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Abstract—Fully distributed smart power grids approaches are
increasing in the energy sector. A prosumer (producer-consumer)
is a user that not only consumes electricity, but can also produce
and store electricity. This paper focuses on power market models
in which prosumers interact in a distributed environment during
the purchase or sale of electric power. In this paper, we propose an
hierarchical distributed model, which is based on reinforcement
learning and optimization. Different types of prosumer are able
to intelligently buy energy from, or sell it to, the power market.
Our simulation results show that the integration of the aggregator
in the power grid help to reduce the peak energy consumption
and to lower the electricity cost for the population of prosumers.

Keywords–distributed power networks, prosumers, aggregators,
optimization, reinforcement learning.

I. INTRODUCTION
Exploratory researchs in the field of smart grid are in-

creasing in the renewable energy sector. As energy efficiency
and clean energy technologies become more common, system
challenges require to rethink traditional paradigms of energy
system planning and operation. A clean energy revolution is
taking place worldwide. We can distinguish between two types
of electricity power management systems: the centralized and
the decentralized power management system [4], [5], [6], [7],
[9].

The centralized power management system is currently
used in many countries [1], [2], [8]. The feature of the central-
ized model is that at the physical layer, the grid is designed
for a one-way flow of the electricity. More precisely, from the
top where the electricity is generated from large power plants
and transported to local substations, to the bottom which is the
final stage in the delivery of electricity to end users. Moreover,
at the power market layer the wholesale power market of this
model can be subdivided into two category [3]: integrated (or
pool) market and unbundled (or forward) market.

The idea behind the decentralized power management
system is to exploit the increasing integration of decentralized
energy resources (DER) into the distribution network [1],
[2], [8], [12], [15], [16], [17]. DER systems are modern
technologies based on solar, wind, geothermal, water, biomass,
biofuel or other renewables energy resources. More precisely,
they are small or mid-scale power generation technologies
(typically in the range of 3KW to 10 MW). A prosumer
(producer-consumer) is a user that not only consumes elec-
tricity, but can also produce and store electricity. Establishing
clean or renewable energy sources involves the problem of
adequate management for networked power sources. This
is due to intermittency of renewable energy source during
the electricity generation and to the variability of prosumer
consumption/production.

In [13], the authors propose a methodology to quantify
the quantity of ramping load reserves a priori. However, it
is assumed therein that the probability density function of
imbalances is invariant, which may not be the case of current
energy systems. The work [14] studies scheduling techniques
for storage devices using global information between the
entities.

A. DIPONET: a grid of micro-grids

In this paper, we introduce a distributed power negotiation
concept that enables the energy balancing in the entire power
network and we term it DIPONET. Our approach is more
dynamic since it provides the consumer/prosumer a more
efficient way to interact in the distributed power network. The
DIPONET approach is based on the previous project DEZENT
[4], [5] . The limitation of the producer/consumer in the previ-
ous project is that it only make use of reinforcement learning
when buying/selling energy from/to the power market. The
consumer in that approach is static in the sense that it is not
able to anticipate or to delay energy consumption. Moreover
at the power market layer, a negative bidding strategy used by
the static producer/consumer was affecting its portfolio.

TABLE I. Notations

Symbol Meaning
[1,2, · · · ,T ] time horizon of an entire day

Qt the energy profile of an entire day. [q1, · · · ,qt ]
k ∈ Z maximum energy variation
xt ∈ Z the energy variation at time t, −k ≤ xt ≤ k.
Rmax maximal energy reserve capacity Rmax : N
R0 initial energy reserve capacity R0 : N
Rt state of the energy reserve at time t, Rt : N

o : Z→ R additional cost. if 0≤ x then o(x) = x else x≤ o(x)≤ 0.
A the the strategy space of the consumer/producer
st negotiation strategy at time t, st ∈ A

P(t,s) the value of the payoff associated to action s at time t.
r(t,s) the realized payoff associated to action s at time t.
α ∈ R 0 < α ≤ 1

m the number of prosumer of the aggregator

B. Contribution

The novelty of our approach is that it combines both
distributed learning and optimization to predict supply/demand
and storage in a more efficient way. More specifically we use
reinforcement learning to adapt prosumer’s price strategy at
the power market and dynamic programming to predict future
outcomes. The learning accounts for the fact that the power
producer/consumer will need to use his/her best strategy when
buying/selling energy quantities from/to the power market. The
dynamic programming approach is due to the fact that a short
term optimization might not be suitable in the event that a
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power consumer needs to plan his/her energy consumption
over a period of a day, a week or even a month.

We show that a consumer with DIPONET scheme gets
a lower cost than the one using DEZENT scheme. We then
introduce the notion of aggregator in the distributed power
market DIPONET. We show, through experimental study, that
the aggregator is able to reduce the peak energy consumption
of the grid. In our setup, an aggregator is composed of a set
of prosumers. We distinguish two type of aggregator models:
(i) the prosumers can share information about their expected
energy price, (ii) and in the other the information is not shared.
Interestingly we show that in both aggregator models the
additional energy needed by the grid operator can be made
available by the aggregator during the under supply period
and peak load.

The rest of the paper is organized as follows. In the next
section, we describe the prosumer planning methodology with
both optimization and learning. In Section III we present the
effect of the aggregator in the distributed power networks.
Experiments and numerical results are presented in Section
IV. Section V concludes the paper.

The notations used in the article are given in Table I.

II. PROSUMER PLANNING AND ADAPTATION MODEL

The power grid (see Figure 1) of interest consists of a
bottom-up multi-level micro-grids architecture which is sub-
divided into 4 levels. The first level (0.4 kV) is a low-range
network covering subdivisions (a neighborhood). The second
level (10 kV) is a medium-range area network covering a
suburb (regional grid). The third level (110 kV) is a long-
distance energy transport network. Finally in the fourth level
(380 kV) the electricity is produced from large power plants
(coal, gas or nuclear). Power needs of prosumers are covered
through alternative energy sources within the first 2 layers and
additional power needs will be covered at the latest by the
fourth level.

At the power market layer, we consider a multi-stage nego-
tiation system through which the energy produced by micro-
grids (at various tiers) are auctioned to/by the prosumers.
The balancing of demand and supply between participants is
carried out through balancing group managers (BGMs) which
are located in different network layers and operate in parallel
on each grid. The BGM balances the supply and the demand
of electricity between a producer and a consumer who have
submitted a similar bid.

A prosumer in such a power grid can be viewed as user
who has the ability to independently modify his/her power
requirements optimizing his cost (see Figure 2). In our model,
we believe that independent planning by the prosumers may
improve significantly the matching between production and
consumption in the power grid. In practice, this could mean to
help balancing the power market, since the price will favor low
consumption/high production when the cost is high and vice
versa. Moreover, our approach is not centralized and, in this
sense, is different from demand side supply management. The
idea is to exploit the (limited) ability of prosumers of planning
in an autonomous way their consumption/production. Hence,
they do not sign any contract leaving the planning to others:
our independent consumer planning is a local matter involving
only one prosumer.

Figure 1. Power grid and associated agents [4].

Figure 2. Model of a smart house energy consumption/production.

A. Control strategy of the Prosumer in the DIPONET ap-
proach

The challenge of the prosumer is to make elastic the
demand for, and the supply of, electricity in order to optimize
its energy cost based on power market conditions and on
suitable constraints on their power consumption. Prosumer
strategies are concerned with two separate phases. On one
hand, prosumers should compete on the DIPONET power
market: they should negotiate a deal with a close partner,
thus achieving a better price. On the other hand, they should
concentrate as much as possible their energy consumption in
the periods when the prices are more convenient. For clarity
we will use a consumer oriented terminology, but most of the
discussion could be dualized.

We now described the combined scheme DIPONET.

Step 1: Reinforcement learning
At the end of a negotiation, the final achieved price by the
consumer is normalized according to the frame size of the
negotiation. Then, the temporal difference method of Sutton
[10], [11] is used to derive the payoff of the negotiation
strategy currently executed.

P(t +1,s) := P(t,s)+α (r (t,s)−P(t,s)) ; (1)
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Step 2: Optimization
For clarity we consider the case of a consumer. The consumer
is characterized by the class of energy variation profiles (s)he
can adopt during the day.

Controllable inputs: we denote by x(t) the vector of
controllable inputs of the consumer. The consumer has the
ability to increase/decrease its energy consumption.

State of the consumer: the state of the consumer is given by
the level of the energy reserve Rt .

Objective function: the objective of the consumer is to
minimize the electricity cost achieved at the end of the day.

max
x(t),t=1,...,T

T

∑
t=1

(o(xt)+qt)P(t,s) (2)

Constraints
(i) summing up all the variations from the beginning of the
day to any time, we cannot exceed a lower and an upper
bound of the energy reserve. This constraint accounts for
available energy storage media, like electric vehicle batteries or
thermic accumulations due to anticipated heating, or delayed
air conditioning.

∀ 1≤ t ≤ T, 0≤ R0 +
T

∑
t=1

xt ≤ Rmax (3)

(ii) the sum of all the energy variations in the whole day for the
consumer is zero, i.e. if in some slot the variation is positive,
in some other slot it must be negative.

T

∑
t=1

xt = 0 (4)

Proposed algorithm: we propose an efficient dynamic
programming algorithm for planning the energy consump-
tion/production. The control algorithm of the consumer has
three inputs: (i) the definition of the class of allowed profiles
Q; and (ii) the cost of a unit of energy which is the result of the
negotiation in each time step of the previous day. Hereafter, the
optimization problem and the proposed dynamic programming
algorithm used to solve it are defined.

Let Zt(Yt) : R∪ {∞}, t = 1, . . . ,T, 0 ≤ Yt ≤ Rmax be the
optimal energy costs for time step 1, . . . ,T , when the final
energy reserve at time t is Yt . Here Zt(Yt) = ∞ if energy
reserve Yt cannot be achieved at time step t. Thus Z0(Y0) (no
slot has elapsed yet) is everywhere ∞ except for Z0(R0) = 0.

Subproblems

Zt(Yt) = max
x1,...,xt

t

∑
i=1

(o(xi)+qi)P(i,s) , t = 1, · · · ,T (5)

∀i′ 1≤ i′ ≤ T, 0≤ R0 +
i′

∑
i=1

xi ≤ Rmax (6)

R0 +
t

∑
i=1

xi = yt 0≤ yt ≤ Rmax (7)

Dynamic programming

Zt(Yt) = max
−k≤xt≤k

0≤Yt−xt≤Rmax

Zt−1(Yt − xt)+(o(xt)+qt)P(t,s) (8)

Z0(Y0) = if Y0 = R0 then 0 else ∞ (9)
ZT (R0) = Z (10)

The value of Zt at time t is computed sequentially in terms of
Zt−1 by looking backwards for Zt(Yt) to the optimal energy
costs at slot t − 1 for eligible values Yt − xt of the energy
reserve. Finally, an optimal strategy S is any sequence S =
(x̂1,Ŷ1), . . . ,(x̂T ,R0) such that the values of x̂t and of Ŷt−1 are
computed backwards from Ŷt , t = T . . . ,1, by letting ŶT = R0,
the final reserve being R0. Formally: optimal strategy

Zt(Ŷt) = Zt−1(ŷt − x̂t)+(o(x̂t)+qt)P(t,s) , (11)
Ŷt−1 = Ŷt − x̂t (12)
ŶT = R0 (13)

The time and space complexity of the algorithm are
O(T Rmaxk) and O(T Rmax) respectively.

In section IV, we compare the behavior, in terms of
energy cost minimization, of a consumer in our approach
with that of a consumer of the DEZENT approach

III. AGGREGATOR OPTIMIZATION MODEL

We study the effect of an aggregator in the DIPONET
power market. An aggregator in our model is defined as
a collection of prosumers. In the proposed approach, each
prosumer is neutral in the sense that it essentially neither
consumes nor produces energy, as it can only sell in the power
market the energy previously bought and stored. Actually,
a prosumer consumes a little amount of energy, due to the
overhead of the energy storing processes. Thus the behavior
of the virtual prosumer is similar to that of a rechargeable
battery. Only a real prosumer could combine the effect of a
virtual prosumer with that of a producer and a consumer.

We define two types of aggregator: (i) a decentralized
aggregator which consists of a number of prosumers running
in parallel. Those agents do not exchange with each other the
information about their energy achieved price. (ii) Centralized
aggregator in which prosumers share (and therefore use)
the same price information for the bidding and optimization
phase. The objective of the aggregator in this case is to
maximize its portfolio at the end of the day.

Decentralized aggregator: each virtual prosumer (of
the aggregator) exploits the control model defined in section
II-A.

Centralized aggregator: let m be the number of prosumer
globally controlled by the aggregator.
Controllable inputs: we denote by [x1(t), · · · ,xm(t)] the vector
of controllable inputs of the aggregator. The aggregator has
the ability to buy or sell energy in the power market.

Uncontrollable inputs: the uncontrollable input are the
same as in the case of the costumer.

Aggregator state: XAggr(t) = ∑
m
i=1 xi(t)
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TABLE II. Non stationary DIPONET environment setup

Architecture

Negotiation Level 1
BGM on Level 1 1
Clients 23
Producers (50−350 KW) 10
Consumers (50−300 KW) 10
Prosumers (50−300 KW) 3

Electricity price Day duration: 60 slots (24 hours)
Profile cost of the electricity (free market)

prosumers environment Producers: Gaussian distribution 1
Consumers: Gaussian distribution 2

Energy reserve finite capacity
prosumer initial level: 0

Controller Class of consumption profiles
Planning phase: optimization

Simulations
Duration: 3 days
Test: non stationary environment

Objective function: the objective is to maximize the the
gain of the portfolio at the end of the day.

max
[x1(t),··· ,xm(t)],t=1,...,T

m

∑
i=1

T

∑
t=1

(o(xt)+qt)P(t,s) (14)

Constraints: in our model, the allowed profiles of the
aggregator must satisfy the following constraints:

(i) the energy variation in a time step for any prosumer
belonging to the portfolio of the aggregator has a lower and
an upper bound;

∀ i ∈ Aggr,∀ 1≤ t ≤ T, 0≤ R0 +
t

∑
l=1

xil ≤ Rmax (15)

(ii) the sum of the all the energy variations in the whole day
for the aggregator is zero. Notice that at the end of the day
this condition must be different from zero when considering
only one prosumer belonging the portfolio of the aggregator.

m

∑
i=1

T

∑
t=1

xit = 0 (16)

(iii) summing up all the variations from the beginning of the
day to any time, we cannot exceed a lower and an upper bound.
Let m be the number of prosumers of the aggregator

∀ 1≤ t ≤ T, 0≤
m

∑
i=1

(R0 +
t

∑
l=1

kil)≤ mRmax (17)

The algorithm used by the central aggregator is similar to
that of section II-A except for the fact that: (i) the achieved
price used in the algorithm is the weighted average of all the
prosumer of its portfolio; (ii) the constraints of the problem are
both local and global and (iii) the aggregator finally allocates
the energy profile for each prosumer.

IV. SIMULATION STUDIES

The setup of the space of the experiments is based on
the available DIPONET and DEZENT simulator and on the
implementation of the two types of aggregator. It depends
essentially on three parameters: (i) the free market power cost,
which can exhibit high or low variance: for this we chose
real data from the day ahead market prices of Switzerland

(date: March 9, 2013); (ii) the prosumers environment, namely
heavy production or heavy consumption, in which the total
amount of the electricity produced in the subnet is respectively
greater than or less than, the total amount needed in the
subnet. In the heavy consumption situations, the additional,
needed power is made available at the large power plant
level, at a price which depends on the time of the day.
Analogously for the heavy production situations. In all these
cases, the profile cost of the electricity at the global level
(namely at the large power plant level) was the same for all
days; (iii) the available energy reserve capacity of the virtual
prosumers characterizing the aggregator is considered finite.
The experiments were conducted on the NYUAD cluster at the
division of Engineering laboratory, simulating a 3 days service
period (see Table II). Here the last day has been considered,
since in this way transitory effects are minimized.
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Figure 3. DIPONET vs DEZENT.

DIPONET vs DEZENT: in the first experiment we compare
the behavior of a consumer in the DEZENT approach with
that of our approach. The comparative study is based on the
total cost of the electricity paid at the end of the last day.
We recall that the consumer in DEZENT only make use of
reinforcement learning while the consumer in the DIPONET
approach uses both reinforcement learning and optimization.
In Figure 3 the consumer in DEZENT (dashed curve) has spent
more than the DIPONET consumer (solid curve). The saving
of the DIPONET consumer is about 8,23%. This is due to the
fact that the DIPONET consumer is able to anticipate or delay
energy consumption thanks to its flexibility.

Aggregator models: in the second experiment comparative
studies were based on the total cost of the electricity paid at
the end of the last day by the consumer population and on
the profit realized by the aggregators. Figure 4 synthesizes
the optimal controller of the one prosumer of the centralized
aggregator. The two upper curves of Figure 4 represent the
unitary cost of energy as resulting from the negotiation phase at
day 2 (solid curve) and at day 3 (dashed curve). The difference
between the two upper curves gives an idea of the possible
variations between the outcomes of different negotiations.
Notice that the profile of the global energy cost and the context
of competing prosumers is the same in both days. The lower
dashed curve (respectively lower solid curve) represents the
result of the optimization algorithm applied to the curve of day
2 (respectively of day 3). The curves plot the sum (from the
beginning of the day) of the suggested variations: according to
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Figure 4. Optimization model of one prosumer.

the constraints we assumed on the virtual prosumers profiles,
the sum of the variation must be not greater than the aggregates
reserve capacity and should end up at 0. Notice that the
controller correctly suggests variations which are opposite wrt.
the negotiated cost.
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Figure 5. Energy cost achieved by the consumer population.

Figure 5 reports the result of the placebo test on the
behavior of the consumer population. In Figure 5, the upper
dashed curve represents the energy cost achieved in each hour
by the entire population when there is no aggregator in the
power market. Analogously, the middle bullet curve represents
the case in which the centralized aggregator is active and
the lowest solid curve the case in which the decentralized
aggregator is active. The observation we have is that the
consumers population when the aggregator is active has spent
less during peak energy consumption period.

In Figure 6, the final cost achieved at the end of day 3 by
the population of consumers in which the aggregator was active
(solid curve for the decentralized approach and bullet curve for
the centralized approach) is less than the case in which there
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Figure 6. Energy cost at the end of the day achieved by the consumer
population.

was no aggregator (dashed curve). This positive effect is due
to the introduction of an aggregator. The two curves when the
aggregator is active are overlapped and this is due to the fact
the available reserve charactering the aggregators are the same
in both cases. The percentage of global energy cost reduction
is about 3,2%.
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Figure 7. Aggregators: profit realized.

In Figure 7 we compare the actual profit of the two
aggregator approaches. The solid curve reports the energy cost
(actual profit) realized by the decentralized aggregator in the
power market. The profit is given by the sum of the entire profit
realized by the virtual prosumers characterizing the aggregator.
Analogously, the dashed curve reports the actual profit of the
centralized aggregator. The profit in the centralized case is
given by the sum of energy cost achieved in every time slot.
There is a remarkable difference between the two gains and
the centralized aggregator exhibits a superior behavior. This is
due to the fact that the centralized aggregator uses cooperative
informations of virtual prosumer characterizing its portfolio.
The information about the difference between the two gains of
Figure 7 can be well studied if we compare the actual profit
of each aggregator with its expected one.

In Figure 8, the dashed curve represents the expected profit
of the decentralized aggregator at the end of day 3. The curve
is computed by assuming known in advance the energy cost.
That curve has been obtained by summing up all the energy
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Figure 8. Centralized aggregators, expected cost vs real cost.

costs of the optimal profile of day 3 of the virtual prosumers.
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Figure 9. Decentralized aggregators, expected cost vs real cost.

Analogously, in Figure 9 the dashed curve represents the
expected profit in the decentralized aggregator case at the end
of day 3. That curve is given by the energy costs of the optimal
profile of day 3 of the centralized aggregator. Notice that the
difference between the expected gain and the actual gain of
the aggregator in the decentralized case is greater than that of
the centralized case.

V. CONCLUSION

This paper proposed the combination of reinforcement
learning and optimization as a mechanism for buying/selling
energy in a distributed power network. Simulations results
showed that our approach is more efficient than the approach
used in DEZENT. Next the paper study the effect of the
aggregator on the distributed power market. The general ag-
gregator concept is to make use of the flexibilities of the
prosumers for providing active demand services in the power
market. The results of the introduction of the aggregator in
the distributed power grid have been the reduction of the peak

energy consumption and the lowering of the electricity cost
for the population of prosumers. Future works will include
the development of a randomized algorithm that allow the
prosumer to use different learning strategies for biding into
the power market. At the optimization level, the repeated re-
planning algorithm currently used by the prosumer will be
extended in order to help minimize the mismatch between
the anticipated energy profile and the real energy profile used
during the day. Finally, the strategic interaction between pro-
sumers will be studied through a dynamic games. Investigating
on what happens if we are dealing with an infinite number of
power prosumer in the distributed power grid.
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