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Abstract—Smart grids are a more and more present concept in 

electrical systems. In the context of smart grids, alike in the 

present topology of electrical systems, it is necessary to 

guarantee quality and reliability of energy provision. Thus, this 

work has the objective to locate faults ins energy distribution 

systems using only post-fault voltage data. This data will be 

collected on the medium voltage side of distribution 

transformers, a likely place for installation of concentrating 

devices of smart grids, and will be applied to a multilayer fuzzy 

inference system. The scenario studied is a feeder of an actual 

distribution system, with 1600 buses and 505 transformers. 

The obtained results are still very imprecise to faults too close 

or too far from the measurement point, but they are 

satisfactory for a specific range of fault distances. 

Improvements are going to be made to obtain more accurate 

results. 

Keywords-Distribution system; Fault location; Fuzzy 

inference systems. 

I.  INTRODUCTION 

Electrical power systems have been facing different 
technical, economic and environmental changes, mainly in 
response to the increasing energy demand, the efforts to 
incorporate renewable generation sources and the 
intensification of reliability of energy supply. A feasible way 
to alleviate the problems caused by such changes is the use 
of Distributed Generation (DG) [1][2]. 

DG is defined as small generating units installed in 
distribution systems near load centers. Its main advantages 
are: reduction of losses in the system, improvement of 
voltage profile and power quality indices, increase of energy 
supply trustworthiness, reduction of operating and 
environmental costs (less penalties for emission of 
pollutants, because of the use of a renewable source) and 
market opening [1][3]. 

The energy generated with DG can be used to feed the 
energy needs of the producer, but it also can be sold to the 
grid when convenient. However, for the implantation of DG 
to be allowed, there is a set of rules that must be followed by 
the producer. One of them says that when an abnormal 
condition is verified, the DG must be disconnected from the 
grid [3][4]. 

A fault in the system is an abnormal condition, since it is 
a sudden voltage sag which leads to high currents. Faults are 
events that happen randomly, and are very prejudicial to the 
grid, especially due to these overcurrents. To save the system 
from potential damage, the protection system must work 
correctly and must isolate the fault from the grid [5][6]. 

However, isolating the faulty point is not the solution to 
the problem. Some faults must be located and repaired before 
reconnecting that point to the grid. This is where the 
objective of this paper lies. This paper aims to develop a 
multilayer Fuzzy Inference System (FIS) to locate faults in 
distribution systems using only voltage measurements. It is 
expected that the FIS can estimate the fault location no 
matter the distance to a reference point, which in this paper is 
any transformer in a simulated distribution system identical 
to a real one. 

This paper is organized as follows: Section II contains 
the state-of-the-art regarding fault locations in distributions 
systems and the original contribution of this paper. Section 
III describes the multilayer FIS used. Section IV exposes the 
methodology used to obtain the results, which are in Section 
V. Finally, Section VI contains the conclusions of this paper. 

II. STATE OF THE ART AND ORIGINAL CONTRIBUTION 

Currently, there are several methodologies for locating 
faults in electrical systems to reduce the reestablishment time 
of electrical energy in the region where the fault occurred, 
and each of these techniques has advantages, disadvantages 
and particularities [7][8]. These methods can be divided into 
three main categories: based on apparent impedance, based 
on traveling waves, and methods using artificial intelligence. 

Apparent impedance-based methods consider that the 
distance between a given measuring point, usually the 
substation, and the fault point is proportional to the apparent 
impedance seen from the measurement point, calculated at 
the time of the fault, as explained in [9]-[13]. An advantage 
of this method is that it does not require a geo-referencing 
system with synchronized measurements to detect the point 
of the fault, since the measurement of parameters in one grid 
terminal is sufficient, but in contrast its disadvantage is the 
estimation of multiple possible points of fault, due to the 
branching of the radial distribution systems [7][8]. Other 
important aspects are that the fault impedance and the fault 
current impact the calculation of the apparent impedance. 
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The fault impedance is always unknown and the fault current 
is influenced by several factors of the system, such as the 
load and the presence of distributed generation [14]. 

The methods based on traveling waves rely on the 
analysis of the waveform of the voltage that travels to both 
sides of the grid, being reflected and refracted in its 
discontinuities while its amplitude is attenuated. The method 
consists in measuring the time between the first and the 
second incidence of the wave originated with the fault, which 
travels back and forth from the fault point to the terminal, as 
presented in [15]-[21]. 

One of the main difficulties in applying this method 
comes from the branching of the distribution systems, since 
each connection of the system is a point of discontinuity 
where the traveling wave will be reflected and refracted 
[7][8]. In this case, a possible approach is the use of the 
wavelet transform, which can detail the characteristics of 
traveling waves in the time and in the frequency domains in 
order to determine at what moment of time a high frequency 
transient, i.e., a fault, happens [18][20]. The main advantage 
of this methodology, compared to the method based on the 
apparent impedance, is that the multiple estimation does not 
occur, instead a single location of the fault point is found 
[22]. At the same time, there are the disadvantages of this 
second method, which are the need for syncing the 
measurements in two terminals, or alternatively, using a high 
frequency of data acquisition [20]. 

Intelligent systems used in fault location can profit from 
the advantages and avoid the disadvantages of both preview 
methods by using known historical data to be trained, as 
explained in [23]-[27]. In [28], for example, the fault 
distance is calculated through the apparent impedance 
method, which leads to multiple possible fault points. After 
that, an Artificial Neural Network (ANN) is trained to 
recognize patterns using voltage sag data in the moment of 
the fault so the correct fault point among all can be 
determined. 

In [29] the authors use as inputs of an ANN the 
parameters of the wavelet transformation applied to the line 
currents of the 34-bus IEEE feeder. Likewise, in [30], a 
neuro-fuzzy system receives wavelet parameters of voltage 
and current, obtaining 80% accuracy index when DG is 
present in the distribution system, and 90% accuracy index 
when DG is absent. 

When analyzing the most recent researches related to 
fault location in distribution systems it is noticed that their 
indexes of accuracy are quite satisfactory. The most used 
methodology consists of intelligent systems whose inputs are 
post-fault, voltage and/or current wavelet parameters 
[29][31]. An important detail is that in most of recent works 
the current measurement is considered as something essential 
for the correct and precise location of the fault [7][8]. 

The original contribution of this work comes from the 
fact that only voltage data is used to locate the fault in a 
distribution system. This consideration is important because 
of the following reason: in Brazil, the National Agency of 
Electrical Energy (ANEEL) considered as minimum 
requirements to a smart meter to acquire voltage, active 
power and reactive power data [32]. Current measurements 

are not included in the minimum requirements of smart 
meters, thus not using them in fault location methods 
increase the applicability of this work in a future Brazilian 
smart grid scenario. 

III. MULTILAYER FUZZY INFERENCE SYSTEM 

The FIS may be treated as systems that use the concepts 
and operations defined by the fuzzy set theory and by the 
fuzzy reasoning methods, since they use the fuzzy inference 
process to perform their operational functions. Basically, 
these operational functions include the inputs fuzzification of 
the system, the inference rules associated to it, the 
aggregation of rules and the later defuzzification of the 
aggregation results, which represent the outputs of the FIS 
[33]. 

Considering the operational functions performed by the 
FIS, it is convenient to represent them by a three-layer 
model. Thus, a FIS may be given by the sequential 
composition of an input layer, an inference layer and an 
output layer. 

A. Input Layer 

The system inputs fuzzification has the purpose of 
determining the membership degree of each input related to 
the fuzzy sets associated to each input variable. To each 
input variable, as many fuzzy sets as necessary can be 
associated. This way, given a FIS with only one input, to 
which there are N fuzzy sets defining it associated, then the 
output of the first layer is a column vector with N elements, 
which are representing the membership degrees of this input 
in relation to those fuzzy sets. 

If we define the input of this FIS with one only input x, 
then the input layer output of the FIS is the vector I1, that is 

 
T
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N
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211    (1) 

where µAk(·) is the membership function defined to x input, 
which is referring to the k-th fuzzy set associated to this 
input. 

The generalization of the input layer concept for a FIS 
having p input variables can be achieved if we consider each 
input of this FIS being modeled as a sub-layer of the input 
layer. Considering this, the output vector of the input layer 
I(x) is then defined by 
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where xi is the i-th input of the FIS and Ik(·) is the k-th vector 
of membership functions associated to the xk input. 

B. Inference Layer 

The set of rules has fundamental importance to the 
correct functioning of the FIS. There are several methods for 
the extraction of fuzzy rules from the tuning set. 

In this paper, the FIS has initially all the possible inferred 
rules. Therefore, the tuning algorithm has the task of 
weighting the inference rules. The weighting of the inference 
rules is an adequate way to represent the most important 
rules in the FIS, or even to allow that conflicting rules are 
related to each other without any verbal completeness loss. 
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Thus, it is possible to express the i-th fuzzy rule as (3), where 
Ri(·) is the function representing the fuzzy weight value of 
the i-th fuzzy rule, wi is its weight factor and ri(·) represents 
its fuzzy value. 

 )())(( xIrwxIR iii   (3) 
 

  

C. Output Layer 

The output layer of the FIS aims to aggregate the 
inference rules, as well as the defuzzification of the fuzzy set 
generated by the aggregation of inference rules. 

In the FIS design, the choice of not only the aggregation 
method but also the defuzzification method constitutes a very 
important decision. The aggregation method of the fuzzy 
inference rules must be in such a way that the fuzzy set 
resulting from aggregation is capable of adequately 
representing the knowledge contained in this set of fuzzy 
rules. By analogy, the method chosen for the defuzzification 
must express, in a crisp value, the fuzzy set resulting from 
the fuzzy aggregation. 

D. Adjustment of the Fuzzy Inference System 

To summarize what was exposed until now in this 
Section, Figure 1 illustrates how the layers are disposed. In 
this example, two inputs were provided and three rules 
activated. 
 

 
Figure 1.  Multilayer fuzzy inference system [33]. 

The formalization of a FIS in the form of a multilayer 
system can be justified not only by the different operational 
division of each one of these layers, but also by the presence 
in each of them of different free parameters. 

This way, the mapping  between the input space x and 
the output space y may be defined by (4), where mf1n, w and 
mfout respectively represent the vectors of the input 
membership functions parameters, the weight of the 
inference rules and the output membership functions 
parameters. 

 ),,,( 1 outn mfwmfxfy   (4) 

Therefore, mf1n, w and mfout represent the free parameters of 
the FIS and for this reason it is more suitable to rewrite (4) as 
presented in 

 ),( xfy   (5) 

where θ is the vector resulting from concatenation of the free 
parameters involved to system, that is 

  T
out

TT
n mfwmf1  (6) 

The definition of the energy function to be minimized 
remains in function of the fuzzy mapping. Considering that 
the tuning set {x,y} is fixed during the whole adjustment 
process, it may be written as (7), where ξ represents the 
energy function associated to the FIS f. 

      yxyx ,,   (7) 

In problems like this, involving the minimization of 
energy functions, it is desired that, after any iteration, the 
energy function value is lower than that value obtained in the 
previous iteration. There are several techniques used to solve 
unconstrained optimization problems. A detailed description 
of the unconstrained optimization techniques may be found 
in [34]. The choice of the most adequate technique to be used 
is conditioned to the form by which the energy function is 
defined. For example, the Gauss-Newton method for the 
unconstrained optimization may be more applicable in 
problems where the energy function is defined as (8), where 
e(i) is the absolute error of the i-th tuning pattern. 
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In this paper, a derivation of the Gauss-Newton method 
is used for the FIS. The Gauss-Newton expression to update 
the vector θ is defined by (9), where g is the gradient of ξ 
expressed in (7) and J is the Jacobian matrix of e presented 
in (8). 

   gJJ T
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The optimization algorithm used was the Levenberg-
Marquardt method [35]. The Levenberg-Marquardt method 
can handle well ill-conditioned matrices JTJ by altering (9) to 

   gIJJ T
nownext

1

2

1 
   (10) 

The calculation of the matrices J and the vectors g were 
performed through the finite differences method. 

IV. METHODOLOGY 

Aiming to locate faults in a distribution system, this 
paper uses simulations of faults in a real system, which is in 
Biritiba-Mirim (Brazil). This distribution system contains 
505 transformers and 1600 buses. Each simulation consisted 
in applying a fault to one bus and measuring the medium-
side voltages in each transformer, in addition to zero and 
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positive impedances between each transformer and the fault. 
This way, more than 800,000 sets of data were gathered. All 
the voltage data collected are: module, real part and 
imaginary part of phase, line and sequence voltages. Since 
phase A is the reference, its imaginary part is zero and the 
real part is equal to the module. This way, there are 25 
different vectors of voltage data that will be the inputs of the 
FIS. 

The medium voltage side of transformers was chosen as 
the points to collect data because of two main reasons. First, 
the transformers are a likely spot to place the data 
concentrators of a smart grid [36]. Second, the work 
presented in [37] develops and designs a Phasor 
Measurement Unit (PMU) that fits perfectly for data 
acquisition in the purpose of this paper. Although it is placed 
in the low voltage side of transformers (220 V), it can collect 
all 25 different voltages used in the magnitude of 13.8 kV by 
considering the transformer model. 

The outputs of the FIS are the modules of the zero and 
positive impedances in fault condition. These variables are 
used to calculate the apparent impedance, which is directly 
proportional to the fault distance between a transformer 
(measurement point) and the fault point. The equations 
below shows these relations between the distance D, the 
apparent impedance Zap, the zero and positive sequence 
impedances Z0 and Z1, the fault voltage VA and current Ia and 
the zero sequence current i0 [38]. 
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Some considerations were made in this study. It was 
considered that the system is balanced, equilibrated and 
symmetric before the fault. The fault is phase-A-to-ground 
with no resistance. The system is unloaded. 

V. RESULTS 

The results were obtained by training and testing the FIS 
with 5 inputs and 12 rules, once for calculating Z0 and 
another for calculating Z1. These 5 inputs were selected 
among all the 25 measured voltages by the method 
developed in [39]. 

For Z0, the voltages selected as inputs of the FIS were VA, 
V1i, V0r, VBr e V1r. The rules and membership functions are in 
Figure 2, while the estimation result is in Figure 3. For 
estimating Z1, the inputs were VA, V1i, VBCr, V2i e V0r. The 
results are in Figure 4 while the FIS configuration is in 
Figure 5. 

Figures 2 and 5 show 6 columns (5 inputs and 1 output) 
and 12 rows (rules). In each but the last column there is a red 
line which represents the value of each input. This value can 
vary from 0 to 1 individually, since all data is in pu, but they 
are all assumed 0.5 here as an example. In each row, there 
are all the membership functions that are activated by the 
values of the inputs in the corresponding rule. The yellow 
region in each membership function is the pertinence of that 
function. In the last row and column, there is a thick red line 
that represents the value of the output after the aggregation 
of all membership functions of the output. This value is the 
impedance in pu. 

Figures 3 and 4 show how many estimations exist by 
interval of impedance. By analyzing them, it is possible to 
see that the FIS was not able at all to estimate impedances in 
the intervals [0.0 0.1] pu and [0.6 1.0] pu. Instead, the FIS 
placed them in the ranges of impedances [0.1 0.2] pu and 
[0.3 0.6] pu, making their estimation not as correct as they 
should be. The only interval were the estimations matched 
reasonably the real impedances is the [0.2 0.3] pu interval in 
both cases. 

With these estimation data, the distance between the fault 
and the measurement point can be calculated, using (12). 
Then, they are compared to the real distance of the fault. 
This comparison is showed in Figure 6, which can be 
analyzed similarly to Figures 3 and 4, and in in Figure 7, 
which is the histogram of the error, indicating the number of 
estimations that provided similar intervals of errors (in km). 

 

 
 

Figure 2.  FIS configuration for estimating Z0. 
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Figure 3.  Z0 estimatiom. 

 
Figure 4.  Z1 estimation. 

 

 

 
 

Figure 5.  FIS configuration for estimating Z1. 

 

 
Figure 6.  Comparison between estimated and real fault distances. 

 
Figure 7.  Histogram of distance estimation error. 
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Circa 400 samples (10% of the training data) resulted in 
errors close to zero, approximately the same amount of 
samples whose estimated distance is between 1.6 km and 2.0 
km, that is the interval of distances with the smallest 
estimation error. 

VI. CONCLUSION 

This paper developed a fault location method in 
distribution systems using only voltage measurements. A 
Fuzzy Inference System was trained with these voltage data 
and provided as outputs the zero and positive impedances, 
which were used to calculate the distance from each 
transformer of the grid to the fault point. 

In a first glance at Figure 6, the results look far from 
being satisfactory to completely fulfill the objective of this 
work. Yet, this work has some good results, as explained 
below. 

Taking a closer look on Figure 6, there is a range of 
distances, [1.6 2.0] km, where the estimation has little error. 
This is the only acceptable range because the FIS could only 
estimate the zero and positive impedances more accurately in 
the narrow interval associated with this distance range, that is 
the [0.2 0.3] pu impedances interval. Knowing this, after a 
fault happens, when calculating the distance from every 
transformer to the fault, most of them will locate the fault 
incorrectly. Transformers closer than 1.6 km from the fault 
will accuse that the fault is even closer, and transformers 
further from 2.0 km will indicate an even longer distance to 
the fault. Nevertheless, there is a circle of transformers with 
radius varying between 1.6 km and 2.0 km that will give a 
precise fault location, which is the center of this circle. 

However, even after this analysis, there is more room for 
improving the results of this work in future ones. First, 
locating the fault using the thought exposed above is only 
conceivable if the correct number of measurement points is 
used. In this paper, 505 transformers were not enough to 
locate the fault regardless of its distance, but this number is 
fine to locate faults within the distance described above. 
Changing this number may improve the results, that is, may 
widen the range of precise distance estimations. 

Second, the FIS must be restructured. Changing the 
number of transformers implies in a different set of data used 
to train the Fuzzy Inference System, making it necessary to 
alter the number of rules, membership functions, inputs and 
epochs of training for optimizing the results. 

The third possible improvement regards the distribution 
system, that is rather simplified. It is convenient to add more 
characteristics of the system, such as unbalanced voltages, 
fault impedance and presence of loads to obtain a more 
applicable result in a real distribution system. 

Additionally, there is still an important factor of this 
present work to investigate. Very low or very high 
impedances could not be estimated by the FIS, and the 
reasons for this are unknown. A hypothesis is that the 
distribution system is too complex for a fault to be located 
without clustering this system to be trained by different FIS. 
Making the FIS capable of accurately estimating these 
extreme impedances will certainly grant a more precise fault 
location. 
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