close they have come to 

achieving trustworthiness. Although this may not be 

exhaustive as several variations and hybrids of the 

combinations may exist, it represents a series of discrete 

progressions in current approaches.  Two distinct levels of 

sophistication are found: 1. The traditional autonomic 

architecture (a and b) basically concerned with direct self-

management of controlled/monitored system following some 

basic sense-manage-actuate logic defined in AC. For the 

prevailing context, AC is just a container of autonomic logic 

which, could be based on MAPE or any other control logic. 

To add a degree of trust and safeguard, an external interface 

for user control input is introduced in (b). This chronicles 

such approaches that provide a console for external 

administrative interactions (e.g., real-time monitoring, 

tweaking, feedback, knowledgebase source, trust input, etc.) 

with the autonomic process. 2. On the horizon (c and d) are 

efforts towards addressing run-time validation. Systems are 

able to check the conformity of management decisions and 

where this check fails; VC sends feedback to AC with 

DependabilityCheck 

AC VC 

 DC 

Sensor (source of ambient/context information) S 

Figure 1. Pictographic key used for the architecture 

Actuator (executing of autonomic decisions) A 

AutonomicController ValidationCheck 

Direct control 

Feedback  

External injection / control / arbiter 
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notification of failure (e.g., policy violation) and new decision 

is generated. An additional layer of sophistication is 

introduced (d) with external touch-point for higher level of 

manageability control. This can be in the form of an outer 

control loop monitoring over a longer time frame an inner 

(shorter time frame) control loop (e.g., as presented in [5]). 

 

                  

 

 

 

 

 

 

 

  
 

At the level of current sophistication (state-of-the-art), 

there are techniques to provide run-time validation check (for 

behavioural and structural conformity), additional console for 

higher level (external) control, etc. Emerging and needed 

capabilities include techniques for managing oscillatory 

behaviour in ASs. These are mainly implemented in isolation. 

What is required is a holistic framework that collates all these 

capabilities into a single autonomic unit. Policy autonomics is 

one of the most used autonomic solutions. Autonomic 

managers (AMs) follow rules to decide on actions. As long as 

policies are validated against set rules the AM adapts its 

behaviour accordingly. This may mean changing between 

states. And when the change becomes rapid (despite meeting 

validation requirements) it is capable of introducing 

oscillation, vibration and erratic behaviour (all in form of 

noise) into the system. This is more noticeable in highly 

sensitive systems. So a trustworthy autonomic architecture 

(TAA) needs to provide a way of addressing these issues. 

III. TRUSTWORTHY AUTONOMIC ARCHITECTURE 

In this section we introduce our proposed TAA. We start 

with a general view of the architecture and then move on to 

explain its components. Figure 3 explains a trustworthy 

autonomic architecture that embodies self-validation and 

dependability. The architecture builds on the traditional 

autonomic computing solution (denoted as the 

AutonomicController component). Other components include 

ValidationCheck (which is integrated with the decision-

making object to validate all AutonomicController decisions) 

and DependabilityCheck component which, guarantees 

stability and reliability after validation.  

The AutonomicController component (based on e.g., 

MAPE logic, Intelligent Machine Design framework, etc.) 

monitors the managed sub-system for context information and 

takes decision for action based on this information. The 

decided action is validated against the system’s goal 

(described as policies) by the ValidationCheck component 

before execution. If validation fails (e.g., policy violation), it 

reports back to the AutonomicController otherwise the 

DependabilityCheck is called to ensure that outcome does not 

lead to, e.g., instability in the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The DependabilityCheck component has a sub-

component (Predictive sub-component) that allows it to 

predict the outcome of the system based on the validated 

decision. It either prevents execution and sends feedback in 

form of some input parameters to the AutonomicController or 

calls the actuator. 

A. Overview of the proposed architecture components 

We present the architecture in a number of progressive 

stages addressing it in an increasing level of detail. First, we 

define the self-management process as a Sense–Manage–

Actuate loop where Sense and Actuate define Touchpoints 

(the AM’s interface with a managed system) and ‘Manage' 

the embodiment of the autonomic management. Figure 4 is a 

detailed representation of the architecture. 

 

 

 

 

 

 

 

 

 
 

 

Traditionally, the AutonomicController (AC) senses 

context information, decides (following some rules) on what 

action to take and then executes the action. This is the basic 

routine of an AM and is at the core of most of the autonomic 

architectures in use today (Figure 2). At this level the 

autonomic unit matters but the content of the unit does not 

matter much, i.e., it does not matter what autonomic logic 

(e.g., MAPE, IMD, etc.) that is employed as far as it provides 

the desired autonomic functionalities. So, the AC component 

provides designers the platform to express rules that govern 

target goal and policies that drive decisions on context 

information for system adaptation to achieve the target goal.  

But, the nature of ASs raises one significant concern; 

input variables (context info) are dynamic and (most times) 

not predictable. Although rules and policies are carefully and 

robustly constructed, sensors sometimes do inject rogue 

variables that are capable of thwarting process and policy 

deliberations. In addition, the operating environment itself can 

(d) 

(c) 

(b) (a) S AC A S AC A 

S AC A VC 

S AC A VC 

   Figure 2. Pictorial representation of trustworthy autonomic architecture life-cycles.  

Figure 3. Trustworthy autonomic architecture 
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have varying volatility –causing a controller to become 

unstable in some circumstances. Thus a mechanism is needed 

to mitigate behavioural (e.g., contradiction between two 

policies, goal distortion, etc.) and structural (e.g., illegal 

structure not conforming to requirement, division by zero, 

etc.) anomalies. This is where the ValidationCheck (VC) 

component comes in. It should be noted that AC will always 

decide on action(s) no matter what the input variable is. Once 

the AC reaches a decision, it passes control to the VC which 

then validates the decision and calls the Actuator (Figure 2c) 

or the DependabilityCheck (DC) (Figure 4) otherwise it sends 

feedback to AC if the check fails (while retaining previous 

passed decision). The VC is a higher level mechanism that 

oversees the AM to keep the system’s goal on track. The 

ultimate concern here is to maintain system goal adhering to 

defined rules, i.e., adding a level of trust by ensuring that 

target goal is reached only within the boundaries of specified 

rules. It is then left for designers to define what constitute 

validation pass and validation fail. Actual component logic 

are application specific but some examples in literature 

include fuzzy logic [18], reinforcement learning [19], etc. 

It is also important to consider situations above this level 

where, despite the AM taking legitimate decisions within the 

boundaries of specified rules, there’s the possibility of overall 

inconsistency in the behaviour of the system. I.e., each 

individual decision could be correct (by logic) but the overall 

behaviour is wrong. A situation where the AM erratically 

(though legally) changes its mind, thereby injecting 

oscillation into the system, is a major concern especially in 

large scale and sensitive systems. Therefore it is necessary to 

find a way of enabling the AM to avoid unnecessary and 

inefficient change of decision that could lead to oscillation. 

This task is handled by the DC component. It allows the AM 

change its decision (i.e., adapt) only when it is necessary and 

safe to do so. Consider a simple example of a room 

temperature controller in which, it is necessary to track a 

dynamic goal –a target room temperature. The AM is 

configured to maintain the target temperature by 

automatically switching heating ON or OFF. A VC would 

allow any decision or action that complies with the basic logic 

‘IF RoomTemperature < TargetTemperature THEN 

ONHeating ELSE IF RoomTemperature > 

TargetTemperature THEN OFFHeating’. With the lag in 

adjusting the temperature the system may decide to switch 

ON or OFF heating at every slight tick of the gauge below or 

above target (when room temperature is sufficiently close to 

the target temperature). This may in turn cause oscillation 

which, can lead to undesirable effects. The effects are more 

pronounced in more sensitive and critical systems where such 

changes come at some cost. For example, a data centre 

management system that erratically switches servers between 

pools at every slight fluctuation in demand load is cost 

ineffective. One simple way of configuring a DC to mitigate 

this problem is by using dead-zone logic. In this case, a 

system has to exceed a boundary by a minimum amount 

before action is taken. Small deviations into the dead-zone do 

not result in actuations. The DC component may also 

implement other sub-components like Prediction, Learning, 

etc. This enables it to predict (based on knowledge, trend 

analysis, etc.) the outcome of the system and to decide 

whether it is safe to allow a particular decision or not. So after 

validation phase, the DC is called to check (based on specified 

rules) for dependability. DC avoids unnecessary and 

inefficient control inputs to maintain stability. If the check 

passes, control is passed to the Actuator otherwise feedback is 

sent to AC. DC is capable of tweaking input to the controller 

as feedback from its prediction. A particular aspect of concern 

is that for dynamic systems the boundary definition of DC 

may itself be context dependent (e.g., in some circumstances 

it may be appropriate to allow some level of changes which 

under different circumstances may be considered 

destabilizing). 

Consider the whole architecture as a nested control loop 

(Figure 3b) with AC the core control loop while VC and DC 

are intermediate and outer control loops respectively. In 

summary, a system, no matter the context of deployment, is 

truly trustworthy when its actions are continuously validated 

(i.e., at run time) to satisfy set requirements (system goal) and 

results produced are dependable and not misleading. 

IV. CASE EXAMPLE 

This example is used to illustrate how powerful our 

proposed architecture is (in terms of cost savings, improved 

reliability and trustability) when compared to traditional 

architectures. We compare three autonomic managers that are 

based on AC (Figure 2a), AC+VC (Figure 2c) and 

AC+VC+DC (Figure 4). We use rule-based (policy 

autonomics) approach in this example. 

The case example used deploys one of the current 

technology innovations –Autonomic Marketing. Autonomic 

Marketing employs the fundamentals of autonomic computing 

to monitor the market ambience and uses current (real-time) 

information to formulate appropriate marketing strategies for 

dynamic, adaptive and effective target marketing. The term is 

used to describe a step-change in the sophistication of 

automated marketing systems, in which the marketing activity 

itself is dynamically configured and contextualised to suit the 

current market conditions [9]. This has been proposed by the 

Autonomic Marketing Interest Group (AMIG) and they have 

in [9] defined some initial concepts and promise of the 

technology. An autonomic marketing system tracks current 

market state (which can be from several sources and is subject 

to influences such as market conditions, customer 

demographics, significant world events, trends from social 

media analysis, weather, seasonal information, etc.) and 

makes marketing decisions based on the analysis of the 

information gathered. This is representative of many real-

world systems of high complexity and sensitive to several 

sources of environmental volatility. 

In this example, we implement a particular aspect of 

Autonomic Marketing, that of targeted television advertising 

during a live sports competition airing. A company is 

interested in running an adaptable marketing campaign on 

television with different adverts (of different products 
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appealing to audiences of different demographics) to be aired 

at different times during a live match between two teams.  

There are three adverts (Ad1, Ad2 and Ad3) to be run and the 

choice of an ad will be influenced by, amongst other things, 

viewer demographics, time of ad (local time, time in game, 

e.g., half time, TV peak/off-peak time, etc.), length of ad 

(time constraint), cost of ad, who is winning in the game, etc. 

This is a typical example of a system with many dimensions 

of freedom and very wide behaviour space. For brevity, we 

divide the behaviour space into four different zones and 

express them along two dimentions of freedom (Mood and 

CostImplication) as shown in Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

The two dimensions of freedom represent a collation of 

all possible decision influencers into two key external 

variables –Mood and CostImplication. Mood is defined by 

two variables (MatchScore i.e., info about who’s winning and 

WeatherInfo) while CostImplication is defined by another two 

variables (TimeOfAd and LengthOfAd). An action (in this 

case, RunAd 1, 2 or 3 or Null) is defined for each zone. Each 

action (ad) is thus activated only in its allocated zone 

following specified policy (excerpt shown in Figure 6). 

Internal variables (e.g., L_BenchMarkMatchScore and 

U_BenchMarkTimeOfAd), design-time specified, are used to define 

decision benchmarks. 
 

If MatchScore < L_BenchMarkMatchScore And WeatherInfo < L_BenchMarkWeatherInfo Then 
         Mood = "LOWMood" 
    ElseIf MatchScore > U_BenchMarkMatchScore And WeatherInfo > U_BenchMarkWeatherInfo 

Then 
          Mood = "HIGHMood" 
    Else : Mood = "Null" 
End If 
If TimeOfAd < L_BenchMarkTimeOfAd And LengthOfAd < L_BenchMarkLengthOfAd Or 

TimeOfAd > U_BenchMarkTimeOfAd And LengthOfAd > U_BenchMarkLengthOfAd 
Then 

         CostImplication = "LOWCostImplication" 
    ElseIf TimeOfAd > U_BenchMarkTimeOfAd And LengthOfAd > M_BenchMarkLengthOfAd Then 
         CostImplication = "HIGHCostImplication" 
    Else :CostImplication = "Null" 
 End If 
Select Case DecisionParameter 
      Case "LOWMoodLOWCostImplication" 
              CurrentAction(CurrentActionCounter) = "RunAd1" 
      Case "HIGHMoodLOWCostImplication" 
              CurrentAction(CurrentActionCounter) = "RunAd2" 
      Case "HIGHMoodHIGHCostImplication" 
              CurrentAction(CurrentActionCounter) = "RunAd3" 
      Case Else 
              CurrentAction(CurrentActionCounter) = "NullAction" 
 End Select 

Figure 6. Excerpt of decision policy used. 

The system goal is defined by a set of rules (Figure 7) 

that the AM must adhere to in making decisions. Basically, 

AC is concerned with making decisions within the boundaries 

of the rules while VC validates decisions for conformity with 

the rules. DC verifies that the measure of success is achieved. 

DC also improves reliability by instilling stability in the 

system. One way of achieving this is by introducing dead-

zone boundaries (Figure 5b) within which, no action is taken 

(avoiding erratic and unnecessary changes) –in this case, a 

running ad is not changed. The size of the boundaries, which, 

though can be dynamically adjusted to suit real-time changes, 

is initially design-time specified. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

AC will, at every sample collection, decide (by running 

the policy in Figure 6) which action (ad) to run. Because it is 

wired to make fresh decision at every policy run, it is bound 

to send trap (notice of change of ad). But before that decision 

is implemented, VC validates it for pass/fail. It is important to 

define what pass/fail means in this context: if decided action 

is same as previous action (running ad), VC returns fail (then 

no trap is sent and no change is made) and passes control to 

AC while retaining previous action. VC also returns fail if 

policy is violated in decision making, i.e., decision must be 

within the boundaries of specified benchmarks (e.g., a “Null” 

return should not influence action change). Control is passed 

to DC each time VC returns a pass. DC is concerned with the 

measure of success aspect of the rule. In this case, a TRC 

(Tolerance-Range-Check) is implemented: DC returns fail if 

ActionChange is more than one within the first five sample 

collections and subsequently if action changes at every 

sample instance. So DC maintains action change at maximum 

of one within the first five sample collections and 

subsequently maximum of two in any three sample instances. 

This will help calm any erratic behaviour that could arise. 

Take for instance, there could be a 360 degrees change in 

‘Mood’ within a short space of time (e.g., a team’s status in a 

game can change from winning→losing→winning within a 

very short space of time) which is capable of adversely 

affecting the choice of an ad. Figure 8 (a) and (b) are excerpts 

of managers of VC and DC, respectively. 

The need for a new and different approach is reinforced 

by the capabilities exhibited in DC. It addresses situations 

where it’s possible for overall system to fail despite process 

(in terms of structural, legal, syntactical, etc.) correctness. 
 

1. Extract external variables (decision parameters) at defined time interval 
and decide on action 

2. Send trap msg and change action if (*condition omitted*) otherwise retain 
previous action 

3. …  
4. If current action is same as previous action, do not send trap and do not 

change action 
    =================Measure of Success================ 

5. Cost of action change (total ad run) must fall within budget 
6. Rate of change should be considerably reasonable 
7. …  
8. Turnover should justify cost 

 

Figure 7. Excerpt of rules defining system goal. 
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Figure 5. System behaviour space in two dimensions of freedom 
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In the experiment presented here, a computer program is 

written to simulate three autonomic managers (AC, AC+VC 

and AC+VC+DC). Four external variables, now referred to as 

context samples, (MatchScore, WeatherInfo, TimeOfAd and 

LengthOfAd) are fed into the managers at every sample 

collection instance. Sample collection instances are defined 

by a set time interval which can be fixed (design-time 

specific) or dynamically tuned. Based on policies (Figure 6), 

the managers decide how, when and which ad to change. The 

simulation was run for a total duration of 50 sample collection 

instances. During this duration, the managers are analysed for 

total number of ad changes and the distributions of those 

changes. For accurate analysis and comparison, the same 

sample at the same time instance and interval are fed into the 

managers concurrently. Samples may (most likely) change at 

every time instance and separately feeding these to the 

managers will lead to unbalanced judgment.  

A. Experimental Results 

Results presented are for a simulation of 50 sample 

collections. All three autonomic managers (AC, AC+VC and 

AC+VC+DC) are analysed based on number of ad changes 

and number of ad distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The optimisation of the proposed architecture in this 

autonomic marketing scenario is in terms of achieving 

balance between efficient just-in-time target-marketing 

decision and cost effectiveness (savings maximisation) while 

maintaining improved trustability and dependability in the 

process. Figure 9 shows the behaviour of the managers in 50 

sample collections in a game duration in which the proposed 

architecture (AC+VC+DC) shows significant gain in stability 

and cost savings. It’s clearly seen, for example, how 

(AC+VC+DC) smoothened the high fluctuation rate (high 

adaptability frequency) experienced between the 5
th

 and 25
th

 

sample collections. In general, the average ad change ratio of 

about one change in three samples (1:3) is reduced to one 

change in ten samples (1:10), representing an overall gain of 

about 31.25% in terms of stability and cost efficiency.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 shows the distribution of ads across the 50 

sample duration (“NullActions” i.e., ‘run no ad’ are not 

shown). This also corroborates the significant gain by the DC 

component. In (c), for example, only one Ad3 is run while 

two Ad2 are run in (b) by the (AC+VC+DC) AM. This directly 

translates to adaptive cost savings. Recall from Figure 5(a) 

that Ad2 is run when Mood is high and Cost is low (best value 

for money) while Ad3 is run when Mood and Cost are both 

high (when it costs more to run an Ad). 

While it has been shown that the proposed approach is 

capable of maintaining reliability by reducing inefficient 

adaptation (cutting off unnecessary adaptations), it should be 

noted that reducing alone is not the answer. If the rate is very 

low it will not be right either. For example, if the behaviour of 

the manager falls within the shaded area of Figure 9, it shows 

that the manager is almost inactive (or not making decisions 

frequently enough). For every application, it is necessary to 

determine which rate is appropriate or cost effective in the 

long run. The proposed approach provides a way for tuning 

this (e.g., through adjusting the width of the TRC dead-zone). 

 

 

 
 

Figure 10. A distribution of the ads (Ad1, Ad2 and Ad3). 
(Note: If printed in black/white, the top graph is AC followed by VC and DC) 

(a) 

(c) 

(b) 

 

 

 

If Mood <> "Null" And CostImplication <> "Null" Then 
                 DecisionContainer(IntervalCounter) = Mood & CostImplication 
                DecisionParameter = DecisionContainer(IntervalCounter) 
        ‘<Omitted> 
        ‘<Omitted> 
        ‘<Omitted> 

End if 
If CurrentAction(CurrentActionCounter) = CurrentAction_ 
(CurrentActionCounter - 1)  Then 

           ‘CurrentAction = CurrentAction(CurrentActionCounter - 1) 
          ‘<Omitted> 
         ‘<Omitted> 
         ‘<Omitted> 

If IntervalCounter - IntervalCounterDC(Interval - 1) > 4 Then 
               ActionChangeCounterDC = ActionChangeCounterDC + 1 
         ‘<Omitted> 
         ‘<Omitted> 
         ‘<Omitted> 

End if 

Figure 8. Excerpt of VC and DC managers 
 

 

 

(a) 

(b) 

 
Figure 9. A sample of managers’ behaviour in a 50 sample collection. 
(Note: If printed in black/white, the top graph is AC followed by AC+VC  

and then AC+VC+DC) 
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There is a cost associated with bad or over frequent decisions 

and also a cost with not making frequent enough decisions. 

Success is measured by striking a balance between the two. 

 

V. CONCLUSION  

A new architecture for trustworthy autonomic systems 

has been presented. Different from the traditional autonomic 

solutions, the proposed architecture consists of mechanisms 

and instrumentation to support run-time self-validation and 

trustworthiness. At the core of the architecture are three 

components, the AutonomicController, ValidationCheck and 

DependabilityCheck, which allow developers specify controls 

and processes to improve system trustability. An analysis of 

the current state of practice in autonomic architecture shows 

that a new approach is required in which validation and 

trustworthiness are not treated as add-ons as they cannot be 

reliably retro-fitted to systems. Validation alone does not 

always guarantee trustworthiness as logical processes/actions 

could sometimes lead to overall system instability. There are 

situations where, for example, despite the autonomic 

manager’s legitimate decisions within the logical boundaries 

of specified rules, there’s the possibility of overall erratic 

behaviour or inconsistency in the behaviour of the system. 

This is why autonomic systems need a new approach.  

To demonstrate the feasibility and practicability of our 

approach, a case example scenario has been presented. The 

case scenario demonstrates how the proposed architecture can 

maximise cost, improve trustability and efficient target 

marketing in a company-centric Autonomic Marketing 

System that has many dimensions of freedom and is sensitive 

to a number of contextual volatility. As this approach is new, 

future research work will focus on improving the robustness 

of the proposed architecture. This includes adding a 

predictive/learning sub-component to the DependabilityCheck 

component and verifying how results of this approach can 

vary in other contexts to see which factors could influence its 

adoption or not in practice. 
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