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Abstract—With the increasing use of data stream management 

systems (DSMS’s) in energy-critical areas the energy 

consumption of the DSMS itself is gaining growing importance. 

However, processing data streams in an energy-aware manner 

is still an open research question. In this paper, we propose a 

very first concept for a DSMS architecture which treats the 

energy consumption as a first-class-citizen. Therefore, we rely 

on data synopses and anytime algorithms in order to minimize 

the data quantity and the number of iteration which minimizes 

the overall energy consumption. 

Keywords – Data stream management; Energy-awareness, 

Synopses, Anytime Algorithm 

I.  INTRODUCTION 

Currently, there is a severe lack of infrastructures allowing 
us to monitor and control the energy consumption of a given 
system under observation (SUO) from the software level. 
This results in the need for a monitoring component to 
observe, analyze and predict the amount of consumed energy 
resources. Such a component would acquire the input for its 
energy calculations from a mass of information; these 
typically arrive in the form of continuous data streams and 
originate from various sensors spread across the whole SUO. 
The use of continuous data streams necessitates suitable 
techniques to handle the information flow and associated 
service level agreements. Therefore, we intend to build a 
data stream management system (DSMS) to analyze the 
energy-behavior of a SUO and which itself is 1) energy-
adaptive and 2) minimal-intrusive in term of energy 
consumption. 

Regarding energy-efficiency we want to refer to the so-
called "need-to-know" principle as the opposite of the 
"ubiquity" principle. The "need-to-know" principle only 
provides as much information as needed by the application in 
only the quality that is required by the application. In 
contrast, traditional data management systems follow the 
"ubiquity" principle by always presenting an up-to-date and 
consistent database even if no one is currently accessing the 
database. Through the consistent application of the "need-to-
know" design principle to the data processing, we can 
minimize the quantity and granularity of the data in question 
and we can prematurely abort the execution of operations as 
soon as a defined quality has been reached. Both 
optimization criteria directly contribute to the minimization 
of the system’s energy requirements. 

In this paper, we will describe the architecture and design 
principles of a DSMS based on data synopses and anytime 
algorithms which are both ideally suited for an energy-aware 
data stream processing. 
 

II. ENERGY-AWARE DATA MANAGEMENT 

Despite the increasing research efforts in power 

management techniques, there has been little work to date 

on energy efficiency from a pure data management 

perspective. A recent study [1] has shown that, contrary to 

what previous work has suggested [2, 3, 4], within a single 

node intended for use in shared-nothing architectures, the 

most energy-efficient configuration is typically the one with 

the highest performance. In the few cases where this 

correlation does not hold, the improvements in energy 

efficiency are less than 10%, mainly due to the large up-

front power costs in current server components. A major 

reason for this effect is given by the lack of so-called 

energy-proportional hardware [5], which only uses power in 

constant proportion to its performance. However, there have 

been some recent developments in this regard (e.g. PCRAM, 

finer CPU power states, SSDs, etc.) which will soon allow 

the energy-proportional operation of the hardware as a base 

of an energy-efficient operation. 

But hardware-only approaches are just one part of the 

solution, and data management and analytics infrastructures 

will play a key role in optimizing for energy efficiency. In 

[1], the authors found that common database operations can 

exploit the full power range of a server and further detected 

that the CPU power consumption of different operators, for 

the same CPU utilization, can differ by as much as 60%. 

The authors stated that the most promising software knobs 

are the ones that can directly trade CPU cycles for disk 

access time, since these are two resources with significantly 

different power-usage profiles. Such trade-offs exist in 

access methods, compression techniques, and join 

algorithms. Given the increase in hardware heterogeneity in 

combination with energy proportionality, we can expect 

further opportunities here to identify optimal configurations; 

those should be exploited via specialized data management 

operators. For this purpose, we need an energy model that 

describes the different hardware resources with their 

interdependencies on the one hand and that comprises the 
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resource allocation of the different algorithms and methods 

on the other hand. First approaches in this regard with a 

focus on flash memory can be found in [6]. 

 

III. DSMS’S IN THE CONTEXT OF ENERGY ADAPTATION 

A variety of research activities have already been directed 

towards different aspects of managing data streams: DSMS 

like Aurora [7], STREAM [8], PIPES [9], Gigascope [10], 

TelegraphCQ [11] and NiagaraCQ [12] represent major 

examples developed over the last years. Furthermore, there 

exists our QStream DSMS [13] where we already 

investigated quality-aware data streams using a hard real-

time processing model. This model should be extended by 

an additional energy quality dimension. 

The main characteristics of data streams normally do not 

allow the persistent storage and the subsequent time-

consuming processing within a traditional data management 

system. Instead, the goal is a data-driven processing of the 

potentially unlimited data streams, where systems should 

behave adaptively, e.g., with regard to the current data 

arrival rates. That means, data must be provided as quickly 

as possible, in the sense of a data stream system and on the 

other hand, complex analyses are required, which 

necessitates storing large amounts of data. To materialize 

stream data, synopses are typically used, which will be 

briefly discussed in the next paragraph. 
 

IV. ENERGY-AWARE DATA SYNOPSES 

Gibbons et al. defined the term synopsis in [14] as a 
"random data structure" that is substantially smaller than the 
base data. Due to their small size, synopses come with 
various benefits: they can be managed in main memory, 
which decreases query processing time, and they can be 
transferred quickly within a storage hierarchy or via a 
network. Since synopses only represent a subset of the 
underlying data, query results often come with errors 
accordingly. However, it is possible to define exact bounds 
for these errors. All these features make synopses ideally 
suited for data analysis tasks in a DSMS. With constant 
synopsis size (footprint), it is thus possible to monitor data 
over a longer time period with little accuracy or to monitor 
them during short time intervals with high accuracy. In 
previous work [15, 16], the design of synopses was restricted 
to the preservation of certain memory sizes and error bounds. 
In our DSMS to be developed, we will consider the energy 
consumption as another optimization criterion when 
designing synopses. In this context, the energy consumption 
has to be considered from two perspectives: for storing and 
maintaining the synopses as well as for the query processing 
based on synopses. Furthermore, it will be decisive how 
many synopses have to be created and maintained for a 
certain workload. From the energy consumption point of 
view, we need to decide whether to create a few general or 
many specialized synopses. 

V. ANYTIME ALGORITHMS 

The synopses serve to buffer the stream of data and to 
represent it in a compact but lossy form. This allows 
speeding up the algorithms based on this data and to make 
their processing more energy-efficient. Another option to 
support energy efficiency is to leave out some iterations or 
computations within the data stream operators itself. This is 
possible with so-called anytime-algorithms, which trade 
computational resources for solution quality, i.e. the quality 
of the result improves with execution time. This requires a 
well-defined quality measure which allows to monitor the 
progress in problem solving and to allocate computational 
resources accordingly. Given this measure, it is possible to 
suspend the processing after a certain time period and to 
peek results which may not be in their final state (see Figure 
1). Further it must be possible to resume the algorithm with 
minimal overhead. 
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Figure 1.  Anytime Processing Model 

This characteristic makes them a perfect fit for an energy-
efficient processing following the "need to know" principle. 
In particular, we will focus on anytime-data-mining 
algorithms, some of which have been documented in [17, 
18], and on anytime-forecast algorithms. Obviously, the 
research work in both fields is very sparse, which implies 
that many algorithms need to be designed from scratch. For 
this purpose, we can rely on existing classifications and 
programming tools [19, 20] that provide an environment to 
support anytime-computation. This includes tools for the 
automatic construction of performance profiles (to quantify 
the performance improvement over time) as well as tools for 
composition, activation, and monitoring. 

 

VI. RESEARCH GOALS 

The broad range of software sensor data leads to many 

data streams that are pre-filtered through a set of sampling 

steps. The synopses are found on top of this sampling layer; 

they buffer and pre-aggregate data for detailed analyses. 

When doing so, a synopsis is always fed by one or multiple  
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Figure 2.  Data monitoring and processing following the "need-to-know"principle 

sampling operators. In analogy to this, anytime-operators 

get their data from one or multiple synopses. All three layers 

are configured and controlled by the same "need-to-know" 

principles. In the following, we will present these ideas in 

detail. 

A. Formalization of the "need to know" principle as an 

enabler for energy-awareness 

The goal of this work package is to formalize the above 

mentioned "need-to-know" principle in order to specify the 

data quality constraints of the application layer. These 

constraints provide valuable help to optimize 1) the 

sampling preprocessing step, 2) the number, size and 

structure of the synopses, and the 3) algorithmic 

computation based on these synopses. Typical quality 

measures in a DSMS can be classified into time- and 

content-based metrics. The former indicates the DSMS’s 

ability to adapt to the push-based data delivery and to the 

processing speed of the DSMS, e.g., throughput (or data 

rate) and the latency of the result. The latter focuses on 

problems caused by the handling of infinite streams or high 

input volumes. Content-based metrics that can be applied in 

this context are sampling rates, quality guarantees or error 

bounds. All these measures need to be reviewed and 

integrated into a common constraint model. Therefore, we 

need to check the interdependencies between these 

constraints and provide a declarative language that allows to 

express the specific requirements of the data consumers. 

 

B. Need-to-know" negotiation process 

In order to guarantee the "need-to-know" constraints a 

negotiation process is required that mediates between the 

application, the operation, and the synopsis layer (see Figure 

2). In the first step, the capability for fulfilling the 

constraints need to be calculated locally on each layer and 

globally for the whole system. Therefore, we need to rely on 

data stream statistics that have to be collected during the 

runtime of the system. In a second step, the required 

resources (processing time at the operational level, space 

and I/O for the synopses, bandwidth for the sampling step, 

etc.) have to be reserved. If the statistics of the data stream  

do not change in any unforeseen manner, the required 

"need-to-know" constraints can be guaranteed. Otherwise, 

the negotiation process needs to be repeated. 

 

C. Data Stream Sampling 

The continuous data flow which need to be monitored 

calls for data stream sampling schemes as a pre-processing 

step (see Figure 2) to reduce or bound resource 

consumption. Although many techniques for maintaining 

database samples can also be used for data streams, there are 

problems that are unique to data stream sampling. The main 

difference in data stream sampling is that samples are often 

biased towards more recent items because recent items are 

considered more important by applications. Such a notion of 

recency does not exist in traditional database sampling and 

calls for novel sampling schemes. Additionally, since a data 

stream is changing continuously, efficient sample 

maintenance strategies must be developed as well. 

D. Synopsis Design and Configuration 

Synopses are necessary to materialize data stream 

content, which allows to apply a wide range of analytical 

operations such as outlier and trend detection, clustering, 

forecasts, and so on. Given a specific memory bound 

(footprint) and a set of "need-to-know" constraints, we want 

to derive the optimal synopsis configuration regarding 

energy-consumption. Since there is a many-to-many 

relationship between operations and synopses, we have to 

decide between general-purpose synopses, which may serve 
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a wide range of applications, and synopses designed for a 

very specific purpose. The design of the synopses must be 

coordinated with the previous sampling step, i.e. it has to be 

decided which data items will be pruned at the first level 

and which data items are considered to derive groups and 

aggregates at the second level. Another problem arises from 

the synopsis computation effort, which increases 

exponentially with the input parameters such as the number 

of relations or the number of grouping attributes. In order to 

keep the system load (and thus the energy consumption) for 

the computation and maintenance of synopses as low as 

possible, we will thus have to develop appropriate heuristics 

and greedy approaches. 

E. Anytime-Algorithms 

Whereas synopses restricted the storage consumption of 

the data, we also need new algorithmic approaches that 

make it possible to abort computations as early as possible. 

For this purpose, we want to look at the discipline of 

anytime-algorithms and transfer our findings to the "need-

to-know" concept. That means that the underlying 

algorithms are not executed until they converge, but they are 

stopped as soon as the intermediate result fulfills the "need-

to-know" constraints. These kind of algorithms, which 

continuously generate intermediate results, need to be 

developed for a broad range of application areas. Therefore, 

we have to perform research on algorithms whose runtime is 

not determined in advance but can be interrupted at any time 

during execution and return a result. Further, we have to 

work on performance profiles, which returns result quality 

(defined by the "need-to-know" negotiation process) as a 

function of time. As a starting point, we focus on clustering 

operations and, more precisely, on the k-means algorithm, 

which is widely used and well understood in the research 

community. In particular, there already exists a wavelet-

based anytime-algorithm, which should be reviewed for its 

applicability [17]. This will give us first insights on how the 

"need-to-know" principle may interplay with the idea of 

anytime-algorithms. 

Furthermore, we have to find the optimal configuration of 

the sampling steps (load shedding), the synopses (pre-

aggregation), and the variety of analysis algorithms and 

operators. 

VII. CONCLUSION 

In this paper, we presented the concept of an energy-
aware data stream management system. Therefore, we 
introduced the overall “need-to-know” principle which 
should be applied to each layer of the DSMS architecture. At 
the data layer we will use synopses to minimize the quantity 
and granularity of data. At the process level we will apply 
anytime operators which will allow us to prematurely abort 
the execution of operations as soon as a defined quality has 
been reached. Both concepts give us additional flexibility to 
build an adaptive and most of all an energy-aware DSMS. 
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