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Abstract- With the rise of Internet of Things (IoT), it is 

becoming cheaper and easier to collect data from data center (DC) 

mechanical, electrical and control systems. These systems have 

complex interactions with each other. The static control logics and 

high number of configuration and nonlinear interdependency 

create challenges in understanding and optimizing energy 

efficiency. This is particularly challenging and expensive in 

medium size or smaller configurations like data suites or modular 

data centers. We utilize a learning engine that learns from 

operationally collected data to accurately predict power usage 

effectiveness (PUE) and create a control model to validate test 

results. Using the machine learning framework developed in this 

paper, we are able to predict DC PUE within 0.0004 +/¬ 0.0005. 

The results show that machine learning can improve data suite 

efficiency. The results also indicate that neural network based 

controller shows promise for practical implementation. 

Keywords— Machine learning; Neural Network; PUE;   Data 

center. 

I. INTRODUCTION 

Data centers are recognized as an increasingly troublesome 

percentage of electricity consumption in the US. A recent 

revision of the Koomey report [1] puts this at 2% of all US 

power consumption and 1.3% of worldwide power 

consumption. Rapid growth of cloud based systems is 

accelerating growth of data centers. Growing energy costs and 

environmental responsibility have placed the DC industry under 

increasing pressure to improve its operational efficiency. The 

development of metrics of data center efficiency (e.g., PUE) has 

focused attention on improving energy efficiency in data 

centers. Even large companies have scored low on Greenpeace 

report.  

 
 

Figure 1. Examples of containerized/modular data center 

 

Constructing data center space using traditional methods 

takes a long time. Speed of delivery of data center space has 

become a critical business factor for data center operators. This 

gave rise to modular data centers and containerized data 

centers. Figure 1. shows few examples of modular data center. 

Many companies build modular data center for inside building 

shell and standalone containers for outside [17] [18] [19].  

 

Aisle containment has improved efficiency of facility side 

cooling power usage (chiller and fan) and load balancing of 

virtual servers has improved server power usage consumed by 

servers (IT Load) [2].  

 

 
 

Figure 2. 2-D heterogeneous DC Experimental setup design 

Internet of Things (IoT) is rapidly growing with projected 

$7.1 trillion by 2020 [3]. This has allowed for significant 

changes in asset instrumentation to communicate via internet 

protocol (IP). By using IoT framework, it has become possible 

to collect and analyze granular data from uninterruptible power 

supply (UPS), computer room air conditioning (CRAC), 

circuits, power distribution unit (PDU) etc. This allows 

collecting data from smaller sections of data centers like aisle, 

suite or data pod. Instrumenting these microsystems has 

allowed to manage and control smaller environment ecosystems 

in a data center. Figure 2. shows a modular data suite 

architecture and data collection points in a midsize data center.  

 

At the given scale of power use, any incremental 

improvements in efficiency will produce notable cost savings 
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and reduce carbon emissions. Large data centers like Google, 

Microsoft and Amazon have homogenous standard systems as 

compared to smaller privately held multi-tenant data center that 

have heterogeneous (non-standard) systems. Aisle containment 

and efficient virtual server load management have attempted to 

improve energy efficiency in data centers [3]. Metrics devised 

more recently like Corporate Average Data Center Efficiency 

(CADE) have drawn attention more broadly to all power 

consumption in the data center, including both cooling systems 

and servers, showing that there is still significant 

underutilization in data centers [4]. Recently, more efforts are 

being made to optimize data center efficiency by utilizing 

machine learning [5]. 

 

This paper focuses on using neural network optimizing 

method to predict and optimize cooling power of a given load 

in a modular heterogeneous data suite to optimize overall PUE.  

 

In Section II we discuss related work. In Section III, we 

discuss the methodology of the neural network approach. In 

Section IV, we discuss results and discussion. In Section V, we 

discuss limitations of machine learning. Finally, we conclude in 

Section VI.  

II. RELATED WORK 

Increasing energy efficiency in a data center has been in 

great focus in the past few years. Efforts and have been made 

to optimize facilities by aisle containment [6]. There also has 

been work on managing virtual server loads to utilize energy 

efficiently [7]. There is work done in managing energy by 

combining building automation and virtualization together [2]. 

 

There are new demands around cloud computing, big data 

and infrastructure power efficiency. Furthermore, this change 

in the data center is being driven by more users, more data and 

a lot more reliance on the data center itself.  

 

With cloud technologies and the rapid growth in data 

leading the way within many technological categories — 

working with the right data center optimization technologies 

has become more important than ever [9].  Data center 

Administrators must understand where their current energy 

demands are allocated and how they can best optimize those 

resources. Every small amount of energy efficiency gains is 

improvement. Recently Microsoft and Google have used 

machine learning techniques for energy optimization. 

Microsoft is measuring server workload spikes and automating 

data center operations [8]. Google is exploring using machine 

learning techniques to optimize energy use data center at a 

building level [5]. There has been no application of machine 

learning techniques in a mid-size data centers. This is due to 

lack of instrumenting machines and implementing IoT platform 

to collect and store data. The facility side infrastructure has 

components that have complex interactions amongst 

themselves. Most of the existing optimization techniques use 

static method such as cold aisle set point temperature. 

Establishing an accurate mathematical model or obtaining 

characteristic parameters for a proportional–integral–derivative 

(PID) controller in practical control scenarios is challenging, 

thus limiting their practical applicability [20]. On the other 

hand, machine learning can be accurately modeled to represent 

true characteristics of a DC. All the related studies for midsize 

data centers have been using simulations, we show results by 

collecting data from practical operations in mid-size data 

center. This study is unique in applying machine learning 

energy optimization technique on facility side infrastructure 

operational data in midsize modular data center. 

 

This study relates to micro systems like data suites and 

modular data center in multi-tenant facility with heterogeneous 

server configurations, see Figure 2. This study is to further 

optimize micro facility environment related to a data suite for a 

given server load. 

 

III. METHODOLOGY- MACHINE LEARNING APPROACH 

Facility side infrastructure has components that have 

complex interactions amongst themselves. PID models do not 

accurately capture these interactions. Machine learning is well-

suited for the DC environment given the complexity of plant 

operations and the abundance of existing monitoring data. The 

modern large-scale DC has a wide variety of mechanical and 

electrical equipment, along with their associated set points and 

control schemes. The interactions between these systems and 

various feedback loops make it difficult to accurately predict 

DC efficiency using traditional engineering formulas. We are 

training the neural to produce optimal set of operating 

parameters. Rectified Linear Units (ReLU) is used for deep 

learning. The model is trained to optimize for lowest PUE. 

 

Neural Network is the machine learning approach which 

uses Multi-Layer Perceptron (MLP), Supervised Learning and 

Resilient Back Propagation Algorithm to make an efficient 

prediction of PUE 𝑃𝜃(𝑥) using the environmental variables 

𝑛 that surrounds heterogeneous DC, such as Cold Coil 

Temperature, Cold Aisle Temperature, Cooling Coil Chilled 

liquid flow, Fan Power, Chiller Power, Server Load, etc.  Let 

us consider an 𝑥 as a set of input   𝑚 × 𝑛 , where 𝑚 is the size 

of the dataset and n is the number of features.  The input matrix 

is then multiplied with the model parameter 𝜃 to give the hidden 

layer. The size and number of hidden layers can be varied based 

on the complexity of the model required. 

 

The Neural Network is adapted to DC through mathematical 

model framework for training DC energy efficiency models. 

Neural networks are a class of machine learning algorithms 

which adapt and react based on the behavior of neurons. They 

have best fit adaption, pattern searches and so on to 

accommodate the accuracy. The concept of machine learning is 

explained in detail with implementation. 

A. Multi Layer Perceptron 

The neural network algorithm used multi-layer perceptron, 

which is well applicable when modeling functional 

relationships. The underlying structure of an MLP is a directed 
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graph, i.e., it consists of vertices and directed edges, in this 

context called neurons and synapses [10]. The neurons are 

organized in layers, which are usually fully connected by 

synapses. The synapse can only connect to subsequent layers. 

The input layer consists of all covariates in separate neurons 

and the output layer consists of the response variables. The 

layers in between are referred to as hidden layers, as they are 

not directly observable. Input layer and hidden layers include a 

constant neuron relating to intercept synapses, i.e. synapses that 

are not directly influenced by any covariate. Figure 3 gives an 

example of a neural network with one hidden layer that consists 

of three hidden neurons. This neural network models the 

relationship between the two covariates A, B and the response 

variable Y. Theoretically allows inclusion of arbitrary numbers 

of covariates and response variables. However, there can occur 

convergence difficulties using a huge number of both covariates 

and response variables. 

 

 
Figure 3. Example of a neural network. 

To each of the synapses, a weight is attached indicating the 

effect of the corresponding neuron, and all data pass the neural 

network as signals. The signals are processed first by the so-

called integration function combining all incoming signals and 

second by the so-called activation function transforming the 

output of the neuron.  

 

The simplest multi-layer perceptron (also known as 

perceptron) consists of an input layer with n covariates and an 

output layer with one output neuron. 

It calculates the function 

 

𝑜(𝑥) = 𝑓(𝑤𝑜 + ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 ) = 𝑓𝑤𝑜 + 𝑤𝑇𝑥                        (1) 

 
where 𝑤𝑜 denotes the intercept, w = (𝑤1,..., 𝑤𝑛) the vector 

consisting of all synaptic weights without the intercept, and x = 

(𝑥1,..., 𝑥𝑛) the vector of all covariates.  

B. Supervised Learning 

Neural networks are fitted to the data by learning algorithms 

during a training process which focuses on supervised learning 

algorithms [13]. These learning algorithms are characterized by 

the usage of a given output that is compared to the predicted 

output and by the adaptation of all parameters according to this 

comparison. The parameters of a neural network are its weights. 

All weights are usually initialized with random values drawn 

from a standard normal distribution.  

C. Backpropagation And Resilient Backpropagation 

The resilient backpropagation algorithm is based on 

the traditional backpropagation algorithm that modifies the 

weights of a neural network in order to find a local minimum of 

the error function [14].  

D. Implementation 

The machine learning algorithm used is Neural Network. 

The neural network utilizes 2 hidden layers and 0.01 as the 

regularization parameter. The training dataset contains 19 input 

variables and one output variable (the Suite PUE) as shown in 

the Figure 5b. The total size of the data samples used is 119421 

rows, which were collected from a heterogeneous data center 

sensor ports. The 70% of the dataset is used for training with 

the remaining 30% used for cross-validation and testing. The 

chronological order of the dataset is randomly shuffled before 

splitting to avoid biasing the training and testing sets on newer 

or older data [15].  

 

The 19 variables used for modelling are as follows. 

 
TABLE I. SELECTED VARIABLES 

 
 

Data normalization, also known as feature scaling, is 

recommended due to the wide range of raw feature 

values. The values of a feature vector z are mapped to the range 

[-1, 1] by: 

𝑧𝑛𝑜𝑟𝑚 =
𝑧−𝑚𝑒𝑎𝑛(𝑧)

max(𝑧)−min (𝑧)
                                                            (2) 

 

The Block diagram explains the overall scenario acquired in 

the Data center for Predicting PUE, based on the Machine 

Learning Algorithm Neural Network Model.  

 

 
 

Figure 4. Block diagram of Neural Network Modelling 
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Figure 5. Network Model with selected variables 

The block diagram as shown in Figure 4. represents the 

logic flow of neural network prediction model which evolves 

the processing of data retrieved from the sensor ports. The data 

variables are of different features which may or may not affect 

the SUITE PUE. The collected data is preprocessed through 

Generalized Linear Model (GLM) [11] and Random Forest 

(RF) [12] algorithm to find the effectiveness of the parameter 

with the coefficients. The variables are selected from the 

preprocessed data through positive skewness arrived with the 

target SUITE PUE. This achieved through the Generalized 

Linear Model (GLM), Random Forest (RF) and Experts 

Perception. 

 

The sampling process is done for the selected variables 

chosen for modeling, splitting into training and testing dataset. 

The training data set are used to train neural network model and 

the testing data is used for the prediction of the data sets through 

the neural network trained model for the evaluation of SUITE 

PUE. Note that many of the inputs representing totals and 

averages are actually metavariables derived from individual 

sensor data.  

 

Data preprocessing such as file I/O, data filtration and 

calculating metavariables, Variable Analysis was conducted 

using Excel, R. Both R and Matlab R2012a were used for model 

training, post processing and simulating results. 

IV. RESULT AND DISCUSSION 

The precise and robust PUE model offers many benefits for 

heterogeneous DC operators and owners. For example, in real 

time comparison of actual vs predicted heterogeneous DC 

performance for any given set of conditions can be used for 

automatic performance alerting, real-time plant efficiency 

assessing and troubleshooting. 

 

A precise efficiency model also enables DC operators to 

evaluate PUE sensitivity to DC operational parameters. For 

example, an internal analysis of PUE versus Cold Aisle 

Temperature(°F) conducted at a heterogonous DC suggested a 

theoretical 0.0005 reduction in PUE by increasing the cooling 

tower LWT and chilled water injection pump set points by 3F. 

This simulated PUE reduction was subsequently verified with 

experimental test results after normalizing for server IT load 

and wet bulb temperature [5]. Such sensitivity analyses drive 

significant cost and carbon savings by locating and estimating 

the magnitude of opportunities for further PUE reductions. 

 

Finally, a comprehensive DC efficiency model enables 

operators to simulate the DC operating configurations 

without making physical changes. Currently, it’s very difficult 

for an operator to predict the effect of a plant 

configuration change on PUE prior to enacting the changes. 

This is due to the complexity of modern DCs, and the 

interactions between multiple control systems. A machine 

learning approach leverages the plethora of existing sensor data 

to develop a mathematical model that understands the 

relationships between operational parameters and the holistic 

energy efficiency. This type of simulation allows operators to 

virtualize the DC for the purpose of identifying optimal plant 

configurations while reducing the uncertainty surrounding plant 

changes. 

A. Prediction Results 

Figure 6 depicts a snapshot of predicted vs actual PUE 

values at one of heterogonous DCs over one month during the 

summer. The neural network detailed in this paper achieved a 

mean Square error of 0.004 and standard deviation of 

0.001 on the test dataset. Note that the model error generally 

increases for PUE values greater than 1 .29 due to the shortage 

of training data corresponding to those values. The model  

 

 
Figure 6. Predicted vs Actual PUE values at heterogonous DC 

accuracy for those PUE ranges is expected to increase over time 

as additional data are collected on heterogeneous DC 

operations. 

B. Sensitivity Analysis 

The following graphs reveal the impact of individual 

operating parameters on the DC PUE. We isolate for the effects 

of specific variables by linearly varying one input at a time 

while holding all others constant. Such sensitivity analyses are 

used to evaluate the impact of set point changes and identify 

optimal set points. All test results have been verified 

empirically. 
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Figure 7a represents shows, as the Cooling coil leaving 

temperature (°F) increases, the PUE decreases.  DC should be 

maintained with increasing the cooling coil leaving temperature 

with stabilizing other variables and making PUE more effective 

to reduce the cost. Similarly, Figure 7b suggests that the 

providing a system with cold aisle temperature (°F) over a 

period of time under different circumstance, the variation in the 

PUE is linearly increased as the cold aisle temperature 

decreases. 

 

Figure 7c represents a linear variation as the Cooling coil 

valve position increases the PUE also increases, as it is directly 

proportional the usage of power is more as it becomes big. 

Figure 7d indicates that when Cold coil out water temperature 

decreases eventually the PUE increases, so the temperature for 

this scenario is optimized and they are inversely proportional to 

each other. 

  

 
 

Figure 7a-7d: SUITE PUE vs Cooling Coil Leaving Temperature, 
Average Cold Aisle Temperature, Cooling Coil Valve Position and Cold Coil 

Out Water Temp 

 

Figure 8a represents that as the cooling coil chilled liquid 

flow increases significantly the SUITE PUE decreases so there 

is an inversely proportional to each other. 

 

Figure 8b represents a slightly sloppy curve for the SUITE 

PUE versus Heat reclaim coil leaving temperature (°F), says 

that PUE is in stabilized state when the temperature is in the 

optimal stage and also shows that they are inversely 

proportional as the temperature increases the PUE drops out. 

 

 

Figure 8a-8b: SUITE PUE vs Cooling Coil Chilled Liquid Flow and Heat 
Reclaim Coil Leaving Temperature 

fan power for controlling the PUE without exceeding drastic 

change in the power consumption. 

 

Figure 9a & 9b show that Fan Power and Fan Speed are 

directly proportional to SUITE PUE, where Figure 9a signifies 

a linear variation between the PUE and Fan Power but Figure 

9b depicts that there is an optimization in fan speed through an 

upper sloppy curve which creates a positive impact in the 

 

 
 

Figure 9a-9d: SUITE PUE vs Fan Power (KW), Fan Speed (KW), 

Absorption (KW) and Suite Server Load (KW) 

 

Figure 9c signifies that the Absorption (KW) which is the 

chiller power varies inversely to PUE, as chiller power 

increases PUE drops. It concludes that it creates a great impact 

in PUE, which relatively stabilized through the fan power and 

server load for better synchronization. 

 

Figure 9d specifies the variation of PUE with Suite Server 

Load (KW) is linear, which states that the PUE decreases 

exponentially as the server load decreases. Eventually as per the 

data samples trained most of the power in the heterogeneous 

DC station is consumed by server load 78%.    

 

Figure 10 represents that the accuracy of the Neural 

Network model with test cases empirically verified in matlab 

simulation [16]. The variation of PUE from the actual 

calculation with Neural Network trained model gives optimized 

results.  

 
Figure 10: Neural Network Based Controller Output for DC 
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The model simulation done in four different scenarios for 

PUE optimization, such as Neural Network predicting PUE, 

Optimizing Fan Power (FP), which feedback to Neural network 

to Predict PUE, Optimizing Chiller Power (CP) which feedback 

to Neural Network to predict PUE and finally the best accuracy 

is obtained from optimizing both Fan Power (FP) and Chiller 

Power (CP).  

 

Machine learning applications based on neural network 

based controller are limited by the quality and quantity of the 

data inputs. As one of important aspects to have a full range of 

DC operational conditions to precisely train the mathematical 

model. The model accuracy may decrease for conditions where 

there is less data. As with all empirical curves fitting, the same 

prediction results may be achieved for multiple model 

parameters θ. It is up to the analyst and DC operator to apply 

reasonable discretion when evaluating model predictions. 

V. CONCLUSION 

Accelerating growth in data center complexity and scale is 

making energy efficiency optimization increasingly important 

yet difficult to achieve. Though the model is simulated for 

heterogeneous data center environment where servers placed 

are of different kind, so the variation causes high end and low 

end rather than median. This made effective through machine 

learning and acquired best gain in PUE. Using the machine 

learning framework developed in this paper, we are able to 

predict DC PUE within 0.0004 +/- 0.0005. Using machine 

learning technique, you can further optimize power usage 

efficiency between 1% to 3%. This can translate is saving 

hundreds of thousand dollars in a datacenter. Actual testing on 

heterogeneous DCs indicates that machine learning is an 

effective method of using existing sensor data to model DC 

energy efficiency, and can yield significant cost savings. Model 

applications include DC simulation to evaluate new plant 

configurations, assessing energy efficiency, and identifying 

optimization opportunities.  
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