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Abstract—Accurate energy forecasting, including load, photo-
voltaic generation, and prosumption prediction, is essential for
the efficient operation and strategic planning of modern energy
systems. Federated Learning (FL) has emerged as a promising
solution for training machine learning models on decentralized
data, enabling high model accuracy while maintaining data privacy.
However, the decentralized nature of FL also poses security
challenges, including data poisoning and backdoor attacks that
compromise the integrity and reliability of forecasting models.
In this study, we present a comprehensive evaluation of various
data poisoning and backdoor attacks within federated energy
forecasting. Our analysis explores different data distributions,
varying noise scales in data poisoning attacks, and targeted
manipulation of specific time intervals to assess their impact
on model performance. Further, we propose robust security
mechanisms, such as increased cluster sizes, local retraining, and
weighted aggregation. Our results show that while our attacks
can increase the Mean Absolute Error by 93-261 %, our security
measures can effectively mitigate the attacks, thereby improving
the security and robustness of federated energy forecasting.
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I. INTRODUCTION

The transition to sustainable energy systems is essential for
addressing climate change and reducing the dependence on
fossil fuels. As countries decarbonize their grids, accurate
energy forecasting becomes critical to balance renewable
energy supply and demand [1]. Reliable grid operation depends
on accurate predictions of electric loads, photovoltaic (PV)
generation, and prosumption patterns, especially as energy
grids become more decentralized and complex [2].

Here, Federated Learning (FL) has been proposed for energy
forecasting, enhancing model performance, data efficiency,
and privacy. As shown in Figure 1, only model parameters
are shared with a central server in FL, while local data
remains private [3]. This approach minimizes the risk of
exposing sensitive consumption patterns, which could otherwise
be exploited to infer personal habits, posing privacy threats
[4]. Additionally, clustering is applied in FL to group nodes
with similar energy patterns, addressing challenges with non
independent and identically distributed (non-iid) datasets.

While FL enhances privacy and security, challenges such as
data poisoning and backdoor attacks persist. Data poisoning
skews model performance by manipulating local data, while
backdoor attacks insert hidden triggers into the model that
only activate malicious behavior under specific conditions.
While these vulnerabilities have been studied within the vision
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Figure 1. Clustered federated learning architecture with data poisoning.

and language domains [5], they are particularly concerning in
energy systems, where forecasting errors can disrupt supply
and demand balance, hindering renewable energy integration
[6]. Addressing these risks is crucial to improve the robustness
of FL in energy forecasting.

To address security challenges in FL-based energy forecast-
ing applications, we investigate the effects of data poisoning
and backdoor attacks. By manipulating data at varying scales
and time periods, we assess model vulnerabilities, identifying
weaknesses in the FL framework. We then propose defense
strategies, including secure aggregation, local retraining, and
clustering methods, to enhance the system’s resilience against
adversarial threats.

A. Related Work

To provide a comprehensive understanding of the current
research and challenges in federated energy systems, we review
related work on security measures and adversarial attacks.
Additionally, we examine implementations of these attacks
in the domains of computer vision and natural language
processing. Selected publications are summarized in Table I.

McMahan et al. introduced FL in 2016 [3] as a method
for decentralized model training across distributed devices,
preserving data privacy by keeping data localized. While FL has
been applied in the energy domain for applications like energy
control [20]–[22], non-intrusive load monitoring [23]–[25], and
energy theft detection [26], research on adversarial attacks
within federated energy systems remains limited. Here, only
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TABLE I
REVIEW OF SECURITY AND ATTACK LITERATURE IN FEDERATED ENERGY

FORECASTING.

Ref Year Focus Domain Attack Security
[7] 2021 Differential Privacy Energy ✓
[8] 2023 Differential Privacy Energy ✓
[9] 2022 Differential Privacy Energy ✓
[10] 2024 Secure Aggregation Energy ✓
[11] 2023 Secure Aggregation Energy ✓
[12] 2023 Secure Aggregation Energy ✓
[13] 2023 Secure Aggregation Energy ✓
[14] 2022 Secure Aggregation Energy ✓
[15] 2023 Secure Aggregation Energy ✓
[16] 2023 Personalized FL Energy ✓
[17] 2022 Model Poisoning Energy ✓
[18] 2020 Inference Attacks Vision ✓
[19] 2019 Poisoning Attacks Language ✓
This
paper 2024 Attacks and Security Energy ✓ ✓

model poisoning has been analyzed [17], as most research
focuses on security measures [7]–[16]. In contrast, adversarial
attacks – including model poisoning, inference attacks, data
poisoning, and backdoor attacks – have been extensively studied
in domains like computer vision [18], [27], [28] and natural
language processing [19], [29], [30], highlighting significant
risks to FL models.

B. Paper Contribution and Organization

Vulnerabilities specific to federated energy forecasting have
so far not been thoroughly investigated. To address this gap,
we analyze adversarial attacks in federated energy forecasting
and propose mitigation strategies. Since most research on FL
attacks focuses on natural language processing and computer
vision, applying those findings to energy prediction is chal-
lenging due to different data characteristics and dimensionality.
Consequently, our main contributions are:
• We develop data poisoning and backdoor attacks customized

for energy forecasting, evaluating their impact on model
performance in FL systems using selected noise distributions
(Uniform, Normal, Laplace, Building’s) and targeting specific
time intervals.

• We benchmark these attacks across different model architec-
tures, including a Bidirectional Long-Short Term Memory
Model (BiLSTM), a Soft-Gated LSTM (Soft-LSTM), and a
Soft-Gated Dense Neural Network (Soft-Dense).

• We integrate security mechanisms such as secure aggregation,
varying cluster sizes, and local retraining, to mitigate the
effects of these attacks.

• Our findings show that data poisoning attacks significantly
impact model performance, especially in small clusters,
while backdoor attacks pose minor threats. By incorporating
our proposed security measures, these adverse effects are
mitigated, enhancing the security and robustness of FL-based
energy forecasting systems.
The reminder of the paper is organized as follows: Section II

introduces our methodology, while Section III outlines our
experimental setup. Building on this, Section IV presents our

results, Section V discusses our results and limitations, and
Section VI provides our conclusion and future work.

II. METHODOLOGY

In this section, we provide a concise overview of our method-
ology, including federated energy systems, data poisoning,
backdoor attacks and security measures.

A. Federated Energy Systems

In federated energy systems, a central server initializes global
model weights w0 for each cluster and distributes them to
local devices (clients). Each client i trains a local model on its
local dataset Di and returns updated weights wi. The server
aggregates these weights using a selected aggregation method.
One common approach is Average Aggregation, where the
global model weights wglobal are updated as:

wglobal =
1

N

N∑
i=1

wi (1)

where N is the number of clients within a cluster. This
process is repeated over t federated training rounds.

B. Data Poisoning Attack in Federated Energy Systems

Data poisoning attacks threaten federated energy systems by
compromising the integrity of the global FL model. Attackers
manipulate the local datasets of specific clients, distorting
energy forecasts and leading to inaccurate predictions that can
affect operations like load balancing or grid management.

For a data point (x, y), with the input vector x and the target
vector y, the poisoned input vector x′ is defined as:

x′ = x+ ϵ, ϵ ∼ D(γ) (2)

Here, ϵ represents noise sampled from a distribution D with
noise scale γ. Possible choices for D include Normal, Laplace,
and Uniform distributions, or the distribution of the actual
building measurements. To ensure proportionate noise injection
across varying energy data scales, we normalize x to the range
[0, 1]. During local training, attacked clients j ∈ A use the
poisoned data x′

j , while benign clients k ∈ B use unmodified
data. The weight update for benign clients is:

wk,new = wk − η
∂L(wk,xk, yk)

∂wk
(3)

For attacked clients j ∈ A, the weight update is:

w′
j,new = wj − η

∂L(wj ,x
′
j , yj)

∂wj
(4)

Here, η is the learning rate, and ∂L
∂w denotes the gradient of

the loss function L with respect to the model weights w.
During the federated aggregation, the global model weights

w′
global are updated by averaging:

w′
global =

1

N

(∑
k∈B

wk,new +
∑
j∈A

w′
j,new

)
(5)
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where N is the total number of clients. The inclusion of
poisoned weights w′

j,new can degrade global model performance
by introducing biased patterns. Systematically testing different
distributions D and noise scales γ allows us to evaluate the
model’s vulnerability to these attacks.

C. Backdoor Attack in Federated Energy Systems

Backdoor attacks in federated energy systems manipulate
client data during specific hours, potentially causing the FL
model to produce inaccurate forecasts during peak hours while
maintaining normal performance at other times.

Therefore, attackers adjust the input data only during selected
hours H ⊆ 0, 1, . . . , 23. For each data point (tj , xj , yj), where
tj denotes the hour, the modified input feature vector x′

j is
defined as:

x′
j =

{
xj + δ, if tj ∈ H

xj , otherwise
(6)

Here, δ represents the backdoor trigger – a specific per-
turbation added only during the targeted hours H . The local
training and federated aggregation remain the same as described
in Subsection II-B. By adjusting δ and selecting specific hours
H , attackers can fine-tune the severity of the backdoor attack
and evaluate the model’s performance.

D. Security Measures in Federated Energy Systems

To mitigate data poisoning and backdoor attacks in federated
energy systems, we propose three security strategies: clustering,
weighted aggregation, and local retraining.

Clustering reduces the impact of attacks by grouping clients
with similar time series, restricting the extent of manipulation
before a client is excluded from the cluster. Clients are
grouped together when their time series E and F satisfy
the similarity condition d(E,F ) ≤ τ . A common similarity
measure is Dynamic Time Warping (DTW), which minimizes
the cumulative distance over all possible alignments (mi, ni):

dDTW(E,F ) =

√√√√min
mi,ni

(
I∑

i=1

(emi
− fni

)2

)
, (7)

Selecting an appropriate τ ensures that deviations from
attacks remain within acceptable bounds.

Weighted Aggregation mitigates the attack effects by ad-
justing client contributions based on local model performance.
Clients exhibiting degraded performance due to attacks receive
lower weights, reducing their influence on the global model.
Given a sets of benign clients B and attacked clients A, the
aggregation is performed as follows:

wglobal =

∑
k∈B αk ·wk +

∑
j∈A α′

j ·w′
j∑

k∈B αk +
∑

j∈A α′
j

(8)

where αk is the weight for benign clients, and α′
j represents

the weight for attacked clients, typically α′
j ≪ αk.

Local Retraining allows benign clients to adapt the global
model to their local data, reducing the impact of poisoned

global weights w′
global. After receiving w′

global, benign clients
refine their models:

wk,retrained = wglobal − η
∂L(wglobal,xk, yk)

∂wglobal
(9)

where η is the learning rate, L is the loss function, and
(xk, yk) represents the local dataset. This fine-tuning mitigates
attack influence and enhances model robustness.

Together, these strategies enhance the security and reliability
of federated models in energy systems by effectively countering
adversarial attacks.

III. EXPERIMENTAL SETUP

Building on our methodology, we describe our experimental
setup, including data analysis and federated energy forecasting.

A. Data Analysis

We utilize the Ausgrid dataset [31], which provides half-
hourly smart meter readings of electrical load and PV output in
kW from 300 residential buildings in Australia between 2010
and 2013. An example of load and PV patterns for Building
11 is shown Figure 2.
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Figure 2. Load and PV patterns of Building 11.

We extend the dataset by calculating prosumption (load -
PV). For computational efficiency, our analysis focuses on a
randomly selected subset of the first 30 households. To obtain
our forecasting dataset, we use 70% for training, 20% for
validation, and 10% for testing.

B. Federated Energy Forecasting

Our FL architecture consists of 3 training rounds, as
additional rounds did not yield further improvements. In each
round, clients update their local models and send them to
a central server for global aggregation. We use K-Means
clustering with DTW to group clients with similar energy
patterns into 10 clusters. For testing adversarial attacks, we
focus on a cluster containing 2 clients (buildings 16 and 24),
simulating distributed training on a single machine.

To implement federated energy forecasting, we employ a
BiLSTM network and two Mixture of Experts (MoE) models
within the FL framework. The MoE architecture enhances
the model’s ability to learn complex patterns by dynamically
selecting and weighting outputs from multiple specialized sub-
models (experts) based on the input sequences. Specifically, the
Soft-Dense model includes an expert layer with four experts
(each with eight units), followed by two Dense layers (16
units each), a Dropout layer (rate 0.2), and a Flatten layer.
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The Soft-LSTM model comprises an expert layer (four experts,
eight units each), a bidirectional LSTM layer (four units),
a Dropout layer (rate 0.2), and a Flatten layer. The BiLSTM
network captures temporal dependencies in energy data through
bidirectional processing, using two layers of eight LSTM cells
each. All models use a batch size of 16. Further architectural
details are provided in [4].

To evaluate robustness against adversarial attacks, we im-
plement data poisoning and backdoor scenarios. In the data
poisoning attack, noise is injected into the data from various
distributions. For Normal and Laplace distributions, the mean
is 0, and the standard deviation varies from 0 to 1. For the
Uniform distribution, bounds range between [−1, 0] and [0, 1].
Building-specific distributions are derived based on skewness,
kurtosis, and mean, with standard deviations varying between
0 and 1. In the backdoor attack, we manipulate four specific
half-hour time steps during hours 0 and 1, setting load and
prosumption values to zero and PV values to one.

As security measures, we expand the cluster size to 4
buildings and implement a local retraining step with 100 epochs,
incorporating early stopping if the validation loss does not
improve over 10 consecutive epochs. Weighted aggregation is
not employed in this experiment, as clustering and retraining
already mitigate the effects. For performance evaluation, we
calculate the Mean Absolute Error (MAE):

MAE =
1

n

n∑
i=1

|ŷi − yi| (10)

This metric quantifies the average absolute difference be-
tween the predicted values ŷi and actual values yi.

IV. RESULTS

In this section, we present our results for data poisoning,
backdoor attacks, and security measures. Within each attack
scenario, the poisoned model is trained with manipulated data,
while the unmodified model is only indirectly affected through
FL. To consider statistical variations, each model is trained 3
times per scenario. If not stated otherwise, the indicated metrics
are averaged over all buildings, clusters, or training rounds and
the results are achieved on the test dataset.

A. Data Poisoning in Federated Energy Forecasting

Within the data poisoning attack, noise patterns are intro-
duced to the training data using four distributions: Normal,
Laplace, Uniform, and building-specific. Due to space con-
straints, we report results only for the Uniform distribution,
which had the most significant effects.

Figure 3 shows the MAE for both poisoned models (top
row) and unmodified models (bottom row) with increasing
noise scales over load, PV, and prosumption forecasting. The
dashed lines represent the baseline performance of unmodified
models within local learning, to evaluate whether the attacked
FL architecture still provides performance benefits.

The results indicate a substantial increase in MAE with
rising noise scale for all poisoned models. Specifically, the
Soft-Dense model exhibits increases in MAE of 321 % for
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Figure 3. Performance comparison between poisoned and unmodified models.

load, 718 % for PV, and 345 % for prosumption forecasting.
Similar trends are observed in the BiLSTM and Soft-LSTM
models. It is worth noting that as the MAE values are small,
minor increases already result in large percentage changes. The
unmodified models, indirectly affected through FL, also showes
significant degradation, with MAE increases of up to 96% for
load, 93% for PV, and 261% for prosumption forecasting in
the Soft-Dense model.

Without poisoning, FL generally outperforms local learning.
However, when subject to attack, the unmodified Soft-Dense
model’s performance droped below the local learning baseline
for load forecasting at a noise scale of 0.6 and for prosumption
prediction at 1.0. In contrast, PV forecasting performance
remained close to the local baseline across all noise scales.
Detailed results for the unmodified Soft-Dense model are
provided in Table II.

TABLE II
MODEL PERFORMANCE OF THE UNMODIFIED SOFT-DENSE MODEL FOR
LOCAL LEARNING (LL) AND FL WITH DIFFERENT NOISE SCALES (N),

WHERE N0.2 CORRESPONDS TO A NOISE SCALE OF 0.2.

Noise Load PV Prosumption

MAE STD MAE STD MAE STD
LL 0.0417 ±0.0051 0.0405 ±0.0055 0.0302 ±0.0068
N0 0.0324 ±0.0196 0.0196 ±0.0164 0.0234 ±0.0140
N0.2 0.0338 ±0.0047 0.0377 ±0.0248 0.0278 ±0.0023
N0.4 0.0369 ±0.0016 0.0391 ±0.0258 0.0219 ±0.0017
N0.6 0.0492 ±0.0007 0.0360 ±0.0265 0.0271 ±0.0029
N0.8 0.0511 ±0.0028 0.0389 ±0.0268 0.0323 ±0.0079
N1 0.0649 ±0.0255 0.0379 ±0.0261 0.0836 ±0.0012

B. Backdoor Attack in Federated Energy Forecasting

In the backdoor attack scenario, data is selectively modified
for specific hours, using the date as the trigger. Figure 4 shows
the MAE for each hour of the day for both poisoned models (top
row) and unmodified models (bottom row). Within each subplot,
solid lines represent the performance of the FL architectures
affected by the attack, while dashed lines indicate the baseline
performance without any attack. The hourly MAE naturally
fluctuates due to inherent volatility variations.

For the Soft-Dense model with the backdoor attack, the MAE
increased significantly only in prosumption forecasting, rising
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Figure 4. Model performance comparison with and without backdoor attacks.

by 0.0560 (273%). Changes in load (0.0142, 68%) and PV
(0.0022, 33%) forecasting remain within the standard deviation.
The unmodified models show minimal changes, with slight
increases in load (0.0083, 36%) and prosumption (0.0001, 1%),
and a decrease in PV (-0.0051, -49%), all within the standard
deviation. Detailed MAE values of the Soft-Dense model for
the attacked hours are provided in Table III, comparing the
backdoor model to the baseline.

TABLE III
PERFORMANCE METRICS OF THE FORECASTING MODELS WITH AND

WITHOUT BACKDOOR ATTACKS.

Scenario Load PV Prosumpt.

MAE STD MAE STD MAE STD
Pois. Back. 0.0351 0.0167 0.0089 0.0064 0.0765 0.0164
Pois. noBack. 0.0209 0.0110 0.0067 0.0017 0.0205 0.0105
Pois. Diff. 0.0142 0.0057 0.0022 0.0047 0.0560 0.0059
Un. Back. 0.0312 0.0073 0.0054 0.0023 0.0127 0.0039
Un. noBack. 0.0229 0.0063 0.0105 0.0060 0.0126 0.0025
Un. Diff. 0.0083 0.0010 -0.0051 -0.0037 0.0001 0.0014

C. Security in Federated Energy Forecasting

We mitigate attacks by increasing the cluster size, reducing
the influence of compromised buildings on the aggregation
model, while local retraining refines model parameters using
unmodified data. Due to space constraints, Figure 5 illustrates
that the MAE remains stable for all unmodified models
and noise scales, indicating that this combination effectively
mitigates the attacks.
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Figure 5. Impact of security measures on the unmodified forecasting models.

While these measures are effective, incorporating weighted
average aggregation could further improve resilience, by

weighting models based on their performance, thus reducing
the contribution of compromised models.

V. DISCUSSION AND LIMITATIONS

Our data poisoning attacks substantially increased the MAE
across all models, primarily due to the limited cluster sizes that
increase the impact of compromised data. Load forecasting,
due to its inherently stochastic nature, experienced greater
performance degradation, whereas PV prediction maintained
more stable performance, benefiting from its more deterministic
patterns. Conversely, backdoor attacks had a minimal overall
effect, as their targeted manipulations were limited to specific
forecasting times, thereby reducing their influence on the ag-
gregated model. The implemented security measures – namely,
increasing cluster size and applying local retraining – effectively
mitigate these attacks by reducing the impact of poisoned
data. In addition, incorporating weighted average aggregation
could further enhance resilience by reducing the contribution
of compromised models during federated aggregation.

This study is limited by its focus on only few buildings,
which may affect the generalizability of our findings. Incor-
porating a broader range of benchmark models and datasets
could further validate the robustness of the proposed defense
mechanisms. Further, we use simple noise sampling methods
for data poisoning, which may not fully capture the complexity
of more advanced attacks.

VI. CONCLUSION AND FUTURE WORK

In this paper, we comprehensively analyzed security vul-
nerabilities in federated energy forecasting, focusing on the
impacts of data poisoning and backdoor attacks. Our findings
demonstrate that data poisoning poses a significant threat
to forecasting accuracy, with MAE increasing by 93-261 %,
especially within smaller clusters. Conversely, backdoor attacks
show a limited impact on model performance. By incorporating
defense mechanisms such as increased cluster sizes and
local retraining, we effectively enhanced the resilience of
federated learning models, mitigating the adversarial risks and
preserving model integrity. Future work could explore the use
of Generative Adversarial Networks for sophisticated noise
generation during training.
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