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Abstract—Smart Grid technology, in particular Phasor Mea-
surement Units (PMUs) provide a mechanism for monitoring
the state of a power system across a wide geographical area
at high resolution and with high fidelity. These measurements
form a large corpus of state information that power systems
engineers and researchers can use to find and analyze interesting
phenomena either post-hoc, or in real-time. In this paper, we
present our work with machine learning to develop an event
detector for use with the Bonneville Power Administration’s
(BPA’s) current PMU installation. Our system can be used post-
hoc or in real-time and focuses on identifying line faults in the
data stream since these events can be easily verified by records
BPA maintains. One challenge for machine learning algorithms
is that the modern transmission systems are very often well-
behaved. Since PMUs record measurements at 60 samples/sec and
each PMU typically records up to 16 phasor signals, each PMU
records upwards of 80 million measurements per day. Line events,
in contrast, happen very rarely (on the order of 100 per month),
at least on a transmission system such as BPA’s. In this paper, we
examine the performance of multiple classifiers within this power
system domain. In addition to examining classifier performance
on a set of validated line events, we perform a detailed analysis
of false alarms and explore multiple methods for reducing false
alarms in a real system.

Keywords–Smart Grid; Phasor Measurement Unit (PMU); Ma-
chine Learning; Event Detection

I. INTRODUCTION

Smart-grid technologies offer the potential to increase effi-
ciency and reliability of power transmission by facilitating pre-
cise monitoring and control over power demand and availabil-
ity. Phasor measurement units (PMUs) are a key technology
for monitoring the health and status of a power transmission
system. These devices record system state variables (e.g.,
voltage and current phase angle and magnitude among others)
at high data rates (typically 60 samples/sec). Critically, PMUs
also provide precise timestamps on their measurements by
using the Global Positioning System. This allows the variables
measured across a wide geographical area to be synchronized.

Currently, PMUs are used primarily for monitoring pur-
poses. However, in the future it is expected that they will play
a much larger role in real-time operations and control. Some
of these functions may include monitoring transmission lines
for faults that may occur when lines contact one another or
come into contact with a grounded object. Such occurrences
typically result in an observable sag in voltage at nearby

substations and may require relays to actuate to isolate the
affected transmission line from the rest of the grid.

In this paper, we present recent work applying machine
learning techniques to detect line faults. Our experiments are
conducted on archival data from a large, active power trans-
mission system spanning the Pacific Northwest region of the
United States of America. The main contributions we present
include: (1) a cascade classifier that improves upon both hand-
built classification rules provided by a domain expert and
upon a corresponding decision tree inferred by Weka’s [1]
J48 implementation of the learning algorithm C4.5 [2]; and
(2) a detailed examination of the classifier’s error rates and
an evaluation of methods for reducing false positives (normal
grid activity classified as a fault).

In the following sections, we begin with a brief review
of related work using machine learning for fault detection
in the grid. In Section III, we describe our initial efforts to
detect line faults with machine learning. These approaches
serve as a baseline for the contributions described in this paper.
In Section IV, we describe our dataset and then follow in
the subsequent section with a discussion of two new cascade
classifiers and their relative performance. In Section VI, we
focus our examination on the false positive rate and on
ensuring that the tradeoff between true positives and false
positive stays within reasonable limits. Finally, in Section VII,
we examine the cascade on a significantly larger volume of
data from normal operation (nearly 100 million examples) and
compare the cascade’s false positive rate to that of the baseline
decision-tree classifier.

II. RELATED WORK

The increasing number of PMUs, as well as their high
sample rates, present challenges for the traditional workflow
of data processing [3]. As machine learning techniques have
become the de facto standard for processing and analyzing
large amount of data in other scientific fields, a variety of these
techniques have also been applied to analyze PMU data for the
purpose of recognizing synchrophasor signal patterns or signa-
tures of events. In general, these approaches can be divided into
two categories: unsupervised learning and supervised learning.
The widely adopted techniques in these two categories are
clustering and classification, respectively. The former is well
suitable for identifying events with unknown signatures and
the latter is particularly useful for classifying events based on
a known taxonomy. Antoine et al. propose a clustering method
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based on PMU measurements to identify causes for inter-area
oscillations [4]. In [5], the hierarchical clustering method is
applied to identify dynamic event locations. The hierarchical
clustering method has also been used to analyze disturbance
events [6]. Clustering methods with unsupervised learning do
not require labeled training data. However, once the clusters are
generated, an expert’s knowledge is often needed to interpret
and compare the clusters [4].

In contrast to clustering, supervised learning approaches [7]
can take advantage of labelled training data and identify known
signatures or patterns without domain knowledge from experts.
These approaches have also been used to detect interesting
events from PMU data streams. For instance, Zhang et al.
propose a classification method for finding fault locations
based on pattern recognition [8]. The key idea is to distinguish
a class from irrelevant data elements using linear discriminant
analysis. The classification is carried out based on two types of
features: nodal voltage, and negative sequence voltage. Similar
classification techniques are used to detect voltage collapse [9]
and disturbances [10] in power systems. Specifically, Diao et
al. develop and train a decision tree using PMU data to assess
voltage security [9]. Ray et al. built Support Vector Machines
and decision tree classifiers based on a set of optimal fea-
tures selected using a genetic algorithm [10]. Support Vector
Machine-based classifiers can also be used to identify fault
locations [11] and to predict post-fault transient stability [12].

Although significant effort has been focused on mining
PMU data for detecting event signatures, very few projects
use real PMU data collected from a wide area monitoring
system. To the best of our knowledge, there is no previous
work focusing on reducing false positives in classifying PMU
data. Because of the stability of the power grid, line faults
are rare phenomena. As a result, reducing false positives
of the classification becomes critical. In the work presented
in this paper, we examine real PMU data collected from
the BPA’s operational grid and propose several methods to
reduce the number of false positives produced by supervised
classification.

III. BASELINE FAULT DETECTION

In 2014, we described a simple set of decision rules for
identifying line faults from their voltage sags [13]. These rules
were developed using a theoretical foundation and validated
on faults recorded over an 11 month period on the Bonneville
Power Administration’s transmission grid which covers a large
geographic area in the Pacific Northwest of the United States
of America.

Although the expert-built classification rules performed
well (Table I, first row), they require a tremendous amount
of effort to generate. Indeed, hundreds of pages of plots and
data were generated for roughly 110 candidate faults. Clearly,
the manual approach does not scale well, and as a result we
have pursued machine learning approaches to leverage the data
recorded by PMUs before and during these faults.

In our initial approach, we were able to show that the
J48 decision tree learner was able to vastly improve upon
the domain expert’s hand crafted rules by: (1) leveraging a
substantially larger amount of training data; and (2) improving
upon the classic features directly measured by PMUs. We

selected decision tree learning for these experiments because
the learned representation is directly comparable to the expert’s
rules. Thus, we can identify how scaling up the data volume
and changing the feature set contribute to performance inde-
pendent of influences caused by changing the learned represen-
tation of the decision surface. While both the expert generated
rules and the inferred decision trees perform classification well
at PMUs closest to where the faults occur, the learned decision
trees perform much better when used at an arbitrary PMU
location (hence significantly higher recall values for J48 than
the expert defined rules).

Table I illustrates these results. Boolean precision and recall
refer to the boolean classification task of determining whether a
particular moment in time should be considered a “line-event”,
or “normal operation”. Accuracy is measured across all four
possible classifications (three line-event classes: single line to
ground fault (SLG); line-to-line fault (LL); and three-phase
fault (3P); and the normal operating condition (N)). Macro
precision and macro recall are macro-averaged values over the
three line event types. We exclude the precision/recall figures
from normal operating condition in the marco average since
performance on normal data is best evaluated by the boolean
performance characteristics. Table I illustrates a notable boost
in recall for both the boolean and individual fault types cases
(column two and five respectively). Moreover, while we can
see that increasing the data (row 2) used for training the
classifier improves recall, using a modified feature set also
substantially improves the macro-recall of individual fault
classes (column five).

TABLE I. INITIAL PERFORMANCE OF J48 VS HAND-CODED RULES

Boolean		
Precision	

Boolean		
Recall	

Accuracy	 Macro	
Precision	

Macro	
Recall	

Expert	Rules	 100	 34.4	 77.2	 96.8	 20.9	

J48	Increased	Data	 97.2	 97.8	 96.5	 78.2	 53.0	

J48	Increased	Data	+	
New	Features	 97.2	 97.8	 97.6	 77.5	 91.1	

While the results do indeed show that both J48 classifiers
make substantial improvements in recall, there is a tradeoff in
precision. Most notably, boolean precision drops from 100%
on the test-set for the expert defined rules to 97.2% for both
learned classifiers. At one level, this seems like a reasonable
tradeoff for the gains that are made on other metrics. However,
a loss of almost 3% precision (column 1) means many false
alarms; in a real operating environment, that value may be
prohibitively high.

The remainder of this paper focuses on alternate classifiers
and techniques that address the potential problem of false
alarms in the J48 classifier listed above. We begin by dis-
cussing the evaluation dataset.

IV. PMU DATASET

For this study, we leveraged archival PMU data recorded by
BPA between October 2012 and September 2013. We extracted
examples of normal operation and each of the three fault types
from within this sample. BPA verified 100 examples of line-
events from within our sample using their operational database.
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Figure 1. Typical voltage signature during a line event

Fifty-seven of these included log notes sufficient to determine
a specific fault type (e.g., single-line-to-ground, line-to-line, or
three-phase). The remaining faults were plotted and manually
inspected to verify their voltage signatures and infer their type.

The voltage magnitude signature of a typical fault is
illustrated in Figure 1. For any given fault, the PMUs reporting
the largest voltage magnitude deviations from their steady state
values tend to be physically close to the location of the fault. In
contrast, PMUs located geographically distant from a fault may
experience a minor deviation from steady state that is not easily
discernible from normal variance. Unless otherwise indicated,
the fault instances used to train and test the SVM classifiers
described below use samples obtained across all PMUs with
valid signals, regardless of the magnitude of the deviation
experienced by each PMU. The procedure for obtaining these
fault samples is as follows:

For each of the 100 fault events we found the moment in
time where the measured voltage sagged to its lowest relative
value. For most faults, PMUs report this moment as within 1
or 2 cycles (1/60 seconds) of each other. The most commonly
reported time, for each fault and across all PMUs, was labeled
the “moment of maximum voltage deviation” (square point in
Figure 1).

Given the moment of maximum voltage deviation for each
fault, we then collected examples using all PMU signals
that measured three valid voltage phases at those moments
in time. In total, the approach yields 7125 SLG examples,
474 LL examples, and 267 3P examples. To this set of
7688 fault instances, we added 11419 examples of normal
operation randomly selected from across 800 minutes where
BPA reported no line events occurred. Together, these samples
comprised the training data for our Support Vector Machine
(SVM) classifiers.

We created a test-set using the same 100 fault events but
sampling them 1 cycle (1/60 second) earlier than in the training
data (triangular point in Figure 1). To this, we added an
additional 11419 samples of normal data obtained in the same
manner as the normal data from the training set. Although the
fault samples in our test set are not entirely independent of
those in the training data, we believe that these points serve as
a reasonable proxy for new archival data with unseen faults.
Indeed, they may even be a more challenging test than new
events since the selection methodology ensures that they will
typically be smaller deviations from steady state than the points
used in training.

Each example in the training and testing set consists of
the three-phase voltage measurements for a single point in
time, from a single PMU. Voltages are normalized by steady-
state values calculated over a short window (10-30 cycles)
that precedes each example. The voltage within the window is
subjected to a smoothness check prior to computing the steady
state; if this test fails, the window is moved backward in time
relative to the sampling point until a suitably smooth voltage
can be found as reference. In Figure 1, for example, when
obtaining a measurement for the moment of maximum voltage
deviation (square points at Time=122 cycles), the steady state
window would initially be located so as to include cycle
121 since this point immediately precedes the measurement.
However, cycle 121 deviates significantly from the mean value
over the preceding 10 cycles. Thus, the smoothness criteria will
not be satisfied until the window is backed up one cycle earlier
so that it ends at cycle 120. This approach aims to compute a
reasonable steady state value that is not adversely influenced
by the voltage deviations experienced near a fault. We applied
this technique to normalize all voltage measurements for both
the training and testing data described above.

Using this dataset, we compare the historically best per-
forming decision tree (row 3 in Table I) against classifiers built
using SVMs in Section V. We then explore how our classifiers
stack up when asked to classify a day of continuous data from
19 operational PMUs.

V. CASCADES OF SVMS

The main benefit of J48 is that its classification rules can
be directly compared to expert rules and validated by power
systems engineers. By itself, this is a substantial value. How-
ever, we anticipated that other learning algorithms may be able
to improve upon J48’s performance. To this end, we examined
using two-class SVMs [14] in three different configurations: a
standard “one-against-one” approach for multi-class learning;
configured in a 3-Stage SVM Cascade (illustrated in Figure 2);
and configured in a 5-Stage SVM Cascade (illustrated in
Figure 3).

The one-against-one method is the default approach for
learning multi-class problems with SVMs in Python’s scikit-
learn version 0.16 [15], which we leverage for our work. In
our domain, there are four classes (three fault classes and the
normal operation class). The one-against-one method learns six
binary classifiers covering the

(n
2

)
class pairs. The classifiers

then vote on the final prediction.

The 3-Stage and 5-Stage SVM Cascades, in contrast, learn
individual binary SVMs representing a single decision node.
Thus, the cascade acts similarly to a decision tree in that a
series of SVMs which make progressive refinements to the
set of potential classifications until a single classification is
obtained. Unlike the one-against-one SVM which uses a single
set of hyper-parameters for all binary SVMs that are learned,
we allow each node in the Cascade to have independently set
hyper-parameters which we obtained with a grid search over
a subset of the training data.

The 3-Stage SVM Cascade was explored because it repli-
cates the decision order performed by earlier J48 classifiers.
The 5-Stage SVM Cascade was explored because we observed
that making the fault/no-fault classification last, rather than
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first, may generate fewer false alarms. This is because different
fault/no-fault decision boundaries could be found once the
primary characteristics had a chance to group the examples
into their most likely constituent fault type.

Fault vs No-Fault
SVC

3P vs Other Fault
SVC

SLG vs LL Fault
SVC

Fault

Non-3P Fault

SLG

No 
Fault

3P

LL

Figure 2. 3-Stage SVM Cascade
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Possible 3P Fault

3P vs Non-Fault
SVC

3P

No 
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LL vs Non-Fault
SVC

LL

Possible LL Fault

Figure 3. 5-Stage SVM Cascade

Confusion matrices for the original J48 classifier on the
new test set, along with the confusion matrices for the three
SVM variants are illustrated in Tables II and III respectively.

The J48 Classifier’s performance, illustrated in Table II,
shows high accuracy (95.5%), but a false positive rate of 4.9%
(normal data classified as a fault: (96 + 167 + 294)/11419)
that will be likely be unacceptable in a continuous operation
deployment.

TABLE II. TESTING SET PERFORMANCE OF J48 CLASSIFICATION

SLG LL 3P NF

SLG 6935 37 7 146

LL 124 348 0 2

3P 1 0 266 0

NF 96 167 294 10862Tr
ue

	C
la
ss
ifi
ca
tio

n

Predicted	Class

The SVM classifier performance is illustrated in Table III.
The One-vs-One configuration (left figure) and the 3-Stage
SVM Cascade (middle figure) show relatively similar accuracy
(94.3% and 92.9% respectively) as the original J48 classifier
and likewise similar false positive rates (4.5% for both config-
urations). The 5-Stage SVM Cascade, in contrast, maintains an
accuracy similar to the 3-Stage Classifier (93.0%), but reduces

false positives to 1.7%, nearly a factor of 3 below all other
classifiers examined.

VI. TOWARDS FULL-TIME OPERATION

The results from Section V illustrate that each of the
various classifiers makes somewhat different tradeoffs in terms
of accuracy and false positive/false negative rates. Before
selecting one classifier for further study, however, we wanted
to explore how the false positive rate was impacted by modi-
fications to the training data.

Recall that a PMU measuring a nearby line event tends to
produce a relatively large deviation from steady state voltage.
In contrast, PMUs located relatively far from a fault location
may measure a voltage deviation that is small enough to be
nearly lost in the normal fluctuations of the system. Thus, one
approach to reducing the false positive rate would be simply
to ignore measurements from PMUs that are geographically
distant from a fault location. Intuitively, this should not be
problematic from a detection standpoint since our dataset
contains a large number of PMUs over a wide geographical
area (covering two states in the Pacific Northwest of the United
States of America). Thus, removing a portion of the PMU
measurements should still provide enough measurements to
classify the event.

Figure 4 shows how each of the four classifier’s false
positive rate changes as a result of thresholding the fault in-
stances. Specifically, the figure plots a representative point for
each of the four classifier’s performance as represented in the
confusion matrices in Tables II and III. For the J48 classifier
whose decision nodes are discussed in [13], we change the
threshold on the first decision node which corresponds to the
fault/no-fault distinction; we do not retrain the classifier as
a whole. As the threshold is tightened, the net effect is to
classify examples with small deviations (which tend to occur
far from a fault location) as normal. We plot the impact of
this modified threshold as a line (blue dashed line). Note that
the true positive rate reported on the Y-axis is exactly that:
the true positive rate on the unmodified test set. That is to say
that although we are changing the threshold associated with
the fault/no-fault classification in the decision tree, we are not
changing the labels associated with the testing data, nor are
we removing instances from the test set. The line on the plot
shows that no modification can be made to the J48 threshold
so as to obtain the same true positive/false positive rate as the
5-Stage Cascade.

To see if thresholding would permit either the One-vs-
One SVM or the 3-Stage SVM Cascade to reach a sim-
ilar performance profile as the 5-Stage SVM Cascade, we
performed a similar analysis as for J48. Here, however, we
applied the threshold to the fault instances in the training
set, thereby removing the fraction of examples whose voltage
deviations were more subtle than the threshold allowed. Again,
this has the effect of removing measurements from PMUs
geographically distant from the fault location from the training
set. Once the new classifiers were trained, we then tested on
the full testing set and plotted the resulting lines. The plot
reveals that the One-vs-One SVM tends to outperform the 3-
Stage SVM Cascade for false positive rates between roughly
0.8% and 4.5% respectively. However, like J48 and the 3-
Stage classifier, it does not quite yield the same true-positive
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TABLE III. CONFUSION MATRICES FOR: 1-VS-1 SVM (LEFT); 3-STAGE SVM CASCADE (MIDDLE); 5-STAGE SVM CASCADE (RIGHT)

SLG LL 3P NF

SLG 7063 9 0 53

LL 192 207 0 75

3P 1 0 23 243

NF 469 50 0 10900

Predicted	Class

Tr
ue

	C
la
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ifi
ca
tio

n

SLG LL 3P NF

SLG 6361 54 2 708

LL 79 380 0 15

3P 1 0 259 7

NF 83 162 267 10907

Predicted	Class

Tr
ue

	C
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tio

n

SLG LL 3P NF

SLG 6329 18 0 778

LL 89 252 0 133

3P 1 0 139 127

NF 83 53 60 11223

Predicted	Class

Tr
ue

	C
la
ss
ifi
ca
tio

n

performance as the 5-Stage classifier. The 5-Stage Cascade
overall performs best showing the lowest false positive rate
with the full training set (upward facing triangular point).
For false positive rates between 0.008− 0.017 the 5-Stage
SVM Cascade and the 3-Stage Cascade perform relatively
similarly. However, the 5-Stage Cascade once again dominates
performance for lower false positive rates.
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Figure 4. ROC curve for J48 and SVM classifiers

VII. LARGE TEST SET PERFORMANCE

The ROC curve in Figure 4 shows that no classifier
outperforms the 5-stage SVM Cascade. In this Section we
explore the 5-stage SVM Cascade’s performance as we scale
the test data to simulate a real operating environment. We
expect that our previous testing is robust with respect to the
system’s ability to identify fault instances given that we have
sampled an entire year’s worth of line events that occur on
transmission lines adjacent to one or more PMUs. However,
our previous test set examined only a small sample of normal
data. As a result, we expect that our estimate of false positive
rate may be incorrect by a significant margin. Thus, in this
experiment we focus on a contiguous 24 hours period in which
no known line faults occur. Since line faults are relatively rare,
this is not an atypical situation. Given this period of data, we
then want to examine the performance of the 5-Stage SVM
Cascade to determine how the false positive rate compares to
our much smaller test set previously examined. To provide
a baseline, we performed the same large scale test with the
original J48 classifier.

We used signals from 19 PMUs across the grid over a
contiguous 24 hour period. Each PMU reports 5,184,000 mea-
surements over a 24 hour period, however one PMU is offline
for 283 cycles (4.7 seconds) during the period we selected.
Additionally, we use the first 10-cycles from each PMU to
acquire a steady state value for each voltage measurement.
In total this means that there are (5.184 · 106 · 19)− 283−
(10 ·19)≈ 98.5 ·106 individual examples to classify. However,
from the analyst’s standpoint, it is the moments of time that
matter, not the individual measurements, so we consider only
the unique moments where all PMUs report valid signals (i.e.,
5.184 ·106−293 moments).

When run on these individual moments of time, the 5-Stage
SVM Cascade classifier reports 15 false positive moments in
time, but J48 reports an incredible 4,582,490 false positives.
Our initial hypothesis was that one PMU may have been
behaving erratically during the day we selected. To test this, we
recorded the number of PMUs whose signals were classified
as “fault condition” for each moment in time. We then applied
a floating threshold so as to require multiple PMUs to corrob-
orate each others’ classification before marking a particular
moment in time as a fault. We tested thresholds of 1,2,3, and
> 3 PMUs. In the first case, we ask how many times exactly
1 PMU classifies a moment as a fault; in the last case, we
ask how many times there are more than 3 PMUs classifying
the same moment as a fault. These results are shown in
Table IV. The first column shows how many moments cannot
be classified (because they are used to initialize the steady
state measurement or because a PMU is out of service); while
the second column shows how many moments are classified as
“normal” by all PMUs. The stratification demonstrates that J48
is not being adversely affected by a single PMU, since 75%
of the day is classified as a fault by more than three PMUs.

Our next suspect was that J48 was adversely affected by the
steady state measurement. Recall that one goal of our steady
state computation was to ensure that we didn’t inadvertently
incorporate part of a fault into the window over which steady
state value was calculated. As a result, our algorithm also
ensured that moments in time labeled as a “line event” were
not used in subsequent steady state calculations. This means
that a contiguous string of false positives could result in the
steady state measurement being significantly far back in time
(and thus unlikely to be a precise measurement).

We re-ran the test using two variations of the steady
state calculation, again recording the amount of corroboration
between PMUs. The second steady state method used the
same basic algorithm, but reported an error condition if the
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steady state window lagged more than three cycles behind
the measurement point. This approach ensures that there was
only minimal lag between the steady state window and the
measurement, but may result in many errors (since there may
be some periods that were not smooth enough to satisfy
our steady state algorithm). Results from this approach are
illustrated in Table V.

The third variation simply uses the previous 30 cycles for
the steady state measurement, regardless of the smoothness of
the measurements during that window, and regardless of the
classification of data within that window. The attempt here
was to ensure that the steady state window is always close
in time to the measurement point and to reduce the time in
which the steady state is incalculable. Since the window would
always keep pace with the measurement, we expected that
transient noise may create some false positives, but eventually
the signal would smooth out and classification would continue
regularly. We increased the window length from 10 to 30 cycles
to avoid being overly influenced by isolated measurement
outliers. Results from this approach are illustrated in Table VI.

TABLE IV. FALSE POSITIVES FOUND BY CORROBORATED
CLASSIFICATIONS

Out	of	
Service

0	PMUs	
Report	Fault

1	PMU	
Reports	
Fault

2	PMUs	
Report	
Fault

3	PMUs	
Report	
Fault

>	3	PMUs	
Report	Fault

293 5,183,692 10 3 0 2
0.0057% 99.9941% 0.0002% 0.0001% 0.0000% 0.0000%

J48 293 601,217 139,196 226,854 285,764 3,930,676
0.0057% 11.5976% 2.6851% 4.3760% 5.5124% 75.8232%

5	Stage	SVM	
Cascade

TABLE V. METHOD 2: LAGGED STEADY STATE WINDOW PRODUCES AN
ERROR

Out	of	
Service

0	PMUs	
Report	Fault

1	PMU	
Reports	
Fault

2	PMUs	
Report	
Fault

3	PMUs	
Report	
Fault

>	3	PMUs	
Report	Fault

333 5,183,653 10 2 0 2
0.0064% 99.9933% 0.0002% 0.0000% 0.0000% 0.0000%

J48 1,763 5,181,655 527 26 11 18
0.0340% 99.9548% 0.0102% 0.0005% 0.0002% 0.0003%

5	Stage	SVM	
Cascade

TABLE VI. METHOD 3: 30-CYCLE SS WINDOW KEEPS PACE WITH
MEASUREMENT

Out	of	
Service

0	PMUs	
Report	Fault

1	PMU	
Reports	
Fault

2	PMUs	
Report	
Fault

3	PMUs	
Report	
Fault

>	3	PMUs	
Report	Fault

313 5,183,669 13 3 0 2
0.0060% 99.9936% 0.0003% 0.0001% 0.0000% 0.0000%

J48 313 5,181,968 1,440 130 41 108
0.0060% 99.9608% 0.0278% 0.0025% 0.0008% 0.0021%

5	Stage	SVM	
Cascade

The results across all three steady state variations indicate
that the 5-Stage SVM Cascade is relatively insensitive to the
method of steady state calculation, while J48 performance is
much more sensitive, even as the amount of corroboration
required between PMUs is increased. Overall, the results from
the 5-Stage Cascade are quite promising in this streaming envi-
ronment. Across the 24 hour period, there are only 2 moments
in time (regardless of the steady state method employed) that
are incorrectly classified as faults by more than three PMUs.
This false positive rate is 0.0000386% — more than four orders
of magnitude less than expected given the results from the
original test set.

VIII. CONCLUSIONS

In this paper, we have demonstrated a 5-Stage Cascade
of SVMs within the PMU line fault domain. Our cascade
offers a better performance profile than previously reported J48
classifiers for the same domain. Critically, we also have shown
that the 5-Stage classifier achieves very low false positive rate
on a 24 hour period of data containing almost 100 million
examples. For future work, we are exploring the potentials
of using unsupervised learning to characterize line events and
unknown events on the smart grid.
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