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Abstract—The path towards Exascale systems will require
to energetically address power consumption of future high
performance computing (HPC) workloads which, in turn, urges
for a better understanding of power usage. In this paper
we, present an evolved framework to trace and analyze the
power and energy consumption made by parallel scientific
applications. The framework includes i) a flexible and exten-
sible design that enables easy integration of different types of
power measurement devices and addition of new functionality;
ii) a new module that records information on processor states
related to power consumption; and iii) an improved power
measurement device to monitor internal direct current (DC)
power consumption. This environment is thus revealed as a
powerful yet easy-to-use tool to investigate and progress on
the development of energy-efficient HPC applications.

Keywords-power consumption; high performance computing;
performance analyzers; scientific applications;

I. INTRODUCTION

Power consumption has traditionally been a strong con-
straint for mobile devices due to its impact on battery life.
In recent years, the need to reduce energy expenses has
also reached the market of desktop and server platforms,
which are embracing “greener technologies”; and even in the
HPC arena, the power wall is now recognized as a crucial
challenge that the community will have to face [1], [2], [3].
Clear signs of this trend are varied, ranging from the energy
efficiency regulatory requirements set by the US Environ-
mental Protection Agency to the biannual elaboration of the
Green500 list [4] and the ongoing standardization effort of
this ranking.

While system power management (especially that related
to the processor) has experienced considerable advances dur-
ing this past period, application software has not benefited
from the same degree of attention, in spite of the power harm
that an ill-behaving software ingredient can infer. Indeed,
tracing the use of power made by scientific applications
and workloads is key to detecting energy bottlenecks and
understanding power distribution. However, as of today,
the number of fully integrated tools for this purpose is
insufficient to satisfy a rapidly increasing demand. In this
paper, we revisit the tools in [5] for power-performance
analysis of parallel scientific applications, and introduce a

new framework featuring stronger integration and modular
design as well as several significant extensions. In particular,
the paper includes the following contributions:

• We present a new release of our package pmlib for
power measurement, portray the users’ view with a de-
tailed example, and expose the modular implementation
of this software.

• We describe a new appliance to pmlib which collects
information on processor energy states, like the C-states
and P-states, offering information complementary to
that in the performance and power traces.

• We enlarge the number of standard and ad hoc power
measurement devices that can interface with pmlib,
and review the hardware implementation of one of our
own powermeters.

These new additions increase the practical utility of the
framework, while maintaining its accessibility.

The rest of the paper is structured as follows. In Section II,
we provide a brief overview of the framework architecture
and its use. In Section III we enumerate a collection of pow-
ermeters that can interact with our framework, describing
in more detail the internals of our own power device. In
Section IV we review pmlib, the pivotal component of the
framework. Finally, the paper is closed with a discussion of
related work, in Section V, and a list of concluding remarks
and future work in Section VI.

II. OVERVIEW OF THE POWER ANALYSIS FRAMEWORK

Figure 1 offers a graphical representation of the frame-
work for power-performance tracing and analysis. The start-
ing point is a concurrent scientific application, instrumented
with the pmlib software, that runs on a parallel target
platform (e.g., a cluster, a multicore architecture, or a hybrid
computer equipped with one or several graphics proces-
sor units (GPUs)) yielding a certain power consumption.
Attached to the target platform there is one or several
powermeter devices –either internal DC or external alter-
nating current (AC)– that steadily sample power, sending
this output to a tracing server. Calls from the application
running on the target platform to the pmlib application
programming interface (API), instruct the tracing server to
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Figure 1. Collecting traces at runtime and visualization of power-
performance data.

start/stop collecting the data captured by the powermeters,
dump the samples in a given format into a disk file (power
trace), query different properties of the powermeters, etc.
Upon completion of the application’s execution, the power
trace can be inspected, optionally hand-in-hand with a per-
formance trace, using some visualization tool. Our current
setting allows a smooth integration of the framework power-
related traces and the performance traces obtained with
Extrae. The resulting combined traces can be visualized
with Paraver [6]. Nevertheless, the modular design of the
framework can easily accommodate other tracing tools like,
e.g., TAU, Vampir, etc.

III. HARDWARE POWER SAMPLING DEVICES

The pmlib package interacts with a number of power
sampling devices, including i) external commercial products,
such as APC 8653 Power Distribution Unit (PDU) and
WattsUp? Pro .Net, which are directly attached to the wires
that connect the electric socket to the computer Power
Supply Unit (PSU), thus measuring external AC for the full
platform; and our own internal DC powermeter designs, con-
sisting of an appropriate choice of current transducers that
produce data for ii) a commercial data acquisition system
(DAS) from National Instruments (NI) and, alternatively,
iii) our own designs that use a microcontroller to sample
transducer data. These devices are described in more detail
next, and the connection points are illustrated in Figure 2.
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Figure 2. Single-node application system and sampling points for external
and internal powermeters.

i) External AC powermeters. The APC 8653 PDU has 24
outlets and operates at a sampling rate of 1 Hz, employing
the Simple Network Management Protocol (SNMP) to com-
municate with the tracing server via Ethernet. The WattsUp?
Pro .Net also works at 1 Hz and returns samples to the server
through an Universal Serial Bus (USB) 2.0 line.

ii) Powermeter using NI DAS. Our own measurement tools
have been developed taking into account that they had to
measure currents ranging from 1 to 15 A, without intro-
ducing significant voltage drops. The selected transducer
was the LEM HXS 20-NP Hall effect current sensor. The
device exhibits high accuracy and linearity, and a very low
internal resistance, while being able to measure current in
the required ranges.

A set of our designs include several channels with each
one comprising a transducer that is connected to one of the
power lines leaving from the PSU. Our final system is a
modular design, based on stackable 8-channel components
that share power and reference voltage, for a total of 32
current channels.

The DAS is composed of the NI9205 module and the
NIcDAQ-9178 chassis. The module features 32 16-bit res-
olution analog-to-digital (AD) channels which can sample
data at 7,000 Hz. In principle, the LabView software from
NI runs in the tracing server, reading the data captured by the
DAS from a USB 2.0 port in the chassis. For convenience,
we have developed our own daemon/software to interact with
the chassis, without the need of LabView, enabling a better
integration of the device with pmlib.

iii) Microntroller-based powermeters. Our initial de-
signs [5] featured 10 and 25 channels and a Peripheral Inter-
face Controller (PIC) 18 microcontroller from Microchip, to
perform AD conversion. Each channel consisted of the afore-
mentioned HXS 20-NP transducer and a 10-bit resolution
AD channel in the microcontroller. All the channels shared
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Figure 3. Diagram of the communication between client (running a
scientific application) and the (pmlib) server.

a reference voltage of 2.5 V generated by the transducers.
Data was sent to the host computer over an asynchronous
RS232 port, and the sampling rate was therefore limited by
the speed of the communications link (115,200 bauds in the
selected microcontroller).

IV. SOFTWARE

The pmlib software package is developed and main-
tained by our research group to investigate power usage
of HPC applications. The current implementation of this
package provides an interface to utilize all the above-
mentioned powermeters and a number of tracing tools. We
next portray the interface of pmlib using a practical ex-
ample (user’s view), offer a few key implementation details
(developer’s view), and describe the functionality of a new
module to gather information about power-related states of
the processor cores. We close this section by illustrating
the kind of information provided by the framework using
a simple parallel application.

A. User’s view

Power measurement is controlled from the application
using a collection of routines that allows the user to query
information on the power measurement units, create coun-
ters associated to a device where power data is stored,
start/interrupt/continue/terminate power sampling, etc. All
this information is managed by the pmlib server, which
is in charge of obtaining these data from the devices and
returning the appropriate answers, via the interface of the
pmlib routines, to the invoking application (client). This
client-server interaction is exposed in Figure 3.

1 i n t main ( i n t argc, char *argv[])
2 {
3 s e r v e r t server1, server2;
4 c o u n t e r t counter1, counter2;
5 l i n e t lines1, lines2;
6 d e v i c e t disp;
7 char **list;
8 i n t i, num_devices,
9 freq1=0, freq2=0, aggr1=1, aggr2=1;

10 // ... Some other variables...
11
12 // Initializes the servers’ structures
13 pm set server("150.128.82.30", 6526, &server1);
14 pm set server("127.0.0.1", 6526, &server2);
15
16 // Query on #devices connected to server1,
17 // and obtain handles. Then, output information,
18 // e.g., for device[0]
19 pm get devices(server1, &list, &num_devices);
20 pm get dev ice in fo(server1, list[0], &disp);
21 printf("Name: %s\n", disp.name);
22 printf("Max freq: %d\n", disp.max_frecuency);
23 printf("Number of lines: %d\n", disp.n_lines);
24
25 // Selects the lines to measure
26 p m s e t l i n e s("0-11", &lines1);
27 p m s e t l i n e s("0-31", &lines2);
28
29 // Creates a counter for powermeter DCMeter1
30 pm create counter("DCMeter1", lines1, !aggr1,
31 freq1, server1, &counter1);
32
33 // Creates a counter for C-states
34 pm create counter("Cstates", lines2, !aggr2,
35 freq2, server2, &counter2);
36
37 // Starts to collect samples: power, C-states
38 pm start counter(&counter1);
39 pm start counter(&counter2);
40 // Sampled application code fragment
41 dgemm( &transa, &transb, &m, &n, &k,
42 &alpha, &A[k*lda+i], &lda,
43 &B[j*ldb+k], &ldb,
44 &beta, &C[j*ldc+i], &ldc );
45 // Stops to collect samples
46 pm stop counter(&counter1);
47 pm stop counter(&counter2);
48
49 // ... Some other nonsampled ...
50 // ... aplication code fragment ...
51
52 // Continue to collect samples: only power
53 pm continue counter(&counter1);
54 // Sampled application code fragment
55 dsyrk(&transa, &transb, &m, &n,
56 &alpha, &A[k*lda+i], &lda,
57 &beta, &C[i*ldc+i], &ldc);
58 //Stops to collect samples
59 pm stop counter(&counter1);
60
61 // Dumps collected data onto memory
62 pm get counter data(&counter1);
63 pm get counter data(&counter2);
64
65 // Prints power data in Paraver format
66 pm print data paraver("out.prv", counter1,
67 lines1, 0, "us");
68 // Prints c-states data in Paraver format
69 pm pr in t da ta paraver cs ta t e s("cstates.prv",
70 counter2, lines2,
71 0, "us");
72
73 //Finalizes the counters
74 p m f i n a l i z e c o u n t e r(&counter1);
75 p m f i n a l i z e c o u n t e r(&counter2);
76 re turn 0;
77 }

Figure 4. Example of use of pmlib.
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Figure 4 displays a detailed example illustrating the use
of pmlib. The code first declares the most important
variables. Next, two server structures are initialized with
their respective Internet Protocol (IP) addresses and the
port that will be used for the communication with both
servers. Here, the first server returns power samples, and
it is located in a separated machine to avoid interfering
with the parallel application. C-states are recorded using the
second server, which is placed in the same machine where
the parallel application runs, so that, it can query the files of
this machine containing the requested data on C-states. The
invocation to the function pm_get_devices establishes
a communication with the server, to obtain a list with the
names of connected powermeters. With this information, the
call to pm_get_device_info, with one of the detected
powermeters, returns more specific information on this de-
vice.

With the next two calls to pm_set_lines, we se-
lect the lines to measure (distinct powermeters may have
different numbers of lines). Next, we also call func-
tion pm_create_counter twice, to create one counter
associated with the DCMeter1 powermeter and a sec-
ond one that is bound to the C-states. The measure-
ment is initiated and terminated from the application via
routines pm_start_counter and pm_stop_counter,
respectively. In this case, we measure the power and
record the C-states during the execution of kernel
dgemm. The sampling process is momentarily inter-
rupted then, by invoking pm_stop_counter, and con-
tinued later, with pm_continue_counter, to record
only power samples for kernel dsyrk. Finally, routine
pm_get_counter_data saves the collected data onto
the corresponding counter structure; this information is
printed in one of the available formats (in the example,
Paraver format); and the counters are destroyed using
routine pm_finalize_counter.

B. Developer’s view

The pmlib software is developed in Python and consists
of two modules: the settings file and the server. Figure 5
depicts how the server works. The daemon starts by ini-
tially reading the settings file, which contains configuration
information on the powermeters available in the system.
Afterwards, a new thread is created per powermeter in order
to manage and receive data from these devices. The server
then creates as many counters (i.e., new thread instances) as
required by the clients.

The main threaded classes implemented by the server are:

• Device. This class reads the data collected by a
specific powermeter and stores all the active counters
that measurement.

• Counter. This class manages all the operations per-
formed on a counter. It is stored in the Device object

..
.

settings.py

C4C3C2C1 C5 C6

while (1)
{

   waiting for

   incoming requests
}

the instant of start−stop primitives
power measurementes array corresponding with
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Figure 5. Internal workings of the pmlib server.

it is associated with, and contains the data acquired
while the counter is running.

• Info. This class comprises information about the
devices and their configuration.

Figure 5 shows that the server can receive two types
of requests: a query on information about a device or an
operation on a counter. In the first case, the server creates
an Info object to obtain the required data from the settings
file, and sends this back to the client.

If the operation is a request to create a counter, the
server allocates a Counter object, which will manage
all subsequent operations on it, and stores the structure
in the appropriate Device object. After the creation of
a counter, the client should invoke pm_start_counter
to instruct the server to start recording samples, and
pm_stop_counter to stop doing it. The client can also
use pm_continue_counter to restart the recording pro-
cess, and force the server to record samples from other
fragments of the application code in the same counter,
generating different sets of data. Finally, all collected data
can be retrieved by invoking pm_get_counter_data.

C. A module to detect power-related states

Most current processors, from those designed for mobile
devices to desktop and HPC servers, adhere now to the
the Advanced Configuration and Power Interface (ACPI)
specification [7], which defines an open standard for device
configuration and power management from the operating
system.

For our power monitoring purposes, the ACPI specifica-
tion defines a series of processor states (or power modes),
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collectively known as C-states, that are valid on a per-core
basis. For example, the C-states available in one of our
power-monitored platforms (a server with two Intel Xeon
E5504 processors) are:

• C0. The core is in operating state (i.e., active or
executing instructions).

• C1. The core is inactive, but can return to an executing
state essentially instantaneously.

• C3. The core maintains all software-visible state, but
may take longer to wake up.

• C6. The core does not need to keep its cache coherent,
but maintains other state. Some architectures have vari-
ations on the C6 state that differ in how long it takes
to wake the processor.

A core in state C0 can be in one of several performance
states, referred to as P-states. These modes are architecture-
dependent, though P0 always corresponds to the highest-
performance state, with P1 to Pn being successively lower-
performance modes. In practice, the P-states differ in the
operation voltage-frequency pair, with P0 being always bind
to the highest pair.

Our power framework obtains a trace of the C- and P-
states of each core. For example, in order to obtain infor-
mation on the C-states, a daemon integrated into the power
framework accesses the file /sys/devices/system/
cpu/cpuX/cpuidle/stateY/time, for each cpu X
and state Y, with a user-configured frequency. The daemon
reads values from this file corresponding to the total time
(in microseconds) spent in a certain state. This value is then
subtracted from the previous read, normalized, and stored
together with a timestamp in a file with a user-selected
format.

Note that the state-recording daemon necessarily has to
run on the target application and, thus, it introduces a certain
overhead (in terms of execution time as well as power
consumption) that, depending on the software that is being
monitored, can become nonnegligible. To avoid this effect,
the user is advised to experimentally adjust the sampling
frequency of this daemon with care.

Figure 6 offers a graphical example of the information
that can be collected with our power-tracing framework,
when combined with the performance tracer Extrae and
the visualization tool Paraver. The view there corresponds
to the execution of a synthetic parallel benchmark that ran-
domly issues three types of computational kernels: dgemm
(matrix-matrix product), dtrsm (triangular system solve),
and sleep. The test was run using 8 threads on a platform
equipped with two Intel Xeon E5504 cores at 2.00 GHz, with
24 GBytes of RAM. The performance trace in the top plot
displays task activity per core; the second plot corresponds
to the aggregated power dissipated by the mainboard of
the machine, captured with the NI powermeter operating
at 1 KHz; the C-states trace in the third plot represents
the variations that cores experience between processor states

C0, C1, C3 and C6 (with a sampling frequency of 10 Hz).
The final part reports the same information contained in the
performance and C-states traces, but in numerical format.

V. RELATED WORK

An excellent survey on hardware, software, and hybrid
tools for power profiling is given in [8]. We next briefly
review some of these efforts, in particular, those proposing
solutions related to our framework.

PowerMon2 [9] is a hardware device which, coupled
between the computer’s PSU and mainboard, samples the
power running through the DC lines, offering a basic soft-
ware interface.

PowerPack [10] employs a commercial DC powermeter
from NI, much like ours, connected to the lines leaving
from the PSU. This package also performs a number of
tests with the purpose of identifying which lines feed dif-
ferent components such as disks, memory, network inter-
face controllers (NICs), processors, etc. This information is
then offered to the user who can gain insights on where
and how applications consume power. PowerPack exhibits
a user-friendly interface, and targets applications running
on single-node platforms, though PowerPack’s information
can be “manually” aggregated for parallel Message Passing
Interface (MPI) applications.

HDTrace [11] is a package to trace and simulate the
power-performance footprint of MPI programs on a cluster.
This software supports MPICH2 and the parallel file system
Parallel Virtual File System (PVFS). Recently, it has also
been extended to identify power hot spots in these applica-
tions, using information from commercial AC powermeters.

Compared with these other efforts, we believe that our
project provides a more complete framework with stronger
integration and a better modular design.

VI. CONCLUSIONS

We have presented a power-tracing framework composed
of internal/external powermeters, a power tracing modular
package, power-related modules, etc., that is easily inte-
grable with standard performance tracing and visualization
tools. The framework offers highly useful information on
power usage of scientific workloads running on a variety
of parallel platforms, from MPI applications operating on a
moderate-scale cluster to multi-threaded codes that execute
on a multicore+GPU platform.

We are currently using this framework to develop more
energy-efficient HPC linear algebra libraries, which leverage
idle periods during the execution using dynamic frequency-
voltage scaling and avoiding busy-waits. In the future, we
plan to extend this work to other numerical codes and
scientific applications in general, by integrating it into a
practical runtime task-scheduler.
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Figure 6. Example of performance and power traces captured by Extrae and the proposed power framework, visualized with Paraver.
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