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Abstract—Network security methods must work towards 

preventing data breaches as we have entered the growing era of 

technology. This paper provides a work-in-progress computer 

network security study in which the network’s security capability 

has been enhanced by using Machine Learning (ML)-assisted 

intrusion detection system. The goal of the paper is to present a 

study on improving network intrusion detection systems by 

incorporating machine learning techniques. We specifically focus 

on the accuracy and overall performance of two ML algorithms, 

Random Forest and XGBoost. We introduce this study when ML 

is incorporated in an existing network infrastructure specifically 

within the network monitoring and analysis components. The 

network performance is centered around the two algorithms. 

These algorithms are deployed on an available dataset named the 

ToN_IoT and compared based on accuracy and overall 

performance thus providing an analysis of the effectiveness of 

these models in detecting network intrusions.           

Keywords—Network Security; Network Intrusion Detection 

System; Machine Learning; XGBoost; Random Forest; Recurrent 

Neural Networks; ToN_IoT Dataset. 

I. INTRODUCTION  

     A computer network is a backbone that involves preventing 

unauthorized access and protecting the integrity of the 

information and allocation of resources.  With the growing 

dependence on technology, the need for protection of 

networks becomes essential against data breaches, phishing of 

information and various malware [1]. The traditional methods 

of network intrusion detection are not real-time based thus 

there is a need for the integration of artificial learning 

processes, such as Machine Leaning (ML). This not only 

makes the detection system real-time but also makes the 

system adaptable to learn from previous actions in detecting 

network breaches and in analyzing the symptoms of the 

occurrence of an attack. ML integration into security systems 

makes organizations stay safe and secure with a preventive 

defense ready [2].  

A Network Intrusion Detection System (NIDS) provides      

continuous network monitoring across its network territory 

including the cloud infrastructure to detect malicious activity 

like policy violations, or data exfiltration (a cybercriminal 

stealing data from personal or corporate devices). There can 

be two types of architectural models of Artificial Intelligence 

(AI) based NIDS: Standalone and hybrid. Standalone models 

are designed based on historical data of network attack 

attacks. Hybrid NIDS combines both anomaly-based and 

signature-based which implies it works on both trained and 

untrained datasets.  

NIDS plays a vital role in protecting computers against 

malicious attacks and can be classified based on its detection 

techniques as signature-based detection or anomaly-based 

detection. The signature-based detection technique is 

significant in use if the type of attack is previously known, as 

it is based on comparing the attack to a list of known attacks. 

However, this method is not effective in determining 

previously unknown attacks. Anomaly-based detection 

techniques can determine previously unknown attacks. It 

works based on classifying normal and abnormal behavior of 

the system. New generation NIDS comes with the 

combination of both detection techniques; this is often known 

as hybrid [4]. 

There are certain challenges, such as false alarms, 

response time, unbalanced dataset and low detection rates, a 

NIDS may face. False alarms are often triggered based on how 

the system is configured and range anywhere from 2% to 

90%. The response is coupled with the traffic volume and its 

complexity, alert prioritization, network latency and limited 

infrastructure and resources [4]. While unbalanced datasets 

can be a challenge for some detection techniques, it does not 

typically affect anomaly-based detection, where the model is 

trained on one-class data corresponding to normal network 

behavior. The low detection rates challenge affects the overall 

security as it causes a system to fail to detect threats due to 

insufficient signature coverage, improper signature tuning, 

limitations in detecting anomalies and insufficient resources. 

A confusion matrix helps in evaluating the performance of 

each of the security models. The use of Artificial Intelligence 

(AI) in intrusion detection systems has evolved from rule-

based systems to more sophisticated ML and deep learning 

systems [5][6][9]. ML systems are based on decision trees, 

Support Vector Machines (SVM) and random forest [7]. Deep 

learning involves using Convolutional Neural Networks 

(CNN) and Recurrent Neural Networks (RNN). 

The rest of this paper is organized as follows.  In Section 

II, we present a detailed methodology on how ToN_IoT 

datasets are acquired and pre-processed. In Section III, we 

present detailed results of our analysis, and in Section IV, a 

conclusive statement is presented. 

II. PROPOSED METHODOLOGY   

     The proposed methodology for improving NIDS involves a 

multi-step process that starts with robust dataset creation and 

preparation. This is followed by selecting and tuning machine 

learning models, and finally, evaluating their performance. 
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Each stage is crucial to ensure the accuracy and reliability of 

the NIDS.      

 
A. Dataset Creation      

     The process is depicted in Figure 1 and begins with the 

collection of raw network packets from various sources, 

including sensors, Internet of Things (IoT) devices, network 

traffic samples, and Operating System (OS) logs. Such packets 

are captured using a sniffing tool and are stored in Packet 

Capture (PCAP) format. The collected packets are then 

converted into a standardized format and stored in the 

Telemetry over Networks Internet of Things (ToN_IoT) 

database, which is publicly available and serves as a 

benchmark for evaluating NIDS. In the figure, this process 

starts with the sniffed packets being fed into a Format 

Converter, which standardizes them before they are stored in 

the ToN_IoT dataset. The pre-processed dataset is then used in 

various ML tasks, leading to the selection and deployment of 

an optimal ML model. The compilation of this dataset was 

recorded by a team at University of New South Wales 

(UNSW) Canberra [8]. 
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Figure 1.  Process of data collection leading to the selection and deployment 
of an ML model.  

 
B. Data Pre-processor 

After a comprehensive data collection leading to the 

ToN_IoT dataset, data must be loaded to a file system (Google 

Drive) for processing. This also involves combining multiple 

Comma-Separated Values (CSV) files into a single file. A 

CSV file uses a comma to separate values and store tabular 

data (numbers and text) in plain text. A separate CSV file is 

used as a test dataset. It is important to note that the test 

dataset, which is kept separate to ensure the integrity of the 

model evaluation, is not combined with the training data. 

Instead, a distinct CSV file is used exclusively for testing the 

model after it has been trained. 

As a first step, data cleaning is asserted by using removal 

techniques to eliminate data anomalies. Removal of various 

columns that are trivial IP address ports, HTTP-specific 

features and Uniform Resource Identifier (URI) versions. 

Columns that contained null values for the majority of the 

population, columns that contained singular values and 

columns that proved to be a non-contributing attribute for 

training the model were removed as part of the data cleanup.  

In the second step, data transformation is applied using a 

label encoder to convert label categories to numerical values 

and formats. Examples of this process include transforming 

High, Medium, and Low into 0, 1, and 2 respectively. This 

allows us to represent values as binary vectors and create a 

new column for each category accordingly. Similarly, normal, 

Denial of Service (DoS), Distributed Denial of Service 

(DDoS) and backdoor types of attacks are also converted to 

numerical values. 

Data normalization phase is asserted in the third step. To 

standardize features, we utilize the standard scalar technique 

which involves the elimination of the mean and scaling it to 

unit variance [8]. The implementation of a standard scalar 

ensures feature consistency across the dataset. One of the 

actions at this step is the conversion of varied data formats to a 

standardized format, such as Comma-Separated Values (CSV) 

(a text file format that uses commas to separate values, format 

for uniform processing). The ultimate purpose of this step is to 

ensure that no single feature dominates others due to scale 

differences. 
Finally, in the fourth step, feature selection to choose the 

top K features based on the scores from a statistical test is 
applied. Utilization of select KBest identifies the most 
impactful features for modelling and focuses on the most 
relevant features for modelling. The combination of the above 
four steps results in the preprocessed dataset which is a clean, 
normalized, and optimized dataset ready for analysis or model 
training. It also improves model accuracy and efficiency by 
focusing on relevant data. 

 

C. ML Model Selector  

      The bottom block of Figure 1 shows the process of ML           
model selection for training and learning purposes involving 
the following four steps: 

Step 1 – Data Splitter: involves splitting the dataset into a 
“training set” for learning, and a “testing set” for evaluation. 
The training set is usually used to understand the patterns and 
relationships between the different data points obtained to 
make certain predictions. A testing set is generally used to 
evaluate the trained model’s performance.  

Step 2 – ML Algorithm Parameter Tuning: considers 
efficient ML algorithms such as Random Forest [7], XGBoost 
[9], or Recurrent Neural Networks (RNN)[9]. The Random 
Forest algorithm handles nonlinear data well with multiple 
decision trees to prevent overfitting. It is good for large 
datasets and integrating diverse data features, and it is suitable 
for understanding complex network behaviors. XGBoost 
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algorithm excels in sequential training and is efficient with 
large datasets. It enhances feature recognition, suitable for 
detailed ToN_IoT analysis. RNN are best for sequential data, 
capturing time-dependent patterns without extensive manual 
feature engineering. It integrates well with other models like 
Convolution Neural Networks (CNN), enhancing its capability 
for analyzing complex network traffic and anomaly detection. 

Step 3 – Performance Analysis: optimizes the ML algorithm 
parameters to improve model performance. It assesses models 
using metrics such as accuracy and precision on the testing 
set. It also carries out iteration for optimization if the 
performance is unsatisfactory and adjusts parameters. 

Step 4 – Best Model Detected and Deployed: select the 
model that best meets performance criteria for deployment. 

III.    ANALYS AND RESULTS 

In this section, we present results and analysis conducted 
using the developed NIDS based on various ML models 
implemented through Python-based programming, 
TensorFlow, PyTorch, and other supporting tools. The analysis 
focuses on evaluating the intrusion detection capabilities in 
finding and mitigating potential security threats in a simulated 
network environment. 

A. Data Preparation 

The ToN_IoT dataset was used for training and testing 

NIDS models. The data was first preprocessed to ensure its 

compatibility with the machine learning algorithms, also 

involving normalization, feature extraction, and the handling 

of all the missing values to optimize the performance of the 

model. The main segment of the script for this task is in 

Phyton and shown in Figure 2. Next, we will explain some 

important segments of this script. 

The script imports required Python libraries, such as 

pandas for data orchestration, OS which is used for interacting 

with the operating system, sklearn for machine learning tasks, 

XGBoost for model training, and matplotlib and seaborn for 

visualization. The training_data_folder describes the path to 

the folder on Google Drive where the training data is stored. 

This setup automatically assumes that one is using Google 

Colab and has mounted your Google Drive. The script also 

creates a detailed list of each one of the CSV files in the 

specified directory. It uses os. listdir() to get a list of files in 

the directory and filter this list to include only files that end 

with .csv. An empty list of train_data_frames is initialized to 

store each DataFrame.The script loops over each CSV file 

path in train_csv_files reads the CSV file into data frames 

using the pd.read command, and appends each data frame to 

the list train_data_frames. Finally, with Concatenate 

DataFrames, all the DataFrames stored in train_data_frames 

are concatenated into a single DataFrame called all_data using 

pd. concat(). This results in a single data frame containing all 

the data from the various files, making it easier to perform 

further data preprocessing or analysis.  

 

 

 

 

 

 
Figure 2. Script for preprocessing of data. 

 

B. Model Selection and Training 

Three ML models, XGBoost, Random Forest, and 
Recurrent Neural Network (RNN), were selected based on their 
capability to manage complex and unbalanced data as follows. 
XGBoost boosts effectively to tackle one as well as the other 
binary and multi-class classification challenges. It is known for 
its efficiency in feature handling and its accuracy in data 
classification. The Random Forest model was chosen because 
it is known for utilizing a combination of decision trees to 
enhance accuracy and reliability while also minimizing the risk 
of overfitting. The RNN model was selected for its potential to 
process sequences and is used to identify temporal patterns in 
network traffic. Despite its capabilities, the RNN algorithm 
was found to be less effective most likely because of the 
specific characteristics of the data and the sensitivity of the 
model's settings and training methodology.  

The three models have been applied to a dataset for 
detecting various types of cybersecurity threats. The results 
provide a clear comparison of overall accuracy, performance, 
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and issues encountered for each model, helping to understand 
their effectiveness and look at the areas that may require 
further development or reconsideration.  

C. Comparison of Models and Performance Analysis 

     The three machine learning models, XGBoost, Random 

Forest, and Recurrent Neural Networks () have been applied to 

a dataset under the process of detecting various types of 

cybersecurity threats. The result of this process helps us 

understand the effectiveness of each model and look at the 

areas that may require further development or reconsideration. 

The two most effective models, Random Forest and XGBoost 

models are the focus of our analysis. Table 1 shows a 

statistical comparison of the distribution of attacks for both 

Random Forest and XGBoost models.  On Normal Network 

Behavior, both Random Forest and XGBoost demonstrated 

high accuracy in detecting normal behavior. The Random 

Forest model showed accuracy in classifying Normal Network 

Behavior (49,891 instances) and Password attacks (19,880 

instances). It, however, struggled more with distinguishing 

between DDoS and DoS attacks, as well as between Injection 

and Cross-Site Scripting (XSS) attacks. 

TABLE 1 THE DISTRIBUTION OF THE ATTACKS DETECTED BY 
RANDOM FOREST AND XGBOOST      

Category Random Forest XGBoost Description 

Normal 

Network 

Behavior 

24.00% 25% A significant portion of network 

traffic is benign. 

Scanning 19.70% 12.10% High incidence of network 

scanning activity. 

Password 11.00% 11% A noticeable amount of 

password-related security 

incidents. 

DDoS 10.30% 10.70 Considerable number of 

Distributed Denial of Service 

events. 

DoS 9.60% 10.7% Frequent detection of Denial-of-

Service attacks. 

Injection 9.10% 9.4% Attacks involving malicious data 

sent to the system. 

XSS 9.10% 8.9% Cross-site scripting 

vulnerabilities are prevalent. 

MitM 0.40% 0.3 Man-in-the-middle attacks are 

less commonly identified. 

Backdoor 0.20% 0.30 Least frequently predicted type 

of attacks. 

Ransomware 6.60% 7.7% Significant identification of 

ransomware, though less 

common than other threats like 

scanning or password attacks. 

 

    The XGBoost model displayed an improvement in accuracy 

and notably excelled in categorizing Backdoor, DDoS, and 

DoS attacks. On DDoS and Dos attacks, Random Forest 

identified DDoS 19,677 times and DoS 19,864 times, while 

XGBoost correctly identified DDoS 19,479 times and DoS 

19,221 times. Random Forest had an edge in distinguishing 

between DDoS and DoS. XGBoost on the other hand 

demonstrates better accuracy in distinguishing Ransomware 

and makes fewer errors when categorizing Normal Network 

Behavior and attack scenarios. The decision between the two 

models might rely on the needs of the security system and 

which types of attacks are crucial to detect with precision. 

On the trend of accuracy improvement, there is a 

consistent improvement in accuracy for both Random Forest 

and XGBoost models as the depth of trees increases as seen in 

Figure 3.  

 

Figure 3. Model comparison of Random Forest and XGBoost based on depth 

of tree and accuracy. 
 

At lower depths, the accuracy of the two models 

converges. However, as tree depth increases, a divergence 

emerges with XGBoost marginally outperforming the Random 

Forest model, suggesting a better handling of model 

complexity. Both models exhibit accuracy improvement 

beyond certain depths—around 15 for Random Forest and 20 

for XGBoost. This implies that there is an optimal tree depth 

for each model beyond which the incremental gains in 

accuracy become marginal. 

XGBoost achieved an overall accuracy of 91%, 

outperforming Random Forest, which achieved an accuracy of 

86%. The RNN model showed an overall accuracy of 9.43%, 

which is significantly lower than both Random Forest and 

XGBoost, indicating that it struggled more with detecting the 

various types of attacks. 

IV. CONCLUSIONS 

This paper presented an analysis of a NIDS system and the 

advantage it provides in detecting network attacks using a pre-

existing dataset. The results showed the performance of 

different models in terms of accuracy, precision and recall and 

how well it ats on detecting different attack patterns. Focused 

models like XGBoost and Random Forest showed good 

accuracy and are useful in detecting attack patterns. These 

models, in the meantime, faced some challenges in detecting 

attack types such as DoS and DDoS. The results proved the 

effectiveness of integrating ML-driven models into real-time 

cybersecurity frameworks. 
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