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Abstract—Estimating energy use in heating and air-
conditioning systems is crucial for effective building energy
management. This article introduces a new method combining
the use of degree-days with the maximum a posteriori estimation
statistical method to disaggregate heating and cooling energy
consumption from other uses. Degree-days provide a reliable
measure of the demand for energy needed to heat or cool a
building, while a posteriori estimation offers a robust statistical
approach to refine these estimates based on available data.
A significant challenge addressed by this method is the need
to accurately estimate the parameters of the model, which is
achieved here by leveraging a comprehensive database. The
method’s efficacy is demonstrated through a case study of a
building with one year of collected data, illustrating its practical
application. Our findings underscore the method’s potential to
enhance energy management practices and guide future research
in heating and cooling energy estimation.

Keywords-Smart meters; Non-Intrusive Load Monitoring;
NILM; Thermosensitivity.

I. INTRODUCTION

With the increasing deployment of smart meters in build-
ings, it is now possible to access aggregated energy usage data
with unprecedented ease and accuracy [1]. This wealth of data
opens up new opportunities for advanced analytical methods
to improve energy estimation practices.

Smart meters usually collect the total building energy con-
sumption data at a very low temporal resolution. For instance,
in France the daily consumption is the only quantity provided
by default by communicating meters, with finer sampling rate
mainly depending on the supply contract and meter type.
Individual users have the possibility to opt in to a finer 30
minutes sampling rate, but it is rarely selected. These low
frequencies increase the difficulty to detect appliances [2].
Usual disaggregation techniques discard explanatory variables,
such as weather and date, to focus on pattern and signature
detection [2].

The management of energy use in Heating, Ventilation,
and Air Conditioning (HVAC) systems is a critical aspect
of building operations, influencing both cost efficiency and
environmental impact. HVAC represent 38% of buildings
consumption worldwide, and up to 60% in Europe [1]. Hence,
accurate estimation of heating and cooling energy consump-
tion is essential for optimizing energy use, reducing costs,
and meeting sustainability goals. There are two families of
methods to model building energy consumption [3]:

• The forward methods use the building description to
develop a theoretical energy signature model,

• The reverse methods use collected consumption data to
fit a consumption model.

Forward models are usually used when few or no data is
available, such as during design and during the first few
months of use. However, it has been shown that they show
large discrepancies when compared to actual consumption,
as the occupants’ behavior can have a significant impact on
the consumption [4]. This article focuses on reverse methods,
available when a significant amount of data has been gathered.

In France, 37% of households use electricity for heating
[5]. On top of that, the air conditioning energy use is ex-
pected to increase in the future [6]. Hence, the assessment of
HVAC energy uses with smart-meters requires disaggregating
both the cooling and the heating energy uses from the total
consumption measured.

Figure 1 introduces the typical data used in this study.
The data have been collected in one household near Lyon,
France, with electrical heating and no cooling system. The
energy consumption is gathered using the Linky smart-meter
of Enedis [7]. The OpenWeatherMap API was used for the
outdoor temperature [8]. The data is aggregated on a weekly
frequency, from Monday to Sunday, to reduce the impact of
the day of the week on energy consumption, considering the
differences between workdays and weekends. The top panel
of Figure 1 shows the temporal evolution of the total weekly
electric energy consumed by the household. The bottom panel
of Figure 1 presents the same data as the left panel, showing
the outside temperature to energy consumption relation. One
point in black corresponds to the week starting on Monday the
1st of January 2024, a week when occupants were not present.
We can identify two regions:

• when the mean weekly outside temperature is above
16°C, the energy consumption seems independent of the
temperature,

• when the mean weekly outside temperature is below
16°C, the energy consumption seems negatively propor-
tional to the temperate.

This article introduces an innovative method for estimating
HVAC energy use that leverages Degree-Days (DD) compu-
tation combined with Maximum a Posteriori (MAP) estimation
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Figure 1. Data collected for one household: (top) the temporal evolution of
the weekly energy (left axis) and the mean weekly outside temperature

(right axis). (bottom) the weekly energy as a function of the mean weekly
temperature. One point in black corresponds to an outlier.

which is more accurate than simpler approach such as a
threshold when electricity is used for heating as well as
other uses. DD is a well-established metric that quantifies
the demand for energy to heat or cool a building, based on
temperature deviations from a baseline [4]. MAP estimation,
on the other hand, is a statistical technique that refines these
estimates by incorporating prior knowledge and observed data
to produce the most probable outcomes. By combining these
two tools, we provide a way to estimate the energy usage of
HVAC once enough data is collected.

To introduce the concept behind MAP estimation, consider
the following analogy. Suppose a player rolls two dice and
the goal is to determine the individual values of each dice.
Without prior knowledge, this task is impossible. However,
knowing that each dice can show a number between one and
six, with a uniform probability distribution, the total number
of possible outcomes is 6×7

2 = 21, giving a 4.76% chance of
guessing the correct pair. If the player provides the combined
sum of the two dice, the estimation becomes significantly more
manageable. For sums of 2, 3, 11, or 12, the possible combina-
tions of the dice values are unique and known with certainty.
Conversely, for sums of 6, 7, or 8, there are three possible
pairs, resulting in a 1

3 probability of guessing the correct pair.
This analogy illustrates that by integrating prior knowledge
(the uniform probability distributions of each dice) with an
observation (the sum of the dice), the a posteriori estimation
of each dice’s value is substantially improved compared to
the a priori estimation. In this study, the observation is the
aggregated energy consumption recorded by a smart meter,

which represents the sum of heating, cooling, and other energy
uses. By applying MAP estimation, we can more accurately
decompose this sum into its constituents, thereby enhancing
the precision of our energy usage estimates.

A notable challenge in implementing this method is the
need to estimate the prior distributions of the heating, cooling,
and other uses needs, and whether they are correlated or not.
This correlation is essential for precise estimation but can be
difficult to determine directly. To overcome this limitation, we
utilize a comprehensive database that provides the necessary
correlation information, ensuring that the estimation method
remains robust and reliable.

The following sections of this article detail the components
and implementation of this new estimation method. We begin
in Section II with an overview of DD computation and
MAP estimation, followed by a discussion on addressing the
correlation of random variables. Section III outlines the step-
by-step process of integrating these components. Section IV
aims to estimate a correlation coefficient from an extensive
dataset. We then present in Section V a case study applying
the method to the data shown in Figure 1, demonstrating its
practical application and effectiveness. Finally, we discuss in
Section VI the results, compare them with traditional methods,
and offer insights into the implications and potential future
developments.

II. THERMOSENSITIVITY CONSUMPTION MODEL

In this section, we introduce the thermosensitivity consump-
tion model, which forms the foundation of our method for
estimating HVAC energy use. The total energy consumed in
a building over a given period, E, can be decomposed into
three primary components:

E = Eh + Ec + Eo, (1)

where Eh is the energy required for heating, Ec is the energy
required for cooling, and Eo represents all other energy uses
not dependent on temperature variations, such as lighting,
appliances, and other equipment.

A. Degree-Days

DD is a widely used metric to quantify the demand for
energy needed to heat or cool a building [9]. Heating Degree-
Days (HDD) and Cooling Degree-Days (CDD) are calcu-
lated based on deviations from a baseline temperature. The
baseline temperatures depend on the building and occupants,
and they need to be calibrated to maximize the performance
of the model using historical data [9]. The duration of the
integration period is at least one day, but can last longer.
Practically, using a weekly sampling for the energy and the
degree-days allows merging the differences related to the day
of the week, such as weekends. HDD is used to estimate
the energy needed to heat buildings. The integral formula to
compute HDD is:

HDD =

∫
[Tbase,h − T (t)]

+
dt, (2)
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where Tbase,h is the heating baseline temperature, T (t) is the
outdoor temperature at time t, and [·]+ is the positive function

x+ =

{
x if x > 0,

0 if x ≤ 0.
(3)

Equation (2) assumes that the heating is switched on when the
outside temperature is below Tbase,h. CDD are the equivalent
of HDD for cooling needs. Its integral formulation is:

CDD =

∫
[T (t)− Tbase,c]

+
dt, (4)

where Tbase,c is the cooling baseline temperature. It’s worth
noting that other ways to compute HDD and CDD have been
proposed in the literature. While we chose to use the integral
formulation, other formulations may be used without changing
the rest of the methodology or conclusions of the paper.

B. Degree-Days and Energy Consumption

Using the notation H for the Heaviside step function defined
as

H(x) =

{
1 if x > 0,

0 if x ≤ 0,
(5)

the energy required for heating and cooling can be modeled
linearly with respect to HDD and CDD, respectively:

Eh = (αh ·HDD + ϵh)H(HDD), (6)
Ec = (αc · CDD + ϵc)H(CDD), (7)

while other uses’ energy consumption is modeled by

Eo = Ebaseline + ϵo, (8)

where αh and αc are coefficients that represent the sensitivity
of energy use to DD, and ϵh, ϵc and ϵo are random variables
that capture the deviation from the model for heating, cooling,
and other uses, respectively. The Heaviside step function
ensures that ϵh and ϵc are added when the corresponding use
is required.

III. METHODOLOGY FOR HVAC CONSUMPTION
DISAGGREGATION

This section describes the new proposed method to disag-
gregate the cooling and heating energy from the other uses.

A. Consumption model

The deviations ϵh, ϵc introduced in (7) and (6) account for
various uncertainties and factors that affect energy consump-
tion, but are not linearly correlated to the DD. These can
include variations in building occupancy, operational sched-
ules, sun illumination, and efficiency of the HVAC systems.
Additionally, ϵo of (8) represents the variation in the energy
use for non-HVAC purposes. Notably, they do not represent
measurement error, which we assume to be nonexistent.

It is important to note that these variables can be correlated.
For instance, an unusual higher occupancy of the building
may increase the energy consumed by HVAC, as well as the
energy consumed by other uses. On the other hand, a change in

the AC temperature settings will increase the energy use for
cooling, but not the one concerning other uses. We assume
the deviations to the thermosensitivity model with normal
distributions: [

ϵh, ϵc, ϵo
]T

= N (0,Σ) , (9)

with Σ the covariance matrix. We assume in the following
that the sampling period is short enough so that heating and
cooling cannot be present within the selected period:{

HDD = 0 if CDD > 0,

CDD = 0 if HDD > 0.
(10)

This hypothesis typically requires the sampling period to be
shorter than a month. Hence, we can express the covariance
matrix as

Σ =

 σ2
h 0 ρhσhσo

0 σ2
c ρcσcσo

ρhσhσo ρcσcσo σ2
o

 , (11)

where σx is the standard deviations of ϵx, with x ∈ {h, c, o},
and ρh (respectively ρc) represents the correlation coefficient
between the ϵh (respectively ϵc) and ϵo. In the following
section, we will detail the probabilistic inference method
proposed to estimate the values of ϵh, ϵc and ϵo.

B. Inference

The goal of this section is to outline the method for
estimating Eh, Ec, and Eo from a single measurement of total
energy consumption E, given the HDD, CDD, and the prior
distributions (9). Combining (1) with (7) to (8) and (10), we
have:

E = Ebaseline + ϵo +

{
αc · CDD + ϵc if CDD > 0,

αh ·HDD + ϵh if HDD > 0.
(12)

Determining the distribution of energy consumption between
heating, cooling and other uses means that we have to estimate
the values of ϵo, ϵc and ϵh. As we assumed previously that
the sampling period was chosen short-enough to ensure that
heating needs are null when there are cooling needs and vice
versa, we can study either of the 2 cases, and the result will
be translatable to the other case. Thus, we start with the first
case HDD > 0. The exact same derivation can be followed
for the other case CDD > 0.

The total deviation of the measured energy E from the
thermosensitivity model is

res = E − Ebaseline − αh ·HDD = ϵo + ϵh (13)

Hence, res is a random variable following the distribution

res ∼ N (0, σh+o), (14)

with
σ2
h+o = σ2

o + σ2
h + 2ρhσhσo. (15)

The MAP estimation of ϵh, ϵo is defined as

ϵ̂h, ϵ̂o = argmax
ϵh,ϵo

P (ϵh, ϵo|res), (16)
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with x̂ the estimation of x and P the probability density
function. Equation (16) means that the MAP estimation of
ϵh, ϵo are the values that maximize the likelihood function of
(ϵh, ϵo), knowing res. Using the Bayes theorem,

P (ϵh, ϵo|res) =
P (res|ϵh, ϵo)P (ϵh, ϵo)

P (res)
. (17)

Hence, as P (res) doesn’t depend on ϵh, ϵo:

ϵ̂h, ϵ̂o = argmax
ϵh,ϵo

P (res|ϵh, ϵo)P (ϵh, ϵo). (18)

Recalling (13), (18) becomes:

ϵ̂h, ϵ̂o = argmax
ϵh,ϵo

P (ϵh, ϵo). (19)

The join probability density function of the bi-variable distri-
bution [

ϵh
ϵo

]
∼ N

([
0
0

]
,

[
σ2
h ρhσhσo

ρhσhσo σ2
o

])
(20)

is of the form

P (ϵh, ϵo) ∝ exp

(
− 1

2(1− ρ2h)

(
ϵ2h
σ2
h

+
ϵ2o
σ2
o

− 2ρhϵhϵo
σhσo

))
.

(21)
Substituting (21) and (13) in (19), we obtain

ϵ̂h = argmin
ϵh

(
ϵ2h
σ2
h

+
(res− ϵh)

2

σ2
o

− 2ρhϵh(res− ϵh)

σhσo

)
,

(22)

ϵ̂o = argmin
ϵo

(
(res− ϵo)

2

σ2
h

+
ϵ2o
σ2
o

− 2ρh(res− ϵo)ϵo
σhσo

)
.

(23)

That can be solved using the quadratic formula, to

ϵ̂x = res
σ2
x + ρhσoσh

σ2
o + σ2

h + 2ρhσoσh
, (24)

with x either h or o.
Thus, the MAP estimation of the heating energy Êh and of

the other uses Êo is

Êo = Ebaseline + res
σ2
o + ρhσoσh

σ2
o + σ2

h + 2ρhσoσh
, (25)

Êh = αh ·HDD + res
σ2
h + ρhσoσh

σ2
o + σ2

h + 2ρhσoσh
. (26)

A way to understand this estimation is to say that the deviation
from the linear model, noted res, is split in two parts, one
attributed to the heating energy usage, and the second to the
other uses. The relative importance of the two parts depends
on the relative value of the standard deviations σh and σo and
the correlation coefficient ρh. The same process is followed
to derive the estimation during a period with CDD > 0.

C. Estimation of the model parameters

In order to apply the inference proposed previously, the
values of the different parameters are needed. They depend
on the building details, HVAC system and the behavior of
occupants. Hence, they need to be estimated from measured
data following a reverse model approach [4].

a) Other uses: We can estimate Ebaseline and σo from
historical data when both HDD = 0 and CDD = 0:

Êbaseline = ⟨E⟩HDD=0,CDD=0 =
1

N

N∑
i=1

Ei, (27)

σ̂2
o =

1

N − 1

N∑
i=1

(Ei − Êbaseline)
2. (28)

with N the number of data points where HDD = 0 and
CDD = 0.

b) Thermosensitivity models: We can estimate σh and αh

from the periods where HDD > 0. The estimation of αc and
σc follows the same logic with the periods where CDD > 0.
A linear model is fitted such that

E − Ebaseline ∼ αh ·HDD, (29)

to find α̂h the estimation of αh. The standard deviation of the
residuals of the linear model res is estimated with

σ̂2
h+o =

1

Nh − 1

Nh∑
i=0

(Ei − Ebaseline − αh ·HDDi)
2
, (30)

with Nh the number of points with HDD > 0. We can then
use (15) to find σh.

However, the value of ρh is unobservable, as neither Eh nor
Eo are measured. Two options are available:

• estimate σh with the extreme values ρh = −1, ρh = 0
and ρh = 1 to compute a lower and upper bounds,

• use a benchmark value estimated elsewhere, on a similar
building, for instance.

The next section investigates the second possibility to obtain
an insight on ρh.

IV. ESTIMATION OF RESIDUALS CORRELATION

In this section, we use the extensive database EDRP [10]
to estimate the value of ρh. This database includes more than
8000 households in the United Kingdoms with both electric
and gas energy consumption measured hourly between 2007
and 2011. From this dataset, 2319 households have been
selected on the following criteria

• electricity consumption independent with HDD (linear
regression with p− value > 0.1);

• gas consumption showing no significant outliers;
• more than 52 weeks of data available.

The first criteria mean that we can assume that the gas energy
is mostly consumed for heating: Eh, and the electric energy
consumption is related to the other uses: Eo. The two other
criteria are used to improve the quality of the analysis. Figure 2
illustrates the analysis of one household. Figure 2(a) shows
the available data, with the gas and electricity weekly energy,
and HDD. Figure 2(b) shows the thermosensitivity models,
and Figure 2(c) the relation between the gas and electricity
residuals. From the residuals obtained, and assuming the gas
is only used for heating and the electricity is only used
for cooling, this household shows a correlation ρh = 0.27.
Figure 3 shows the distribution of the correlations between
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Figure 2. Illustration of one of the 2319 households analyzed. a : Time series of the gas (green) and electricity (red) weekly energy consumption (left axis),
and HDD (blue dotted line, right axis). b : gas (green) and electricity (red) weekly energy consumption as function of HDD, markers represent the
measured data showed in subplot a, and the solid lines represent the thermosensitivity models. c: scatter plot of the gas and electricity residuals to the

models, meaning the difference between the markers and the lines of the subplot b. We compute for this household ρh = 0.27.

Figure 3. Distributions of the correlation between the electric and gas
energy consumption residuals of the models, as illustrated in Figure 2, to

estimate ρh. A total of 2319 households has been analyzed.

the residuals for a selection of the 2319 selected households.
As we can see, the values are spread over a large domain,
with values of ρh ranging from -0.54 to 0.93. Fortunately,
the distribution is relatively narrow, with most households
exhibiting a weak positive correlation between ϵh and ϵo. This
means that using the median value ρh = 0.17 is a relatively
correct assumption for most cases.

V. APPLICATIONS ON A REAL BUILDING

In this section, we present the application of the proposed
estimation to provide the disaggregation of the energy con-
sumption for the data introduced in Figure 1. The HDD are
computed with a reference temperature Tbase,heating = 17°C.
From the data, and using the median correlation coefficient
measured in Section IV ρh = 0.17, we can estimate that over
one year:

• Ebaseline = 69 kWh
• σo = 8.9 kWh
• αh = 1.8 kWh/°C.week
• σh+o = 75 kWh hence σh = 73 kWh

Figure 4. Disaggregation of the energy consumption of the household,
presented in Figure 1: The orange area represents the Other uses, while the
green area represent the heating energy. The value of ρh = 0.17 is used.

Figure 4 presents the MAP estimation for the household whose
data are shown in Figure 1 using the parameters estimated
previously. We can see that Êo remains relatively constant
over the year, while Êh increases in winter.

VI. DISCUSSION

Several aspects of the method are discussed here-after.

A. Gains compared to alternative approaches

The usual approach of using a thermosensitivity model to
estimate the heating and cooling energy needs is to discard the
deviations to the model following the Maximum Likelihood
Estimation (MLE) [11] :

ÊoMLE = Ebaseline (31)

ÊhMLE = αh ·HDD (32)

ÊcMLE = αc · CDD (33)

This is an a priori estimation: the measurement of E is not
used to update the estimates of the different components.

This approach has a Standard Error (SE) of σo, σh, and σc

for ÊoMLE , ÊhMLE and ÊcMLE , respectively. One signif-
icant drawback is that ÊoMLE + ÊhMLE + ÊcMLE ̸= E,
meaning that the disaggregation does not conserve energy.
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On the other hand, we can show that the SE of the MAP
estimations are

SE2
Êx

=

(
σ2
x + ρxσoσx

)2
σ2
o + σ2

x + 2ρxσoσx
< σ2

o (34)

SE2
Êo

=

(
σ2
o + ρxσoσx

)2
σ2
o + σ2

x + 2ρxσoσx
< σ2

x (35)

with x being h or c. In general, we have σo smaller than σx,
meaning that the standard error of Êc and Êh are improved
compared to the a priori estimates (32) and (33). On the other
hand, SEÊo

is bound by σx which is usually larger than σo,
hence Êo can potentially be worsened. This is due to the fact
that the proposed a posteriori method validates (1), while the
a priori estimation (31) does not, leading to the violation of
the energy conservation.

B. Limitation due to the correlation coefficients

The values of ρh and ρc are difficult to obtain. They can
vary wildly from one building to the other. In this article, we
show that the correlation between the residuals of gas and
electricity energy consumption vary from one household to
the other, with a median value of ρh = 0.17 obtained in the
EDRP dataset.

C. Lack of validation

To the best of our knowledge, there are no large open source
datasets with labeled energy uses for heating or cooling. The
dataset used in Section IV only provides indirect estimation
of heating energy when assuming strong hypotheses, and no
cooling energy is available. Hence, it was not possible to
measure the performance of the proposed method.

D. Impact of occupancy on the consumption

The proposed method considered the outside temperature
as the only explanatory variable. However, the occupancy and
other factors such as price of electricity can also impact the
building consumption. Such factors could be included in a
more elaborate model, using direct values or proxies of these
factors. For example, occupancy variation could be approxi-
mated using the day of the week, since most households have a
different occupancy behavior during weekdays and weekends.
It is also possible to estimate the occupancy from the energy
consumption data itself [11].

VII. CONCLUSION AND FUTURE WORK

In this article, we introduced a novel method for estimating
the energy use of HVAC systems in buildings, leveraging
degree-days computation and Maximum a Posteriori (MAP)
estimation. By decomposing the total energy use into heating,
cooling, and other components, and incorporating the impact
of uncertainties through correlation coefficients, we provide a
method to estimate the energy consumed by each component.

We outlined a systematic approach to implement this
method, starting with the estimation of non-HVAC energy
use from historical data points where there is no heating or
cooling demand. We then demonstrated how to estimate the

thermosensitivity coefficients and standard deviations of the
heating and cooling energy components. Finally, we utilized
correlation coefficients to derive MAP estimates for heating,
cooling, and other energy uses, ensuring that the total energy
consumption aligns with observed data.

The practical application of this method was illustrated
through a case study, showcasing its potential for enhancing
building energy management. The case study, based on the
measurement of the heating correlation coefficient ρh from a
dataset of more than two thousand households located in the
UK, demonstrated the method’s efficacy.

Future work will focus on validating the approach with a
labeled dataset that includes both heating and cooling energy.
Additionally, measuring the cooling correlation coefficient ρc
and incorporating other explanatory variables, such as the day
of the week to account for occupancy effects, are expected to
further improve model performance.
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