
Energy Saving Potential of Adaptive, Networked, Embedded Systems - A Case Study

Patrick Heinrich1, Erik Oswald1 and Rudi Knorr1,2

1Fraunhofer Institute for Embedded Systems and Communication Technologies ESK, Munich, Germany
2Chair for Communication Systems, Institute of Computer Science, University of Augsburg, Germany

E-Mail: forename.surname@esk.fraunhofer.de

Abstract—This paper presents and evaluates the energy saving
potential of adaptive, networked, embedded systems. The aim
is to demonstrate the benefits of modeling the energy demand
during the development of such systems. For this purpose, the
previous developed energy model is applied within a case study
and different allocations of software components are compared.
The estimated energy demands of these allocations are presented
and discussed. The analyzed system of the case study represents
an automotive system which executes two advanced driver
assistance applications. The system is adaptive, which means that
temporally unnecessary applications will be deactivated. Within
the evaluated system this deactivation depends on the vehicle
speed, which is derived by the New European Driving Cycle.
Two different allocations of software components are evaluated.
One represents the today’s allocation, the other an energy-focused
allocation. The case study shows an energy saving potential of
about 18 %.

Keywords–Embedded systems; Adaptivity; Networked sys-
tems; Energy estimation; Automotive; Case study.

I. INTRODUCTION

Networked, embedded systems of modern cars consist of
up to 80 independent electronic control units (ECUs), which
cooperate to enable complex applications. These systems are
characterized by a high degree of interaction and consist of
different (specialized) communication networks [1]. Future
cars will probably enable autonomous driving, which further
increases the number of ECUs and the interaction between
these ECUs. However, future automobiles will also be adaptive
to decrease the energy demand by deactivating temporarily
unnecessary applications. Hereby, the chosen allocation of
software components on the network’s ECUs is relevant
w.r.t. the energy demand [2]. This is caused by different
applicable energy saving states and energy demand necessary
to (de)activate hardware and software. The allocation is done
by system designers relatively early within the development
process [3], which makes it necessary to estimate the later
energy consumption at that time using the available information.

In today’s luxury-class vehicles for instance, the electrical
and electronic components draw up to 2.5 kW [4][5]. Compared
to what the vehicle engine requires (e.g., 55 kW), 2.5 kW
seems small. However, the electrical components consume
energy during every mode of operation, even when in standby
mode. The vehicle engine consumes most of its energy
during acceleration and even here the maximum power is
seldom demanded. Communication and sensors/actuators cause
an increasing amount of energy consumption of networked

embedded systems. An increase of 100 Watt thus means that
fuel consumption rises by 0.1 liter per 100 km, leading to
an increase in CO2 emissions of 2.5 gram per km [4]. This
illustrates the considerable relevance for energy savings, an
aspect that should be factored in during the development.

This paper presents an automotive case study to demonstrate
the energy saving potential, which is usable when the energy
demand of such systems is modeled previously to the allocation
of software components. In Section II, the previous work and
in Section III the characteristics of the system are presented
on which the case study is based. The case study is described
within Section IV. In Section V and VI, the energy demand
estimation is presented and discussed. Finally, Section VII
concludes the paper.

II. RELATED WORK

The energy models used to estimate the energy demand
within this case study are based on previous work, which
has focused the various elements of adaptive, networked,
embedded systems. The necessity to model the energy demand
of adaptivity and the uncommon fact that suboptimal (w.r.t the
energy demand) allocations of software components per system
state may form an optimized adaptive system was described
within [6]. Different approaches to estimate the energy demand
previous to system integration, e.g., during development of
the system, were presented within [7]. Based on this work
the further developed models focused on the energy demand
estimation during the development phase where the software
components are allocated within the networked system. This
enables a good trade-off between the inaccuracy of early energy
estimations and the available energy saving potential of the
later system – which is reduced after every decision within the
development process [7]. Within [8] a model is presented
which enables the energy demand estimation of software
components executed on embedded systems. The estimation is
based on program flowcharts and enables an accuracy between
-11.9 % and +6.9 %. Embedded systems (ECUs) including
sensors/actuators and offset energy demand were modeled
within [9]. This also includes the effects of parallel execution
of software components on the energy demand of adaptive
ECUs. This work focused on aspects of adaptive systems where
temporarily unnecessary software components are deactivated.
The energy demand of communication between embedded
system is modeled within [10]. These communication networks

1Copyright (c) IARIA, 2016. ISBN: 978-1-61208-484-8

ENERGY 2016 : The Sixth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

Etotal =

#ECUs∑
i=1

software component︷ ︸︸ ︷

#SWCs∑
j=1

(Eflowj · τcorr)+ESensAkti + EECUi

︸ ︷︷ ︸

adaptive, embedded system

+

communication︷ ︸︸ ︷
Ecom

︸ ︷︷ ︸
adaptive, networked, embedded system

(1)

are characterized by heterogeneity and a high degree of
interaction between the specialized parts of the network.
The presented model is based on individual communication
connections which significantly simplifies the energy demand
estimation of adaptive systems. The model enables estimations
within an error range of -2.4 % and +2.8 %, which is very
accurate.
Equation (1) summarized the presented parts of the energy
model. The energy demand of the system is represented by
Etotal. The networked system consist of a number of ECUs
(#ECUs) which communicate via communication networks
demanding the energy amount represented by Ecom. The
energy demand to execute software components on an ECU is
represented by the number of software components (#SWCs),
the energy demands of the program flowcharts (Eflow) and
the correction factor τcorr (cf. [8]). The symbol ESensAkt

represents the energy demand of sensors and actuators, the
symbol EECU the offset energy demand of ECUs. The detailed
calculation of the symbols is presented within the considered
previous work.

In the following section, the characteristics of adaptive,
networked, embedded systems are presented.

III. ADAPTIVE, NETWORKED, EMBEDDED SYSTEMS

Networked, embedded systems as found within the automo-
tive sector are characterized by a high degree of heterogene-
ity [11]. This means different kind of ECUs by various suppliers
and different types of communication protocols and topologies
resulted by specialized technologies. A common hardware
architecture of networked embedded systems is shown within
Figure 1. Additionally, these systems are characterized by a high
degree of interaction, which means that applications (which are
experienced by the user) are spread over various ECUs within
the networked, embedded system. These individual components
are commonly used for more than one application, i.e., the
rain sensors is used to control the windshield wipers and
also to parametrize the Electronic Stability Program (ESP).
Adaptivity within embedded systems enables the deactivation
of temporarily unnecessary functionality including its hardware.
This enables the design of more energy efficient systems, but
significantly enlarges the number of possible system designs.
Furthermore, factors such as time and energy for (de)activation
and availability of different kind of sleep modes are relevant
now. Adaptivity necessitates considering the whole systems
instead of just looking at individual components, because it is

CAN MOST CAN FlexRay CAN

Ethernet

Figure 1. Typical networked embedded system (BMW 7 series) [adapted from
BMW 2005, quoted from [12]]

possible that individual suboptimal systems form together a
more energy efficient system [6].

Embedded systems within the automobiles commonly ex-
ecute safety-critical applications, which results in real-time
constraints, for example concerning transmission and response
times. System designers of networked, embedded systems are
also faced with a lot of other constraints and limitations (e.g.
performance and memory limitations, timing constraints and
heterogeneity). The energy demand is just one of the aspects
system designer have to consider. However, this aspect has
become increasingly important over the last few years.

In the following section, details concerning hardware and
software architecture and the adaptivity of the system consid-
ered within the case study are presented.

IV. CASE STUDY

Within this section the advanced driver assistance systems
considered in the case study are explained and the resulted
software architectures are presented. Afterwards, the considered
hardware architecture including the energy relevant parameters
are discussed. And finally the adaptivity of the system and the
relevant system context is pointed out.

A. Advanced Driver Assistance Systems

The two advanced driver assistance systems which software
components are allocated within the networked system are
Adaptive Cruise Control (ACC) and Automatic Parking Assist
(APA), which are explained in the following.

1) Adaptive Cruise Control: This system automatically
adjusts the vehicle speed to maintain a given distance from
a vehicle ahead. The distance is measured using sensors like
radar sensors. To enable such a functionality different electronic

2Copyright (c) IARIA, 2016. ISBN: 978-1-61208-484-8

ENERGY 2016 : The Sixth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

control units (ECUs) have to interact, e.g., within an AUDI A8
80 ECUs are part of this system [13]. An ACC system consist
of different components (cf. [14][13][15] [16][17]). An object
recognition is used to detect vehicles ahead and determine the
absolute speed. Therefore long-range and short-range radar
sensors are used. Additionally, the data is used to predict the
probable course of the own vehicle to avoid the detection of
irrelevant objects. To do so, additional input from a path and
curve calculation is necessary, which uses data from yaw rate
and steering angle sensors. The main components of ACC are
the control loops to control the vehicle speed and to follow
the vehicle ahead. Depending on the final implementation,
the calculated required torque or deceleration is transmitted
to engine or brake control. Figure 2 represents the derived
software architecture of the ACC system as it is used within
the case study. A long-range and a short-range radar including
the signal processing are used to recognize objects (vehicles)
ahead. Sensors for wheel speed, yaw rate and steering angle are
used to analyze the current and future status of the own vehicle
(including path and curve calculation and course prediction).
This information is used to enable the control loops, which
are summarized within “ACC Control”. Engine and brake
control execute the calculated acceleration or deceleration. The
arrows – refined with the number of bytes transfered – represent
communication.

Engine Control Brake Control

256

16

64

6432

64

32

Signal
Processing

LRR

Steering Angle
Sensor

Long-Range
Radar

Course
Prediction

Object
Recognition

LRR

256

64
Signal

Processing
SRR-F

Short-Range
Radar (Front)

32

64

Path & Curve
Calculation

Yaw Rate
Sensor

32

64

32

Sensors

Comput.

Actuators
Wheel Speed

Sensor
Object

Recognition
SRR-F

ACC Control

Comm.

Figure 2. Software architecture of Adaptive Cruise Control

2) Automatic Parking Assist: This driver assistance system
enables a driver to automatically park into suitable parking
spaces (cf. [18]). Short-range radar or ultrasonic sensor at
front and rear are used to measure the distance between the
vehicles. The system controls engine, brake and steering wheel
to maneuver and park the vehicle automatically. Sensors for
wheel speed, yaw rate and steering angle are used to monitor
the vehicle’s parking operations. Figure 3 shows the derived
software architecture of the automatic parking assist system.
Two radar sensors including signal processing and object
recognition observe front and rear of the vehicle. Wheel speed,
yaw rate and steering angle sensor are additionally used to
control the parking assistant. Engine, brake and steering control
execute the calculated acceleration, deceleration and steering.

Sensors

Comput.

Actuators

Comm.

Engine Control Brake Control

16 32

Steering Angle
Sensor

Parking
Assistant
Control

256 64
Signal

Processing
SRR-F

Short-Range
Radar (Front)

256
64

Signal
Processing

SRR-R

Short-Range
Radar (Rear)

32

Yaw Rate
Sensor

32

64

64

32

Wheel Speed
Sensor

Object
Recognition

SRR-R

Object
Recognition

SRR-F

Steering Control

32

Figure 3. Software architecture of Automatic Parking Assist

Within this case study the driver assistance systems Adaptive
Cruise Control and Automatic Parking Assist are used to
represent an automotive system. These systems are real-time
critical, which results in a suitable high control frequency.
Hansson et al. [19] define the control frequency of ACC with
10 Hz, which represents an response time of 100 ms. This
value is used as cycle time of the ACC’s and APA’s software
components. Furthermore, some of the software components
are represented within both applications. If ACC and APA are
active at the same time, the identical software components
are executed just once and provides the required information
to the following software components of both applications.
Table I presents the relevant parameters of the software
components, which i.a. are derived from [19] and [20]. The
relevant parameters are: execution time, cycle, time, deadline
and produced (data) output.

In the following subsection, the hardware architecture and
the energy relevant parameters of the system are introduced.

B. Hardware Architecture and Energy Parameters

Within this subsection, the properties of the system are
presented. That means in detail, ECUs including sensors and
actuators, software components and adaptivity. The hardware
architecture of the case study is based on the networked,
embedded system of a BMW 7 series (as shown in Figure 1).
The chosen hardware architecture is presented within Figure 4,
where the topology is similar but the number of ECUs is
reduced. The case study’s validity is not influenced through that
reduction, because grouping software components is focused by
both considered “allocation styles” (cf. Subsection VI-A). Equal
distribution of software components normally increases the
energy demand, caused by the offset energy demand of ECUs,
which is independent of the number of software components
running on an ECU.

Within the case study just one ECU is defined, which is
equipable with different sensors and actuators. The reason for
this is that ECUs with different energy efficiencies would
concentrate the software components on the most energy

3Copyright (c) IARIA, 2016. ISBN: 978-1-61208-484-8

ENERGY 2016 : The Sixth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

K-CAN System K-CAN Peripherals
Fl R

PT-CANEthernet

1

3

2

4

5

6

8

7

9

11

14

12

15
13

10

16 17

18

Figure 4. Simplified network topology of the case study, based on the networked, embedded system of the BMW 7 series (cf. Figure 1). Note: The numbers
are used to identify the ECUs during allocation of the software components.

efficient ECUs. However, the purpose of this case study is to
demonstrate the energy saving potential of adaptive, networked,
embedded systems. Different ECUs would increase complexity
without an advantage. Therefore, just one energy saving state
of the components is defined. E.g. the µController has three
states – running, idle and sleep. The characteristics of the used
µController are derived from existing µControllers like the
“MPC5674F” [21] of Freescale Semiconductor, which works
at 264 MHz and has a power demand of 850 mA at 1.32 Volt.
A current consumption of 100 mA during idle operations is
assumed. The activation time depends on the phase-locked loop
(PLL) lock time and was specified with 400 µs. The time for
deactivation is assumed to bei 50 µs. This results in an energy
demand of 0.5 mWs per deactivation including activation of
the µController. The offset power demand of the defined ECU
is specified with 1.5 W, which includes the energy demand
of components such as the power supply unit and the voltage
regulators. Weber et al. [22] have defined a Body Control
Module with a power consumption of 10.75 W, where 1 W
is used for the µController and 4 W is defined as ECU offset
power consumption. The ECU offset power consumption within
the case study is defined at the lower range of possible values,
because the full capacity of the defined system is not used by
the two driver assistant systems. Through that a falsification of
the percentage ration of the energy demand within the system
is prevented. The effect on other components is low, because
most scale with the utilization of the ECU. (This is not the
case for the states idle or sleep. However, the energy demand is
lower and through that estimations errors have a lower impact.)

Due to works which try to reduce the energy demand of
sensors and actuators (such as Benbasat [23]) the activation
time is assumed to be much smaller than the cycle time of the
used sensors and actuators. That means these components are
deactivateable after the software component execution. (This is
not the case for short-term interruption caused by scheduling.)
This is another reason why activation time of sensors and
actuators are necessary to reach more accurate energy demand
estimations. Radar systems within the automotive area have a
power demand of about 4 to 4.5 W (cf. [24] and [25]). The
long-range radar used within this case study is defined to have
a power consumption of 4.5 W and an activation time of 25 ms.
The short-range radar consumes 1.75 W of power and need
25 ms to get active. The power consumption of “Engine-”,

“Brake-” und “Steering-Control” are derived from the Auto-
motive Engine Control IC [26] of Freescale Semiconductors.
(Note: Components such as relays, servomotors, spark plugs,
etc. are not concerned within this work. That is why just
the control unit is considered.) The Engine Control IC has
a voltage range of 4.5 to 36 V with a maximum current of
14 mA. The power demand is defined to be 168 mW (12 V,
14 mA) and the activation time to be 1 ms. Rotations speed
sensors such as “KMI17/4” [27] of NXP Semiconductors are
defined with a turn on delay time of 1 ms. (This value is also
used for the wheel speed and the angle sensor.) The energy
demand is defined with 120 mWs, because a voltage of 12 V is
assumed, which results a current of 10 mA. Angle sensors such
as “KMA220” [28] of NXP Semiconductors need a voltage
supply of 5 V and have a current demand of 10 to 21 mA.
Through that, the “Steering Angle Sensor” of this case study
is assumed to have a power demand of 75 mW. The properties
of the used yaw rate sensor is derived by the combined inertial
sensor for vehicle dynamics control “SMI650” [29] of Robert
Bosch GmbH. The data sheet specifies a necessary voltage
supply of 5 V and a current demand of 25 mA. This results in
a power demand of 125 mW. An activation time of 650 ms is
specified, which includes a detailed self test. It is assumed that
the self test is just relevant during the initial start of the system
and not after every sleep state. Through that an activation
time of 5 ms is defined for the case study. Table II shows the
derived parameters concerning the energy demand of sensors
and actuators including the activation time. (Note: This work
focuses on the electronic system, e.g., the components like the
engine, which is controlled by “Engine Control” is excluded.)

The energy relevant parameters of the communication
networks are derived from the measured values at [10]. The
parameters for Ethernet are derived from data sheets. The CAN
network within the case study uses a data rate of 500 kbit/s.
Due to the specification [30] eight bytes per message are user
data and 44 bits are communication overhead. The energy
relevant parameters of the “High-Speed CAN Transceiver
MCP2561” [31] and of the “Stand-Alone CAN Controller with
SPI Interface MCP2515” [32] are used. The Ethernet network
works with a data rate of 10 Mbit/s. A maximum of 1500 bytes
per message are user data and 144 bits are communication
overhead. The Ethernet transceiver “LAN8710A” [33] and
the Ethernet controller “CS8900A” [34] were served as basis

4Copyright (c) IARIA, 2016. ISBN: 978-1-61208-484-8

ENERGY 2016 : The Sixth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

to derive the energy relevant parameters. However, a more
efficient sleep state was assumed. Table III summarizes the
energy relevant values of the used communication networks.

Within the work which models the energy demand of
embedded communication networks [10] a energy demand to
transfer data between networks is defined as “transfer energy”.
This energy demand depends on the used µController and
the network on both sides of the gateway. Identical networks
result a smaller energy demand, than different networks, e.g.,
because of the need to split user data or handle different data
rates. Within the case study a energy demand of 0.12 mWs
per message is defined and a transmission time of 0.1 ms.
If the gateway is a specialized router or switch, than half of
the energy demand is assumed. Caused by unproven values,
the energy parameters are estimated at the lower range of the
possible values to prevent distortions.

The energy demand necessary for the system’s adaptivity
is determined by the (de)activation of software components
and ECUs. The energy demand to activate or deactivate a
software component is determined to be 5.61 mWs. This value
is estimated by the summarized value of 5 ms for self test,
safe/load data, etc. and the power consumption of the used
µController of 1122 mW. The (de)activation of entire ECUs
is defined with the energy demand of 2.5 Ws. This value
is resulted from the power consumption of a Body Control
Modul [22], which has a power demand of 10 W and an
activation time of 250 ms. An activation time of 100 to 200 ms
is necessary to boot up the ECU and the additionally need to
receive all necessary messages to get the actual data to work
with [35]. This results in the value of 2.5 Ws.

Within the following subsection the characteristics of the
system concerning adaptivity are presented.

C. Adaptivity

The analyzed system within this case study is adaptive
as presented within Section III, i.e., deactivates temporarily
unnecessary hardware and software components. (The necessary
energy demand was already presented within the subsection
before.) The need of a specific application arises by an user
request or the actual context (environment) of the vehicle. For
example, windshield wipers are just necessary, if there is rain or
other kind of water at the windshield, or an automatic parking
assist is not necessary at high speed.

The analyzed driver assistant systems within this case study
are activated depending on the current speed of the vehicle,
i.e., the relevant system context is “Vehicle Speed”. This input
is relevant to analyze the energy demand of the system. Within
this case study the very common New European Driving Cycle
(NEDC) is used to derive the speed profile. The NEDC is
used to measure a compareable fuel consumption of vehicles
by the manufacturer. The NEDC is standardized within the
“Directive 98/69/EC of the European Parliament and of the
Council” [36] and defines a drive of 11 kilometers within
1180 seconds. Four identical phases represent urban driving

(average speed: 19 km/h) and a phase which represents an
overland tour (maximum speed: 120 km/h). Figure 5 shows
the resulting speed profile over time.

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200

Zeit [s]

G
es

ch
w

in
di

gk
ei

t [
km

/h
]

Time [s]

S
pe

ed
[k

m
/h

]

Figure 5. Speed profile over time derived from the New European Driving
Cycle (NEDC) [Adapted from [37]]

The speed profile is used to determine the necessity of
software components, sensors and actuators during the different
speeds of the vehicle. ACCs are commonly activated at a
speed larger than 30 km/h. An automatic parking assist can be
reasonable used at a speed below 15 km/h. Table I shows the
necessary components at three speed ranges (Column 2 to 4),
which are necessary to enable the needed functionality of the
vehicle.

In the following subsection, the implemented simulation is
briefly outlined and the assumptions made are specified.

V. DISCRETE EVENT-DRIVEN SIMULATION

Within this section an event-driven simulation is presented,
which is applied to the previously presented system of the
case study to estimate the energy demand of two different
allocations of software components. The developed simulation
uses the concept of an event-driven simulation as presented by
Banks et al. [38] (cf. also [39] and [40]) and is implemented
as discrete event-driven simulation, because the system only
changes after discrete events. The considered system is adaptive
(cf. Section III), i.e., the energy demand depends on the system
context and the previously executed system state. That means
it is necessary to simulate the context of the system as it is
defined by Zeigler et al. [41], where the model has to generate
the necessary data and the simulation the model’s behavior.

The simulation focuses the allocation of software components
within a given hardware architecture. This enables to optimize
the allocation of software components or the optimized integra-
tion of new software components into an existing system. (The
usage within Design Space Explorations would be possible,
but is not considered within this work.) The position of
necessary sensors and actuators can be predetermined, if there
are hardware restrictions, or the position is resulted from the
allocation of the affiliated software component. A mixture is
also possible. However, within this case study the position of
sensors and actuators are not predetermined. Furthermore, the

5Copyright (c) IARIA, 2016. ISBN: 978-1-61208-484-8

ENERGY 2016 : The Sixth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

TABLE I. STATES OF SOFTWARE COMPONENTS, SENSORS AND ACTUATORS DURING DIFFERENT VEHICLE SPEEDS AND THEIR SOFTWARE
RELEVANT PARAMETERS

Software Component, v < 15 km/h v ≥ 15 km/h v > 30 km/h Exec. Time Cycle Time Deadline Output
Sensors, Actuators v ≤ 30 km/h
Long-Range Radar OFF OFF ON 25 ms 100 ms 100 ms 256 Bit
Signal Processing (LRR) OFF OFF ON 9 ms 100 ms 100 ms 64 Bit
Object Recognition (LRR) OFF OFF ON 30 ms 100 ms 100 ms 64 Bit
Short-Range Radar (Front) ON OFF ON 15 ms 100 ms 100 ms 256 Bit
Signal Processing (SRR-F) ON OFF ON 9 ms 100 ms 100 ms 64 Bit
Object Recognition (SRR-F) ON OFF ON 30 ms 100 ms 100 ms 64 Bit
Short-Range Radar (Rear) ON OFF OFF 15 ms 100 ms 100 ms 256 Bit
Signal Processing (SRR-R) ON OFF OFF 9 ms 100 ms 100 ms 64 Bit
Object Recognition (SRR-R) ON OFF OFF 30 ms 100 ms 100 ms 64 Bit
Path & Curve Calculation OFF OFF ON 25 ms 100 ms 100 ms 64 Bit
Course Prediction OFF OFF ON 25 ms 100 ms 100 ms 64 Bit
ACC Control OFF OFF ON 5 ms 100 ms 100 ms 2x 32 Bit
Parking Assistant Control ON OFF OFF 20 ms 100 ms 100 ms 3x 32 Bit
Engine Control ON ON ON 3 ms 30 ms 30 ms -
Brake Control ON ON ON 3 ms 30 ms 30 ms -
Steering Control ON ON ON 3 ms 30 ms 30 ms -
Wheel Speed Sensor ON ON ON 5 ms 30 ms 30 ms 32 Bit
Steering Angle Sensor ON OFF ON 5 ms 30 ms 30 ms 16 Bit
Yaw Rate Sensor ON OFF ON 10 ms 50 ms 50 ms 32 Bit

TABLE II. ENERGY RELEVANT PARAMETERS OF SENSORS AND
ACTUATORS

Sensor/Actuator Power Consump. Activation Time
Long-Range Radar 4.500 mW 25 ms
Short-Range Radar 1750 mW 25 ms
Engine Control 168 mW 1 ms
Brake Control 168 mW 1 ms
Steering Control 168 mW 1 ms
Wheel Speed Sensor 120 mW 1 ms
Steering Angle Sensor 75 mW 1 ms
Yaw Rate Sensor 125 mW 5 ms

TABLE III. ENERGY RELEVANT PARAMETERS OF COMMUNICATION

Component CAN TRX CAN CC Eth. TRX Eth. CC
TX 152 mW 1.1 mW 35.5 mW 8.2 mW
TX#Nodes 13.1 mW 0.02 mW - -
RX 2.5 mW 0.3 mW 16.5 mW 2.1 mW
RX#Nodes 0.01 mW 0.01 mW - -
Offset 22 mW 23 mW 44 mW 154.7 mW
Sleep 50 µW 20 µW 560 µW 330 µW

allocation of the specific software components are identical
within the different system states, i.e., a reallocation of software
components during runtime is not considered within this case
study. (Simulation and the energy model are able to cope with
a reallocation during runtime of the system, but this is not
considered within this work.)

Equation (1) is used within the implemented simulation
to estimate the energy demand of the later system. Some
assumptions which specify the behavior of the system are
necessary to made to determine the equation input data.

The execution times of software components vary from ECU
to ECU, where the processor frequency has a large influence.
In accordance with Walla et al. [42], the execution time is
assumed to be inversely proportional to the processor frequency.

On processors the software components are scheduled by the
Round Robin algorithm, which is preemptive and based on
fixed time slices for each process. It is assumed that the
time slices are much shorter than the execution times of the
software components, i.e., execution times are enlarged, if
more than one software component is active at the same
time. Furthermore, it is assumed, that software component
specific sensors and actuators are only active, when the
affiliated software component is active. This results in an
energy demand to (de)activate sensors and actuators, however,
as described within Subsection IV-B this energy is less than
the energy needed to stay active. Further power management
techniques like Dynamic Voltage Scaling are not used, because
executing software components at maximum processor speed
and deactivation afterwards is more energy efficient, if the
entire system is considered [43]. Additionally, it is assumed
that the communication data rate is used efficiently, i.e., splitting
payload is just done, if necessary. Through that the necessary
overhead is determinable, even if no further details concerning
the kind of communication is available.

To simulate the system context the given speed profile
of the NEDC is analyzed to divide the time sequence into
slices with non-changing system states. Equation (1) enables
to determine the energy demand of every system states. The
transitions between system configurations are considered using
the necessary energy demands for activation and deactivation
of software and hardware components as described within
Subsection IV-B.

In addition, different constraints are checked to verify the
validity of the allocation. This includes obtaining deadlines of
software components, maximum data rate of a network and
workload of CPUs. The CPU workload is determined using the
resulting workloads of the software components. The workload

6Copyright (c) IARIA, 2016. ISBN: 978-1-61208-484-8

ENERGY 2016 : The Sixth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

is not allowed to exceed 100 % or a given maximum value.
The data rate is verified using the transmitted data per network,
if bus based communication is used. Using full-duplex Ethernet
the data rate per interface and direction is analyzed. It is also
possible to extend the constraint checks, however, this is not
focus of this work. The deadline of software components are
examined by comparing the execution time after the scheduling
process. Within this case study it is assumed that the deadline
of the software components is equal to the cycle time.

In the following section, the examined allocations of software
components within the system are detailed and the results of
the energy demand estimation are presented and discussed.

VI. ENERGY DEMAND ESTIMATION

The energy demand of the presented system (Section IV) is
estimated using the introduced simulation (Section V), which
is based on the given energy estimation model (Section II). The
speed profile provided by the NEDC (cf. Subsection IV-C) is
used as system context, which results 48 configuration changes
during the NDEC according to the thresholds shown in Table I.

Within the following, the two considered allocations of
software components are presented. Afterwards, the estimated
energy demand of the system is presented and discussed.

A. Allocation of Software Components

Two possible allocations of software components within the
hardware architecture are considered. A so-called “Function-
based Allocation”, which represents the current usual kind of
allocation. That means software components associated to a
specific functionality are grouped together on one or just a few
hardware components. This is due to the fact that suppliers
had previously provided hardware and software components
as an integrated system. This paradigm changes nowadays
and software components become independent from hardware
components, e.g., using standardized software architectures
such as AUTOSAR [44]. The other allocation is called
“Energy-focused Allocation” where the software components
are placed to reduce the energy demand of the system. Within
an adaptive system it is relevant to take the usage of the
system into consideration, e.g., it is advantageous to group
software components which are needed at the same time. This
reduces for example the energy demand to activate ECUs.
Table IV shows the allocation of the software components to the
hardware components of the presented hardware architecture
(Section IV-B).

In the following subsection, the estimated energy demands
using these allocations are presented.

B. Energy Demand Estimation

Table V shows the resulted energy demand estimation of the
two previously presented allocations of software components
within the hardware architecture. Beside the energy demand of
the entire system, the percentage of energy demand for CPU,
ECU offset, sensors/actuators, communication and adaptivity is

TABLE IV. ALLOCATION OF SOFTWARE COMPONENTS, SENSORS
AND ACTUATORS ON ECUS (ECU NUMBERS ACCORDING TO

FIGURE 4)

Software Component, Allocation Allocation
Sensor, Actuator “Func.-based” “En.-focused”
Long-Range Radar #16 #2
Signal Processing (LRR) #16 #1
Object Recognition (LRR) #16 #1
Short-Range Radar (Front) #2 #2
Signal Processing (SRR-F) #2 #1
Object Recognition (SRR-F) #4 #1
Short-Range Radar (Rear) #2 #2
Signal Processing (SRR-R) #2 #1
Object Recognition (SRR-R) #4 #1
Path & Curve Calculation #16 #17
Course Prediction #16 #17
ACC Control #16 #17
Parking Assistant Control #4 #17
Engine Control #18 #16
Brake Control #16 #16
Steering Control #12 #16
Wheel Speed Sensor #17 #18
Steering Angle Sensor #12 #18
Yaw Rate Sensor #17 #18

shown. (This work focuses on the electronic system, e.g., the
components like the engine, which is controlled by “Engine
Control” is excluded.) Table VI further details the energy
demand for communication (cf. [10]) and adaptivity (cf.
Subsection IV-B).

In the following subsection, the presented energy demand
estimations are discussed.

C. Discussion

As shown within Table V, the energy demand of the
“Energy-focused Allocation” is about 18 % less than of the
“Function-based Allocation”. The column “Difference” shows
that the energy for CPU, ECU offset, sensors/actuators and
communication is decreased and the energy for adaptivity is
increased. As shown, the increased energy demand is less than
the decreased energy, which results an energy saving in total.
However, the increase of energy of adaptivity is resulted by
the possibility to deactivate software components and ECUs.
As shown in Table VI most of the energy is necessary for
(de)activation of ECUs, which enables the saving of the ECU
offset energy demand. It is mentionable that just the system
context “Vehicle Speed” is evaluated in this case study and
just two applications are available. Within real vehicles a lot
more applications are executed (cf. Section III) and more
context information is interpretable. Through that a lot of
system states are possible, which may result a lot of energy to
enable adaptivity. Even within the 1180 seconds of the NDEC
the system has to switch the states 48-times. Through that,
it is necessary to model and evaluate the energy demands of
different allocations to evaluate and reach a trade-off. However,
a deactivation of components to save energy is only useful,
if more energy is saved than needed for the deactivation and
activation process [2].

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-484-8

ENERGY 2016 : The Sixth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

TABLE V. ESTIMATED ENERGY DEMAND OF THE SOFTWARE COMPONENT ALLOCATIONS “FUNCTION-BASED ALLOCATION” AND
“ENERGY-FOCUSED ALLOCATION”

Function-based Energy-focused
Energy Demand Percentage Energy Demand Percentage Difference

System 20725.11 Ws 16989.03 Ws -3736.08 Ws -18.03 %
CPU 3441.16 Ws 16.61 % 3330.85 Ws 19.61 % -110.31 Ws -3.21 %
ECU Offset 9372.00 Ws 45.22 % 8229.00 Ws 48.44 % -1143.00 Ws -12.20 %
Sensors/Actuators 4711.41 Ws 22.73 % 3570.02 Ws 21.01 % -1141.39 Ws -24.23 %
Communication 2933.12 Ws 14.15 % 1526.24 Ws 8.98 % -1406.88 Ws -47.97 %
Adaptivity 267.42 Ws 1.29 % 332.92 Ws 1.96 % +65.50 Ws +24.49 %

TABLE VI. ENERGY DEMAND IN DETAIL FOR COMMUNICATION AND ADAPTIVITY OF THE “FUNCTION-BASED ALLOCATION” AND THE
“ENERGY-FOCUSED ALLOCATION”

Function-based Energy-focused
Energy Demand Percentage Energy Demand Percentage

Communication 2933.12 Ws 1526.24 Ws
Comm. Connections (incl. Transfer) 2091.21 Ws 71.30 % 1052.30 Ws 68.95 %
Transfer 11.50 Ws 0.39 % 13.37 Ws 0.88 %
Listener 838.84 Ws 28.60 % 469.02 Ws 30.73 %
Energy Saving Mode 0.10 Ws 0.10 % 4.93 Ws 0.32 %

Adaptivity 267.42 Ws 332.93 Ws
(De)Activation of Software Components 2.42 Ws 0.91 % 2.92 Ws 0.88 %
(De)Activation of ECUs 265.00 Ws 99.09 % 330.00 Ws 99.12 %

The resulted energy demand of the case study also shows that
the energy savings are realized by the ECU, sensor/actuators
and communication instead of the CPU. Today’s CPUs are
highly optimized and further energy saving potential is difficult
to reach. In addition, the percentage of different energy
demands are more or less equal between the two allocations.
This means that it is necessary to consider the entire system,
instead of focusing a specific part of the system. The case study
shows the relevance of modeling the energy demand of adaptive,
networked, embedded systems as a whole. The accuracy of
the estimation depends on the considered system. Using the
accuracy ranges presented within the previous work concerning
the energy model (cf. Section II) the accuracy is theoretically
between -11.4 % and +7.1 %. (The estimation accuracy of ECU
offset and adaptivity energy demand is estimated to be ±10 %.)

In the following section, the results are concluded.

VII. CONCLUSION

This paper presented a case study, which shows the ap-
plicability of the energy model, which was presented within
previous work, and demonstrates the possible energy saving
potential within adaptive, networked, embedded systems. The
energy model is part of previous work and was used within this
case study to estimate the energy demand of two allocations
of software components.

Within the case study of this paper two advanced driver
assistant systems were presented in detail including the resulting
software architecture and the necessary software components.
The considered system is adaptive and deactivates temporarily
unnecessary software and hardware components which are not
needed during the current system context. Within this case study
the vehicle speed was used as the system context, which was

derived by the New European Driving Cycle. Different speed
thresholds result the activation or deactivation of (un)necessary
components. The considered hardware architecture and the
energy relevant parameters were presented. Afterwards, a
simulation was briefly explained, which enables the estimation
of the energy demand of an adaptive, networked, embedded
system during a specific system context. Finally, the estimated
energy demand of the two software component allocations
were presented and the results discussed. The simulation results
showed an energy saving potential of about 18 %. The energy
demand of the adaptivity process itself increases significantly,
nevertheless this is still less than the enabled energy saving of
the other components resulted by adaptivity.

The results of this paper showed the relevance of modeling
the energy demand of adaptive, networked, embedded systems
and a considerable energy saving potential. This kind of
estimation at the network level needs an appropriate energy
model to estimate the energy demand of adaptive, networked,
embedded systems during the development of the system, which
was presented within previous work.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the German Federal Ministry for Economic Affairs and
Energy (BMWi).

REFERENCES

[1] A. Barthels, J. Fröschl, H.-U. Michel, and U. Baumgarten, “An Archi-
tecture for Power Management in Automotive Systems,” in Proceedings
of the International Conference on Architecture of Computing Systems,
vol. 7179, Springer, 2012, pp. 63–73, ISBN: 978-3-642-28292-8.

8Copyright (c) IARIA, 2016. ISBN: 978-1-61208-484-8

ENERGY 2016 : The Sixth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

[2] C. Schmutzler, A. Krüger, F. Schuster, and M. Simons, “Energy
efficient automotive networks: state of the art and challenges ahead,”
in International Journal of Communication Networks and Distributed
Systems, vol. 9, no. 3/4, 2012, pp. 266–285, ISSN: 1754-3916.

[3] J. Weber, “Automotive Development Processes: Processes for Success-
ful Customer Oriented Vehicle Development,” Springer-Verlag Berlin
Heidelberg, 2009, ISBN: 978-3-642-01253-2.

[4] A. Monetti, T. Otter, and N. Ulshöfer, “Spritverbrauch senken, Reichweite
erhöhen: System-Basis-Chip für den Teilnetzbetrieb am CAN-Bus,”
Elektronik Automotive, no. 11, 2011, pp. 24–27, ISSN: 1614-0125.

[5] A. D. Little, “Market and Technology Study Automotive Power
Electronics 2015,” 2006, URL: www.adlittle.com/downloads/tx adlre
ports/ADL Study Power Electronics 2015.pdf [accessed: 2016-05-17].

[6] P. Heinrich and C. Prehofer, “Network-Wide Energy Optimization for
Adaptive Embedded Systems,” ACM SIGBED Review, vol. 10, no. 1,
2013, pp. 33–36, ISSN: 1551-3688.

[7] P. Heinrich and C. Prehofer, “Early Energy Estimation in the Design
Process of Networked Embedded Systems,” in Proceedings of the
3rd International Conference on Pervasive Embedded Computing and
Communication Systems, 2013, pp. 214–220, ISBN: 978-989-8565-43-3.

[8] P. Heinrich, H. Bergler, and D. Eilers, “Energy Consumption Estimation
of Software Components based on Program Flowcharts,” in Proceedings
of the 11th IEEE International Conference on Embedded Software and
Systems (ICESS), 2014, pp. 550-553, ISBN: 978-1-4799-6122-1.

[9] P. Heinrich, H. Bergler, and E. Oswald, “Early Energy Estimation
of Networked Embedded Systems Executing Concurrent Software
Components,” in International Journal of Modeling and Optimization,
vol. 5, no. 2, pp. 119–127, 2015, ISSN: 2010-3697.

[10] P. Heinrich, D. Gossen, E. Oswald, and R. Knorr, “Early Energy
Estimation of Heterogeneous Embedded Networks within Adaptive
Systems,” in Energy Efficient Vehicles 2015, B. Bäker and L. Morawietz,
Eds., Dresden: TUDpress, 2015, pp. 64–76, ISBN: 978-395-9080-08-8.

[11] P. Marwedel, “Embedded System Design: Embedded Systems Foun-
dations of Cyber-Physical Systems,” 2nd ed., Springer, 2011, ISBN:
978-940-0702-56-1.

[12] A. Metzner, “Effizienter Entwurf verteilter eingebetteter Echtzeit-
Systeme,” Dissertation, Universität Oldenburg, 2007.

[13] AUDI AG, “Adaptive Cruise Control with Stop & Go Function,”
2011, URL: www.audi-technology-portal.de/en/electrics-electronics/
driver-assistant-systems/adaptive-cruise-control-with-stop-go-function
[accessed: 2016-05-17].

[14] Robert Bosch GmbH, “Kraftfahrtechnisches Taschenbuch,” 26th ed.,
Wiesbaden: Vieweg, 2007, ISBN: 978-383-4814-40-1.

[15] BMW AG, Active Cruise Control with Stop&Go Function, 2015, URL:
www.bmw.com/com/de/insights/technology/technology guide/ articles/
active cruise control stop go.html [accessed: 2016-05-17].

[16] U.S. Software System Safety Working Group, “Adaptive Cruise Control
System Overview,” 2005, URL: www.sunnyday.mit.edu/safety-club/
workshop5/Adaptive Cruise Control Sys Overview.pdf [accessed: 2016-
05-17].

[17] H.-H. Braess and U. Seiffert, Eds., “Vieweg-Handbuch Kraftfahrzeugtech-
nik,” 5th ed., ser. ATZ-MTZ-Fachbuch, Wiesbaden: Vieweg, 2007, ISBN:
978-383-4802-22-4.

[18] Daimler AG, Active Parking Assist, 2016, URL: www.techcenter.merce
des-benz.com/en/active parking/detail.html [accessed: 2016-05-17].

[19] H. Hansson, M. AAkerholm, I. Crnkovic, and M. Torngren, “SaveCCM -
a component model for safety-critical real-time systems,” in Proceedings
of the 30th EUROMICRO Conference, 2004, pp. 627–635, ISBN: 978-
076-9521-99-2.

[20] A. G. Fontquerni, “Embedded Linux RADAR device: Taking advantage
on Linaro tools and HTML5 AJAX real-time visualization,” Embedded
Linux Conference Europe, Barcelona, 2012, URL www.elinux.org/images
/7/75/Embedded Linux RADAR Device.pdf [accessed: 2016-05-17].

[21] Freescale Semiconductor, “MPC5674F Microcontroller Data Sheet,” 2015,
URL: www.cache.freescale.com/files/32bit/doc/data sheet/MPC5674F.
pdf [accessed: 2016-05-17].

[22] T. Weber, V. Lauer, D. Mann, and M. Simons, “Das umfassende
Energiemanagement: Vom konventionelle Verbrenner bis zum E-Antrieb,”
in 4. VDI-Tagung Baden-Baden Spezial 2010, ser. VDI-Berichte, vol.
2098, VDI Verlag, 2010, ISBN: 978-3-18-0920-98-6.

[23] A. Y. Benbasat, “An Automated Framework for Power-Efficient
Detection in Embedded Sensor Systems,” Dissertation, 2007, URI:
http://hdl.handle.net/1721.1/38524.

[24] Robert Bosch GmbH, “Fernbereichsradarsensor LRR3: Long-Range
Radar, 3. Generation,” 2009, URL: www.produkte.bosch-mobility-
solutions.de/media/db application/pdf 2/de/LRR3 Datenblatt DE
2009.pdf [accessed: 2016-05-17].

[25] Continental AG, “Short Range Radar Sensor SRR 20X /-2 /-2C
/-21,” 2013, URL: www.conti-online.com/www/industrial sensors de
en/themes/srr20x en.html [accessed: 2016-05-17].

[26] Freescale Semiconductor, “Automotive Engine Control IC: Technical
Data,” 2014, URL: www.cache.freescale.com/files/analog/doc/data sheet/
MC33810.pdf?pspll=1 [accessed: 2016-05-17].

[27] NXP Semiconductors, “KMI17/4 - Rotational speed sensor: Product data
sheet: Rev. 1, September 2014,” 2014, URL: www.nxp.com/documents/
data sheet/KMI17 4.pdf [accessed: 2016-05-17].

[28] NXP Semiconductors, “KMA220 - Dual channel programmable angle
sensor: Product data sheet: Rev. 2, April 2013,” 2013, URl: www.nxp
.com/documents/data sheet/KMA220.pdf [accessed: 2016-05-17].

[29] Robert Bosch GmbH, “Combined inertial sensor for vehicle
dynamics control - SMI650: Automotive Electronics,” 2013, URL:
www.bosch- semiconductors.de/media/pdf 1/einzeldownloads/vehicle
dynamics systems/datenblatt smi650.pdf [accessed: 2016-05-17].

[30] Robert Bosch GmbH, “CAN Specification: Version 2.0,” Stuttgart, 1991,
URL: www.bosch-semiconductors.de/media/ubk semiconductors/pdf 1/
canliteratur/can2spec.pdf [accessed: 2016-05-17].

[31] Microchip Technology Inc., “High-Speed CAN Transceiver: MCP2561/2:
Revision C,” 2014, URL: www.microchip.com/downloads/en/DeviceDoc/
20005167C.pdf [accessed: 2016-05-17].

[32] Microchip Technology Inc., “Stand-Alone CAN Controller with SPI
Interface: MCP2515: Revision G,” 2012, URL: www.microchip.com/
downloads/en/DeviceDoc/21801G.pdf [accessed: 2016-05-17].

[33] Standard Microsystems Corp., “Small Footprint MII/RMII 10/100
Ethernet Transceiver with HP Auto-MDIX and flexPWR Technology:
LAN8710A/LAN8710Ai: Revision 1.4,” 2012, URL: www.microchip.
com/downloads/en/DeviceDoc/8710a.pdf [accessed: 2016-05-17].

[34] Cirrus Logic Inc., “CS8900A: Product Data Sheet: Crystal LAN
Ethernet Controller,” 2010, URL: www.cirrus.com/jp/pubs/proDatasheet/
CS8900A F5.pdf [accessed: 2016-05-17].

[35] C. Schmutzler, “Hardwaregestützte Energieoptimierung von
Elektrik/Elektronik-Architekturen durch adaptive Abschaltung
von verteilten, eingebetteten Systemen,” Dissertation, 2012, ISBN:
978-86-6448-75-9.

[36] European Parliament, Council of the European Union, “Directive
98/69/EC of the European Parliament and of the Council,”
13.10.1998, URL: www.eur-lex.europa.eu/LexUriServ/LexUriServ.do?
uri=CONSLEG:1998L0069:19981228:EN:PDF [accessed: 2016-05-17].

[37] S. Schmidt, “EcoTest: Testing and Assessment Protocol: Release
2.0,” 2015, URL: www.ecotest.eu/html/testing%20and%20assessment%
20protocol.pdf [accessed: 2016-05-17].

[38] J. Banks, J. S. Carson, II, B. L. Nelson, and D. M. Nicol, “Discrete-Event
System Simulation,” 4th ed., ser. Prentice-Hall international series in
industrial and systems engineering, Pearson Prentice Hall, 2005, ISBN:
978-013-6062-12-7.

[39] P. Bastian, “Grundlagen der Modellbildung und Simulation,” Vor-
lesungsskript, Universität Stuttgart, Stuttgart, 2008, URL: www.conan.iwr.
uni-heidelberg.de/teaching/scripts/msarticle.pdf [accessed: 2016-05-17].

[40] H.-J. Bungartz, S. Zimmer, M. Buchholz, and D. Pflüger, “Modeling
and Simulation: An Application-Oriented Introduction,” Berlin: Springer,
2013, ISBN 978-364-2395-24-6.

[41] B. P. Zeigler, H. Praehofer, and T. G. Kim, “Theory of Modeling and
Simulation: Integrating Discrete Event and Continuous Complex Dynamic
Systems,” 2nd ed., Academic Press, 2000, ISBN: 978-012-7784-55-7.

[42] G. Walla, A. Herkersdorf, A. S. Enger, A. Barthels, and H.-U. Michel,
“An automotive specific MILP model targeting power-aware function
partitioning,” in Proceedings of the 2014 International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS XIV), pp. 299–306, 2014, ISBN: 978-147-9937-69-1.

[43] R. Jejurikar and R. Gupta, “Dynamic voltage scaling for systemwide
energy minimization in real-time embedded systems,” in Proceedings
of the 2004 International Symposium on Low Power Electronics and
Design, New York, pp. 78–81, 2004, ISBN: 978-158-1139-29-7.

[44] AUTOSAR Development Cooperation, “Automotive Open System
Architecture,” URL: www.autosar.org [accessed: 2016-05-17].

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-484-8

ENERGY 2016 : The Sixth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

