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Abstract—In order to develop geophysics tools for exploration
of energetic resources, numerical models are proposed to un-
derstand complex geological structures. They are solved from
the discretization of Partial Differential Equations by the Finite
Differences Method. This method creates a pattern that solves
each point in a 3D domain, and it replicates the same calculation
to compute all the data domain. Because of the quantity of calcu-
lations, solving the numerical kernels requires High Performance
Computing. However, the complexity of current architectures may
reduce the efficiency. In some cases, applications tuning have been
used to improve the performance. In this context, predicting the
performance from input parameters is a critical problem. This is
particularly true regarding the high number of parameters to be
tuned both at the hardware and the software levels (architectural
features, compiler flags, memory policies, multithreading strate-
gies). This work focuses on the use of Machine Learning to predict
the performance of geophysics numerical kernels on many-
core architectures. Measures of hardware counters on a limited
number of executions are used to build our predictive model. We
have considered three different kernels (7-point Jacobi, seismic
and acoustic wave propagation) to demonstrate the effectiveness
of our approach. Results show that the performance can be
predicted with high accuracy.

Keywords–Machine Learning; Geophysics Applications; Many-
core Systems; Performance Model

I. INTRODUCTION

Geophysics modeling remains fundamental to keep up
with the demand for energetic resources. Thus, Oil and Gas
industries rely on High Performance Computing (HPC) soft-
ware as an economically viable way to reduce risks. Wave
propagation algorithms are routinely used both in the oil and
gas industry and in strong motion analysis in seismology. The
finite-differences numerical method used for this problem also
lies at the heart of a significant fraction of numerical solvers
in other fields. In terms of computational efficiency, one of
the main difficulties is to deal with the disadvantageous ratio
between the limited point-wise computations and the intensive
memory access required, leading to a memory-bound situation
[1].

The objective of HPC applications is to optimize the perfor-
mance. This comes from the increasing of complexity for many
interdependent factors: vectorization, compiler optimizations,
non-uniform memory access and several levels of memory, etc.
Although a large body of literature on the optimization of this
class of applications is available, predicting the performance
on current architectures remains a challenge and it requires to
search in a large set of input configurations [2]. On the other

hand, Machine Learning (ML) is a comprehensive methodol-
ogy for optimization that could be applied to find patterns on
a large set of parameters. Recently, in [3] the authors present
a methodology based on ML algorithms and simulation to
obtain dynamic scheduling policies, whereas in [4] the authors
proposed an ML-based scheme to tune the storage system and
increase the I/O throughput.

This research was developed in the context of High Perfo-
mance Computing for Enery Project (HPC4E). In this paper,
we describe the procedure to predict the performance of stencil
applications by a ML-based model, on accelerators architec-
tures. The paper is organized as follows: Section II provides the
fundamentals of geophysics models under study; Section III
describes the methodology of our ML-based approach; Section
IV presents the experiments, the performance prediction, and
the model accuracy; Section V describes the related work.
Finally, Section VI concludes this paper.

II. NUMERICAL KERNELS

In this section, we present the geophisycs numerical
models. Due to its simplicity, the Finite-Differences Method
(FDM) is widely used to design the geophysics models, when
discretizing Partial Differential Equations (PDE). From the
numerical analysis point of view, the FDM computational
procedure consists in using the neighboring points in the north-
south, east-west and forward-backward directions to evaluate
the current grid point in the case of a three-dimensional
Cartesian Grid. The algorithm then moves to the next point
applying the same computation until the entire spatial grid has
been traversed. The number of points used in each direction
depends on the order of the approximation. This procedure
is called stencil-based computation. The stencil sweep can be
expressed as a triply nested loop presented in Figure 1.

1: for each timestep do
2: compute in parallel
3: for each block in X-direction do
4: for each block in Y-direction do
5: for each block in Z-direction do
6: compute stencil(3D tile)
7: end for
8: end for
9: end for

10: end for

Figure 1. Pseudocode for stencil algorithms.
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A. 7-point Jacobi
The stencil model of 7-point Jacobi is given by the explicit

3D heat equation described in [5] and presented in (1):

Bi,j,k =αAi,j,k

+ β(Ai−1,j,k +Ai,j−1,k +Ai,j,k−1

+Ai+1,j,k +Ai,j+1,k +Ai,j,k+1)

(1)

This stencil performs a single Jacobi (out-of-place) itera-
tion. Thus, reads and writes occur in two distinct arrays (A, B),
where each subscript represent the 3D index into array A or
B. For each grid point, this stencil will execute 8 floating point
operations [6]. Figure 2 illustrates the size of Jacobi stencil.

xy
z

Figure 2. Seven-point Jacobi stencil [7].

B. Seismic Wave Propagation
The seismic waves radiated from an earthquake are often

simulated under the assumption of an elastic medium although
the waves attenuate due to some anelasticity. This numerical
kernel corresponds to the discretization of the elastodynamics
equation and it is of great importance both for seismic hazard
assessment, as well as for the oil and gas industry. In our
case, we consider a standard fourth order in space and second
order in time approximation. This algorithm corresponds to the
evaluation of six stress components (three in the diagonal di-
rection and three off-diagonal) and three velocity components.
A detailed description of the numerical modeling of seismic
waves on multi-core platforms is presented in [8].
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Equation (2) provides a synthetic view of the computation
of one of the diagonal components, where i, j, k represent a
tensor field component in Cartesian coordinates (x, y, z), and

V and σ represent the velocity and stress fields, respectively.
Figure 3 illustrates the size of the seismic wave propagation
stencil applied to calculate velocity and stress components.

Figure 3. Seismic wave propagation stencil [9].

C. Acoustic Wave Propagation
The acoustic wave propagation approximation is the current

backbone for seismic imaging tools. It has been extensively
applied for imaging potential oil and gas reservoirs beneath
salt domes. We consider the model formulated by the isotropic
acoustic wave propagation under Dirichlet boundary conditions
over a finite 3D rectangular domain, prescribing to all bound-
aries, and the isotropic acoustic wave propagation. Numerical
method solves (3) and is detailed in [10].

Ci,jk =a0Ci,j,k

+ a1(Ci−1,j,k + Ci+1,j,k + Ci,j−1,k

+ Ci,j+1,k + Ci,j,k−1 + Ci,j,k+1)

+ a2(Ci−2,j,k + Ci+2,j,k + Ci,j−2,k

+ Ci,j+2,k, + Ci,j,k−2 + Ci,j,k+2)

+ a3(Ci−3,j,k + Ci+3,j,k + Ci,j−3,k

+ Ci,j+3,k + Ci,j,k−3 + Ci,j,k+3)

(3)

Propagation speed depends on variable density, the acoustic
pressure, and the media density. Figure 4 illustrates the size
of the acoustic wave propagation stencil.

Pzz

Pxx

Pyy

Figure 4. Acoustic wave propagation stencil [10].

Petrobras, the leading Brazilian oil company, provides a
standalone mini-app of the previously described numerical
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method. The code was written in standard C and leverage
from OpenMP directives for shared-memory parallelism. But
Indeed, the parallelization strategy relies on the decomposition
of the three-dimensional domain based on OpenMP loop
features.

III. TESTBED AND PREDICTION MODEL METHODOLOGY

In this section, we describe our testbed, the runtime con-
figurations and introduce the ML model.

A. Testbed

We used the Intel Xeon Phi many-core platform to carry
out the experiments (code-name Knights Landing, or KNL).
The detailed configurations are shown in Table I.

TABLE I. DESCRIPTION OF THE INTEL XEON PHI (KNL)
ARCHITECTURE.

Processor Intel Xeon Phi 7520
Clock(GHz) 1.40
Cores 68
Sockets 1
Threads 272
L2 cache size (MB) 34

The KNL brings in new memory technology, a high
bandwidth on package memory called Multi-Channel DRAM
(MCDRAM). MCDRAM is a high bandwidth, low capacity
(up to 16GB) memory. MCDRAM has three memory modes
and can be configured as cache mode to work as a third level
cache; in flat mode, both the MCDRAM memory and the DDR
memory act as regular memory and are mapped into the same
system address space as a distinct NUMA node (allocatable
memory); and the hybrid mode, the MCDRAM is partitioned
such that either a half or a quarter of the MCDRAM is used
as cache, and the rest is used as flat memory [11] [12].

The scientific applications implemented on the KNL archi-
tectures are developed in openMP, and as we can explained in
Section II a stencil is built by three nested for loops. Then,
scheduling influences the application performance. OpenMP
scheduling can be defined in runtime by the OMP_SCHEDULE
environment variable. This variable is a string formatted by two
parameters: scheduling policy and chunk size. Four different
loop scheduling policies can be provided to OpenMP: Static
divide the loop into equal-sized chunks; Dynamic uses the
internal work queue to give a chunk-sized block of loop
iterations to each thread; Guided is similar to dynamic, but
the chunk size starts off large and decreases to better handle
load imbalance between iterations; and auto, when the decision
regarding scheduling is delegated to the compiler. The optional
parameter (chunk), when specified, must be a positive integer
and defines how many loop iterations will be assigned to each
thread at a time [13].

Based on this platform, Table II details all the available
configurations for the optimization categories. As it can be
noted, a brute force approach would be unfeasible due to the
large number of simulations required (443,904), because some
of these executions can take many hours (or days).

TABLE II. AVAILABLE CONFIGURATIONS FOR THE OPTIMIZATION
PROCEDURE.

Optimization Parameters Total configurations
Number of threads 1 272
Chunk size 1 272
Scheduling policy 1 3
Memory mode 1 2
Total 3 443,904

B. Feature vectors
We emphasize that selection of the relevant feature vectors

is a key ingredient of our method, which are described below:

1) The Runtime vector is defined by OpenMP imple-
mentation features such as the number of threads
(OMP_NUM_THREADS environment varible), the
loop scheduling policy (static, dynamic or guided),
the chunk size, and the memory mode (cache or flat).

2) The Hardware Counters vector is built on top of
PAPI library, to collect the most relevant metrics
from the hardware counters: total of L2 cache misses
(measured by PAPI_L2_TCM event), and total of cy-
cles (measured by PAPI_TOT_CYC event) [14]. We
decided to use related cache values because stencils
are memory bounded problems, and the number of
available counters is determined by the architecture.

3) The Performance vector represents the total elapsed
time to solve the geophysical problem.

As we can see, the performance depends on several pa-
rameters that create a n-dimensional problem and if we try to
model it by a regression method it can not be solved by 2D
or 3D classical models.

C. Prediction Model
The proposed ML model is based on Support Vector Ma-

chines (SVM), which is a supervised ML approach introduced
in [15] and extended to regression problems where support
vectors are represented by kernel functions [16]. The main
idea of SVMs is to expand hyperplanes through the output
vector. It has been employed to classify non-linear problems
with non-separable training data by a linear decision surface
(i.e., hardware counters behavior in previous Section III-B).

Input
Vector

SVM CM

SVM Cycles

SVM TimeLog

Training Set

Testing Set

Figure 5. Flowchart of the proposed ML-based model.
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In our case, we considered a classical ML model with three
layers of measurements (input, hidden, and output) related with
vectors explained in Section III-B, and extends the work done
by [17], (Figure 5). The input layer contains the values from
the runtime vector. The hidden layer contains two SVMs that
take values from the input vector to simulate the behavior of
hardware counters. Finally, the output layer contains one SVM
that takes each simulated value from the hidden layer to obtain
the predicted execution time. Our model was implemented by
e1071 R package.

IV. EXPERIMENTAL RESULTS

In this section, we present the results of our prediction
model. We used a three-dimensional grid of size 512x512x512,
and 190 time iterations, as benchmark for our experiments.

A. Training and validation sets

We created a training set by randomly selecting a subset
from the configuration parameters presented in Table II. Then,
for each experiment we measured the hardware counters (L2
cache misses, and total cycles) and the performance (execution
time). Because hardware counters have very large values, it
was necessary to perform a dynamic range compression based
on a logarithmic transformation, between the hidden layer and
the output layer, as shown in Figure 5.

A random testing set was used since all SVMs in both
the hidden and the output layers are trained to predict the
execution time values. After that, we measured the accuracy
of the model using statistical estimators. Table III presents the
total number of experiments that were performed to obtain the
training and validation sets. It is remarkable that total number
of experiments used for testing and validation, for each stencil,
is lower than 1% of total configurations described in Table II.

TABLE III. NUMBER OF EXPERIMENTS

Training Testing Total
Jacobi 334 3007 3341
Seismic 346 3122 3468
Acoustic 335 3021 3356

B. Hardware Counters Behavior

Figure 6 illustrates how the hardware counters measure-
ments are affected by the input variables. Each point represents
one experiment when varying the input parameters described
in Section III-B; the X domain represents the L2 cache misses,
the Y axis represents the total cycles, and the color represents
the different values for the input parameter. For instance,
Figure 6(a) represents the scheduling policy (green is dynamic,
red is guided, and blue is static) for the Jacobi stencil. We
can see how the static scheduling tends to be separated from
other values. Figure 6(b) shows the number of threads used to
solve the seismic stencil. We also can see how each value
create one easily separated area. Figure 6(c) also presents
how chunk size trends to creates separated areas for the
acoustic stencil. We can resume this behavior as follows: the
input values changing affects the application performance and
creates several separated areas in the graphic representation.
As each color represents a different value for the input value
these areas could be separated by hyperplanes from a SVM.

C. Prediction Results
We evaluate the model with two statistical estimators: the

Root Mean Square Error (RMSE) and the Coefficient of De-
termination (R-squared); they represent the standard deviation
of prediction errors and how close the regression approximates
the predicted and actual data, respectively. As it can be noted
in Table IV, the regression model is highly accurate. For the 7-
point Jacobi implementation, the model presented an accuracy
of up to 97.39%. For the seismic wave implementation, on
the other hand, the model presented an accuracy of up to
85.62% and the acoustic wave propagation model has 93.2%
accuracy. These results are similar to prediction of multi-core
architectures presented in [18] and [17].

TABLE IV. STATISTICAL ESTIMATORS OF OUR PREDICTION
MODEL

RMSE R-squared
Jacobi 2.9894 0.9739
Seismic 21.0183 0.8562
Acoustic 40.0748 0.9322

V. RELATED WORK

Recent HPC architectures, including accelerators and co-
processors, proved to be well suited for geophysics sim-
ulations, outperforming the general purpose processors in
efficiency. And some works are developed to optimize and
to predict the performance. Because numerical kernels are
a memory-bound problem, common optimizations are cache-
based. In [19], the authors worked on target cache reuse
methodologies, and demonstrated that memory system or-
ganization reduce the efficacy of traditional cache-blocking
optimizations for stencil computation on multiple architectures
(multi-core and accelerators). In the same way, in [8], the
authors worked on target cache reuse methodologies across
single and multiple stencil sweeps, examining cache-aware
algorithms as well as cache-oblivious techniques in order to
build robust implementations.

At high level, adjusting the runtime parameters can opti-
mize the performance of stencil applications. In [20], the au-
thors focused on acoustic wave propagation equations, choos-
ing the optimization techniques from systematically tuning the
algorithm. The usage of collaborative thread blocking, cache
blocking, register re-use, vectorization and loop redistribution.
In [2], the authors analyzed the performance of task scheduling
algorithms. They concluded that different scheduling policies
combined with different task sizes may affect the efficiency
and performance of seismic wave kernels. In [21], the au-
thors studied the effect of different optimizations on elastic
wave propagation equations, achieving more than an order of
magnitude of improvement compared with the basic OpenMP
parallel version.

Methods for automatic code generation are used at runtime
level. In [22], the authors presented a stencil auto-tuning
framework for multi-core architectures that converts a sequen-
tial stencil expression into tuned parallel implementations.
In [23], the authors present an automatic source-to-source
transformations framework. Thus, in [24], the authors suggest
using runtime reconfiguration, and a performance model, to
reduce resource consumption. Analogously, in [25], the authors
automatically generate a highly optimized stencil code for
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Figure 6. Hardware counters behavior.

multiple target architectures. Overall, the main problem of
these works is that the search domain can be very large and
searching for the best configuration would take too much time.

Other works investigated the accuracy of regression models
and ML algorithms in different contexts. In [26] the authors
compared ML algorithms for characterizing the shared L2
cache behavior of programs on multi-core processors. The
results showed that regression models trained on a given L2
cache architecture are reasonably transferable to other L2
cache architectures. In [27] the authors proposed a dynamic
scheduling policy based on a regression model that is capable
of responding to the changing behaviors of threads during
execution.

Finally, in [28] the authors applied ML techniques to
explore stencil configurations (code transformations, com-
piler flags, architectural features and optimization parameters).
Their approach is able to select a suitable configuration that
gives the best execution time and energy consumption. In [18],
the authors improved performance of stencil computations by
using a model based on cache misses. In [17], the authors pro-
posed a ML model to predict and to optimize the performance

of stencil computations on multi-core architectures.

VI. CONCLUSION

We presented a ML-based model to predict the perfor-
mance of stencil computations on many-core architectures. We
showed that the performance of three well-known stencil ker-
nels (7-point Jacobi, seismic and acoustic wave propagation)
can be predicted with a high accuracy by using the hardware
counters.

Results from this work extend the ML-based strategy
described in [17] for performance optimization of the elastody-
namics equation on multi-core architectures. Our model is not
restricted to Xeon Phi platforms and can also be implemented
into architectures with the available hardware counters to
obtain the cache-related measures. We used the PAPI library
but we think that it could be implemented with another library
(i.e., perf, pin, etc.). The future work can be summarized in two
statements: First, we believe that our model can be integrated
into an auto-tuning framework to find the best performance
configuration for a given stencil kernel; second, we intend
to design a model based on unsupervised ML algorithms to
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further improve our results.
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