

Network Intrusion Detection Using Machine Learning Processes

Akshatha Pramod

Electrical Engineering

San Jose State University in California

San Jose, CA, 95195, U.S.A

email: pramodakshatha@gmail.com

Meghna Shankar

Electrical Engineering

San Jose State University in California

San Jose, CA, 95195, U.S.A

email: megan.shanx@gmail.com

Nader F. Mir

Electrical Engineering

San Jose State University in California

San Jose, CA, 95195, U.S.A

email: nader.mir@sjsu.edu

Abstract—Network security methods must work towards

preventing data breaches as we have entered the growing era of

technology. This paper provides a work-in-progress computer

network security study in which the network’s security capability

has been enhanced by using Machine Learning (ML)-assisted

intrusion detection system. The goal of the paper is to present a

study on improving network intrusion detection systems by

incorporating machine learning techniques. We specifically focus

on the accuracy and overall performance of two ML algorithms,

Random Forest and XGBoost. We introduce this study when ML

is incorporated in an existing network infrastructure specifically

within the network monitoring and analysis components. The

network performance is centered around the two algorithms.

These algorithms are deployed on an available dataset named the

ToN_IoT and compared based on accuracy and overall

performance thus providing an analysis of the effectiveness of

these models in detecting network intrusions.

Keywords—Network Security; Network Intrusion Detection

System; Machine Learning; XGBoost; Random Forest; Recurrent

Neural Networks; ToN_IoT Dataset.

I. INTRODUCTION

 A computer network is a backbone that involves preventing

unauthorized access and protecting the integrity of the

information and allocation of resources. With the growing

dependence on technology, the need for protection of

networks becomes essential against data breaches, phishing of

information and various malware [1]. The traditional methods

of network intrusion detection are not real-time based thus

there is a need for the integration of artificial learning

processes, such as Machine Leaning (ML). This not only

makes the detection system real-time but also makes the

system adaptable to learn from previous actions in detecting

network breaches and in analyzing the symptoms of the

occurrence of an attack. ML integration into security systems

makes organizations stay safe and secure with a preventive

defense ready [2].

A Network Intrusion Detection System (NIDS) provides

continuous network monitoring across its network territory

including the cloud infrastructure to detect malicious activity

like policy violations, or data exfiltration (a cybercriminal

stealing data from personal or corporate devices). There can

be two types of architectural models of Artificial Intelligence

(AI) based NIDS: Standalone and hybrid. Standalone models

are designed based on historical data of network attack

attacks. Hybrid NIDS combines both anomaly-based and

signature-based which implies it works on both trained and

untrained datasets.

NIDS plays a vital role in protecting computers against

malicious attacks and can be classified based on its detection

techniques as signature-based detection or anomaly-based

detection. The signature-based detection technique is

significant in use if the type of attack is previously known, as

it is based on comparing the attack to a list of known attacks.

However, this method is not effective in determining

previously unknown attacks. Anomaly-based detection

techniques can determine previously unknown attacks. It

works based on classifying normal and abnormal behavior of

the system. New generation NIDS comes with the

combination of both detection techniques; this is often known

as hybrid [4].

There are certain challenges, such as false alarms,

response time, unbalanced dataset and low detection rates, a

NIDS may face. False alarms are often triggered based on how

the system is configured and range anywhere from 2% to

90%. The response is coupled with the traffic volume and its

complexity, alert prioritization, network latency and limited

infrastructure and resources [4]. While unbalanced datasets

can be a challenge for some detection techniques, it does not

typically affect anomaly-based detection, where the model is

trained on one-class data corresponding to normal network

behavior. The low detection rates challenge affects the overall

security as it causes a system to fail to detect threats due to

insufficient signature coverage, improper signature tuning,

limitations in detecting anomalies and insufficient resources.

A confusion matrix helps in evaluating the performance of

each of the security models. The use of Artificial Intelligence

(AI) in intrusion detection systems has evolved from rule-

based systems to more sophisticated ML and deep learning

systems [5][6][9]. ML systems are based on decision trees,

Support Vector Machines (SVM) and random forest [7]. Deep

learning involves using Convolutional Neural Networks

(CNN) and Recurrent Neural Networks (RNN).

The rest of this paper is organized as follows. In Section

II, we present a detailed methodology on how ToN_IoT

datasets are acquired and pre-processed. In Section III, we

present detailed results of our analysis, and in Section IV, a

conclusive statement is presented.

II. PROPOSED METHODOLOGY

 The proposed methodology for improving NIDS involves a

multi-step process that starts with robust dataset creation and

preparation. This is followed by selecting and tuning machine

learning models, and finally, evaluating their performance.

1Copyright (c) IARIA, 2024. ISBN: 978-1-68558-188-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2024 : The Sixteenth International Conference on Emerging Networks and Systems Intelligence

mailto:pramodakshatha@gmail.com
mailto:megan.shanx@gmail.com
mailto:nader.mir@sjsu.edu

Each stage is crucial to ensure the accuracy and reliability of

the NIDS.

A. Dataset Creation

 The process is depicted in Figure 1 and begins with the

collection of raw network packets from various sources,

including sensors, Internet of Things (IoT) devices, network

traffic samples, and Operating System (OS) logs. Such packets

are captured using a sniffing tool and are stored in Packet

Capture (PCAP) format. The collected packets are then

converted into a standardized format and stored in the

Telemetry over Networks Internet of Things (ToN_IoT)

database, which is publicly available and serves as a

benchmark for evaluating NIDS. In the figure, this process

starts with the sniffed packets being fed into a Format

Converter, which standardizes them before they are stored in

the ToN_IoT dataset. The pre-processed dataset is then used in

various ML tasks, leading to the selection and deployment of

an optimal ML model. The compilation of this dataset was

recorded by a team at University of New South Wales

(UNSW) Canberra [8].

ToN_IoT

Dataset

Sniffed Packets

Internet (Backbone Packet Switched Network)

Format

Converter

Regulated ToN_IOT Dataset

Data Pre-processor

Pre-processed Dataset

Data

Splitter

ML Model

ML Model Selector

Dataset Creator

Tunning

Figure 1. Process of data collection leading to the selection and deployment
of an ML model.

B. Data Pre-processor

After a comprehensive data collection leading to the

ToN_IoT dataset, data must be loaded to a file system (Google

Drive) for processing. This also involves combining multiple

Comma-Separated Values (CSV) files into a single file. A

CSV file uses a comma to separate values and store tabular

data (numbers and text) in plain text. A separate CSV file is

used as a test dataset. It is important to note that the test

dataset, which is kept separate to ensure the integrity of the

model evaluation, is not combined with the training data.

Instead, a distinct CSV file is used exclusively for testing the

model after it has been trained.

As a first step, data cleaning is asserted by using removal

techniques to eliminate data anomalies. Removal of various

columns that are trivial IP address ports, HTTP-specific

features and Uniform Resource Identifier (URI) versions.

Columns that contained null values for the majority of the

population, columns that contained singular values and

columns that proved to be a non-contributing attribute for

training the model were removed as part of the data cleanup.

In the second step, data transformation is applied using a

label encoder to convert label categories to numerical values

and formats. Examples of this process include transforming

High, Medium, and Low into 0, 1, and 2 respectively. This

allows us to represent values as binary vectors and create a

new column for each category accordingly. Similarly, normal,

Denial of Service (DoS), Distributed Denial of Service

(DDoS) and backdoor types of attacks are also converted to

numerical values.

Data normalization phase is asserted in the third step. To

standardize features, we utilize the standard scalar technique

which involves the elimination of the mean and scaling it to

unit variance [8]. The implementation of a standard scalar

ensures feature consistency across the dataset. One of the

actions at this step is the conversion of varied data formats to a

standardized format, such as Comma-Separated Values (CSV)

(a text file format that uses commas to separate values, format

for uniform processing). The ultimate purpose of this step is to

ensure that no single feature dominates others due to scale

differences.
Finally, in the fourth step, feature selection to choose the

top K features based on the scores from a statistical test is
applied. Utilization of select KBest identifies the most
impactful features for modelling and focuses on the most
relevant features for modelling. The combination of the above
four steps results in the preprocessed dataset which is a clean,
normalized, and optimized dataset ready for analysis or model
training. It also improves model accuracy and efficiency by
focusing on relevant data.

C. ML Model Selector

 The bottom block of Figure 1 shows the process of ML
model selection for training and learning purposes involving
the following four steps:

Step 1 – Data Splitter: involves splitting the dataset into a
“training set” for learning, and a “testing set” for evaluation.
The training set is usually used to understand the patterns and
relationships between the different data points obtained to
make certain predictions. A testing set is generally used to
evaluate the trained model’s performance.

Step 2 – ML Algorithm Parameter Tuning: considers
efficient ML algorithms such as Random Forest [7], XGBoost
[9], or Recurrent Neural Networks (RNN)[9]. The Random
Forest algorithm handles nonlinear data well with multiple
decision trees to prevent overfitting. It is good for large
datasets and integrating diverse data features, and it is suitable
for understanding complex network behaviors. XGBoost

2Copyright (c) IARIA, 2024. ISBN: 978-1-68558-188-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2024 : The Sixteenth International Conference on Emerging Networks and Systems Intelligence

algorithm excels in sequential training and is efficient with
large datasets. It enhances feature recognition, suitable for
detailed ToN_IoT analysis. RNN are best for sequential data,
capturing time-dependent patterns without extensive manual
feature engineering. It integrates well with other models like
Convolution Neural Networks (CNN), enhancing its capability
for analyzing complex network traffic and anomaly detection.

Step 3 – Performance Analysis: optimizes the ML algorithm
parameters to improve model performance. It assesses models
using metrics such as accuracy and precision on the testing
set. It also carries out iteration for optimization if the
performance is unsatisfactory and adjusts parameters.

Step 4 – Best Model Detected and Deployed: select the
model that best meets performance criteria for deployment.

III. ANALYS AND RESULTS

In this section, we present results and analysis conducted
using the developed NIDS based on various ML models
implemented through Python-based programming,
TensorFlow, PyTorch, and other supporting tools. The analysis
focuses on evaluating the intrusion detection capabilities in
finding and mitigating potential security threats in a simulated
network environment.

A. Data Preparation

The ToN_IoT dataset was used for training and testing

NIDS models. The data was first preprocessed to ensure its

compatibility with the machine learning algorithms, also

involving normalization, feature extraction, and the handling

of all the missing values to optimize the performance of the

model. The main segment of the script for this task is in

Phyton and shown in Figure 2. Next, we will explain some

important segments of this script.

The script imports required Python libraries, such as

pandas for data orchestration, OS which is used for interacting

with the operating system, sklearn for machine learning tasks,

XGBoost for model training, and matplotlib and seaborn for

visualization. The training_data_folder describes the path to

the folder on Google Drive where the training data is stored.

This setup automatically assumes that one is using Google

Colab and has mounted your Google Drive. The script also

creates a detailed list of each one of the CSV files in the

specified directory. It uses os. listdir() to get a list of files in

the directory and filter this list to include only files that end

with .csv. An empty list of train_data_frames is initialized to

store each DataFrame.The script loops over each CSV file

path in train_csv_files reads the CSV file into data frames

using the pd.read command, and appends each data frame to

the list train_data_frames. Finally, with Concatenate

DataFrames, all the DataFrames stored in train_data_frames

are concatenated into a single DataFrame called all_data using

pd. concat(). This results in a single data frame containing all

the data from the various files, making it easier to perform

further data preprocessing or analysis.

Figure 2. Script for preprocessing of data.

B. Model Selection and Training

Three ML models, XGBoost, Random Forest, and
Recurrent Neural Network (RNN), were selected based on their
capability to manage complex and unbalanced data as follows.
XGBoost boosts effectively to tackle one as well as the other
binary and multi-class classification challenges. It is known for
its efficiency in feature handling and its accuracy in data
classification. The Random Forest model was chosen because
it is known for utilizing a combination of decision trees to
enhance accuracy and reliability while also minimizing the risk
of overfitting. The RNN model was selected for its potential to
process sequences and is used to identify temporal patterns in
network traffic. Despite its capabilities, the RNN algorithm
was found to be less effective most likely because of the
specific characteristics of the data and the sensitivity of the
model's settings and training methodology.

The three models have been applied to a dataset for
detecting various types of cybersecurity threats. The results
provide a clear comparison of overall accuracy, performance,

3Copyright (c) IARIA, 2024. ISBN: 978-1-68558-188-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2024 : The Sixteenth International Conference on Emerging Networks and Systems Intelligence

and issues encountered for each model, helping to understand
their effectiveness and look at the areas that may require
further development or reconsideration.

C. Comparison of Models and Performance Analysis

 The three machine learning models, XGBoost, Random

Forest, and Recurrent Neural Networks () have been applied to

a dataset under the process of detecting various types of

cybersecurity threats. The result of this process helps us

understand the effectiveness of each model and look at the

areas that may require further development or reconsideration.

The two most effective models, Random Forest and XGBoost

models are the focus of our analysis. Table 1 shows a

statistical comparison of the distribution of attacks for both

Random Forest and XGBoost models. On Normal Network

Behavior, both Random Forest and XGBoost demonstrated

high accuracy in detecting normal behavior. The Random

Forest model showed accuracy in classifying Normal Network

Behavior (49,891 instances) and Password attacks (19,880

instances). It, however, struggled more with distinguishing

between DDoS and DoS attacks, as well as between Injection

and Cross-Site Scripting (XSS) attacks.

TABLE 1 THE DISTRIBUTION OF THE ATTACKS DETECTED BY
RANDOM FOREST AND XGBOOST

Category Random Forest XGBoost Description

Normal

Network

Behavior

24.00% 25% A significant portion of network

traffic is benign.

Scanning 19.70% 12.10% High incidence of network

scanning activity.

Password 11.00% 11% A noticeable amount of

password-related security

incidents.

DDoS 10.30% 10.70 Considerable number of

Distributed Denial of Service

events.

DoS 9.60% 10.7% Frequent detection of Denial-of-

Service attacks.

Injection 9.10% 9.4% Attacks involving malicious data

sent to the system.

XSS 9.10% 8.9% Cross-site scripting

vulnerabilities are prevalent.

MitM 0.40% 0.3 Man-in-the-middle attacks are

less commonly identified.

Backdoor 0.20% 0.30 Least frequently predicted type

of attacks.

Ransomware 6.60% 7.7% Significant identification of

ransomware, though less

common than other threats like

scanning or password attacks.

 The XGBoost model displayed an improvement in accuracy

and notably excelled in categorizing Backdoor, DDoS, and

DoS attacks. On DDoS and Dos attacks, Random Forest

identified DDoS 19,677 times and DoS 19,864 times, while

XGBoost correctly identified DDoS 19,479 times and DoS

19,221 times. Random Forest had an edge in distinguishing

between DDoS and DoS. XGBoost on the other hand

demonstrates better accuracy in distinguishing Ransomware

and makes fewer errors when categorizing Normal Network

Behavior and attack scenarios. The decision between the two

models might rely on the needs of the security system and

which types of attacks are crucial to detect with precision.

On the trend of accuracy improvement, there is a

consistent improvement in accuracy for both Random Forest

and XGBoost models as the depth of trees increases as seen in

Figure 3.

Figure 3. Model comparison of Random Forest and XGBoost based on depth

of tree and accuracy.

At lower depths, the accuracy of the two models

converges. However, as tree depth increases, a divergence

emerges with XGBoost marginally outperforming the Random

Forest model, suggesting a better handling of model

complexity. Both models exhibit accuracy improvement

beyond certain depths—around 15 for Random Forest and 20

for XGBoost. This implies that there is an optimal tree depth

for each model beyond which the incremental gains in

accuracy become marginal.

XGBoost achieved an overall accuracy of 91%,

outperforming Random Forest, which achieved an accuracy of

86%. The RNN model showed an overall accuracy of 9.43%,

which is significantly lower than both Random Forest and

XGBoost, indicating that it struggled more with detecting the

various types of attacks.

IV. CONCLUSIONS

This paper presented an analysis of a NIDS system and the

advantage it provides in detecting network attacks using a pre-

existing dataset. The results showed the performance of

different models in terms of accuracy, precision and recall and

how well it ats on detecting different attack patterns. Focused

models like XGBoost and Random Forest showed good

accuracy and are useful in detecting attack patterns. These

models, in the meantime, faced some challenges in detecting

attack types such as DoS and DDoS. The results proved the

effectiveness of integrating ML-driven models into real-time

cybersecurity frameworks.

REFERENCES

[1] T. Ahmed, B. Orehounig, and R. W. Brennan, “Artificial
intelligence for network intrusion detection: Review and future
trends,” Expert Systems with Applications, vol. 92, pp. 417-430,
2017.

[2] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical

comparison of botnet detection methods,” Computers &

Security, vol. 45, pp. 100-123, 2014.
[3] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A

detailed analysis of the KDD CUP 99 data set,” in Proceedings

4Copyright (c) IARIA, 2024. ISBN: 978-1-68558-188-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2024 : The Sixteenth International Conference on Emerging Networks and Systems Intelligence

of the Second IEEE Symposium on Computational Intelligence
for Security and Defense Applications, pp. 1-6, 2009.

[4] Sarker, I.H. Machine Learning: Algorithms, Real-World
Applications and Research Directions.SNCOMPUT.SCI. 2, 160
(2021). https://doi.org/10.1007/s42979-021-00592-x

[5] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273-297, 1995.

[6] M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B.
Scholkopf, “Support vector machines,” IEEE Intelligent
Systems and their Applications, vol. 13, no. 4, pp. 18-28, 1998.

[7] L. Breiman, “Random forests,” Machine Learning, vol. 45, no.
1, pp. 5-32, 2001.

[8] J. Xie, R. P. Gopalan, and A. A. Ghorbani, “A novel anomaly
detection algorithm for sensor networks,” IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and
Reviews), vol. 40, no. 5, pp. 553-566, 2010.

[9] N. Bhattacharyya and J. Kalita, “DANNIDS: A dynamically
adaptive neural network-based intrusion detection system,”
Expert Systems with Applications, vol. 56, pp. 42-56, 2016.

5Copyright (c) IARIA, 2024. ISBN: 978-1-68558-188-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2024 : The Sixteenth International Conference on Emerging Networks and Systems Intelligence

