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Abstract—The integration of renewable energy resources trans-
forms traditional energy systems, introducing prosumers – enti-
ties that both produce and consume energy – as key participants
in modern Smart Grids. Effective load forecasting is mandatory
for optimizing energy resources and grid stability. Federated
Learning (FL) has emerged as a promising approach for dis-
tributed training of Machine Learning (ML)-based forecasting
models. This enables collaborative model optimization across
multiple prosumers while preserving data privacy. However,
the impact of unbalanced data sets across participants remains
a critical challenge in terms of potentially effecting learning
convergence and forecast accuracy. In this work, we define and
implement a FL system based on real-world electricity consump-
tion data from a variety of prosumers. Experimental results
demonstrate the trade-off between centralized and federated
learning approaches, providing insights into addressing data
heterogeneity in FL systems. These insights highlight the potential
of FL to support the evolution of distributed energy systems while
ensuring data-privacy and scalability. Future research directions
include other strategies to migrate the effect of data imbalances
and further improve the efficiency of federated optimization for
dynamic energy systems.

Keywords-Short-Term Load Forecasting; Federated Learning;
Smart Grid; Data Privacy; Distributed Data.

I. INTRODUCTION

Accurate load forecasting is mandatory for stable and reli-
able Smart Grid (SG) operation. But, the accuracy of load
forecasting models, in particular ML based models, highly
depends on the amount and quality of available training data
[1]. Especially on smaller grid levels, e.g., low-voltage grids,
or even residential household levels, the available electricity
consumption data are very limited. But, with the rise of
prosumers – consumers also able to produce electricity –
prediction models on exactly this grid level is crucial for
network management tasks [2].

Even if households are able to record and transmit electricity
consumption data through smart meter utilization, the grid
operator needs sufficient data storage and computational re-
sources to process the data. Otherwise, the gathered data must
be transferred for further processing. This transfer rises data
privacy concerns and is even prohibited by law, e.g., General
Data Protection Regulation [3]. The ability of information and
behavior retrieval based on leakage of electricity consumption
data has already been shown in the past [4]–[6].

Here, FL seems to be a promising approach to develop a
single ML model for electricity consumption forecasting with
distributed data sets – and at the same time satisfying data
privacy regulation [7]. In contrast to the traditional approach,
where the training of ML model is done centralized, this task
is shifted to each user individually.

In [8], FL was first used by McMahan et al. to train predic-
tion models on mobile devices through users’ keyboard inputs.
Afterwards, applications with FL were proposed in various
fields, e.g., medical and health care, industrial engineering,
finance, transportation [9]–[11].

For SG development, various FL approaches were proposed,
too. In [12], FL is used for anomaly detection in terms of
energy usage with a detection rate compared to centralized
approaches. The authors in [13] present a conceptual frame-
work for secure FL usage in SG environments with focus on
vertical and horizontal data distribution over the clients. A
detailed overview of further interesting FL researches in the
field of SGs is given in [14].

Although, FL can be a promising approach for distributed
load forecasting, the impact of unbalanced data sets among the
clients is unclear. To evaluate FL in the context of prosumer-
level load forecasting, we present the following contributions
in this work:

• Definition and implementation of FL system composed
of a variety of prosumer based on real-world electricity
consumption data.

• Comparison of forecast accuracy between a centralized
and a federated learning approach for model optimization.

• Investigation of the influence of unbalanced data sets
within a federation on the learning convergence and the
overall forecasting error.

This work is organized as following. First, the necessary
background information as well as notation and terminologies
are given in Section II. Second, the proposed FL approach is
described in detail and the different experiments conducted are
described in Section III. Third, the experiment results are pre-
sented, compared, and subsequently evaluated and discussed
w.r.t. forecasting accuracy in Section IV. Fourth and last, the
insights gained from the experiments’ results are summarized
and starting points for further research are given in Section V.
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II. BACKGROUND

Before further detailing the conducted experiments in Sec-
tion III, we give the respective problem formulation (Section
II-A) and background information on FL (Section II-B) as well
as an overview of related work (Section II-C).

A. Problem Formulation

Basically, the load forecasting problem can be categorized
into three groups based on the forecast horizon: (i) short-
term, (ii) middle-term and (iii) long-term load forecasting. In
this work, attention is paid on Short-Term Load Forecasting
(STLF), since we are interested in a household’s next day
electricity consumption.

Let xd = (x
(0)
d , ..., x

(T )
d ) ∈ RT be a household’s con-

sumption of day d divided into T time intervals. Further, let
yd = (y

(0)
d+1, ..., y

(T )
d+1) ∈ RT be the next day’s electricity

consumption, then D = {(xi,yi)|i = 0, ..., D} is the data
set composed of input-output pairs for a total of D days.
Now, a supervised learning approach approximates a function
yd ≈ f̂(xd) for the following optimization problem:

argmin
f̂∈H

1

n

n∑
i=1

L(f̂(xi),yi) (1)

where L(·) is the desired cost function to be minimized.
Typically, in a centralized learning setting, this is done by

collecting each household’s data and subsequently by training
a combined forecasting model, which is afterwards distributed
to every household. Indeed, this rises all of the problems
and concerns described earlier (see Section I) and FL is a
promising approach to tackle all of them.

B. Federated Learning

Contrary to the centralized learning, a FL approach guaran-
tees data-privacy by preserving prosumers’ consumption data
locally. A collaboration of prosumer – a so-called federation
– trains a STLF model by only exchanging respective model
parameters. Typically, the participants within a federation are
called clients but in this work the terms clients, prosumers
and households are used interchangeably. Let P = {p(i)|i =
0, ..., N} be the set of N prosumers then the FL procedure
involves the following steps:

1) Distribution of the initial global model to all prosumers
which are part of the federation p ∈ P .

2) Training of the global model by adjusting it’s parameters
based on the local data set of every prosumer.

3) Returning the adjusted model parameters to a central
unit, e.g., trusted 3rd party, data center, one of the
participants.

4) Aggregation of all received parameters by a predefined
aggregate-function and integration into the global
model.

This whole procedure, also depicted in Figure 1, is repeated
over a defined number of communication rounds r. Interest-
ingly, reducing the number C of clients participating in every
learning round increases the communication efficiency without

Ó
Ó

Ó
Ô

aggregate

 

Prosumer(0)

áõ

 

Prosumer(1)

áõ

. . .  

Prosumer(n)

áõ

ÓÓ

Óá
á

á

train train train

1

2

3

4

Figure 1. In a Federated Learning approach, all prosumers train their models
locally on their own data.

loss of prediction accuracy [8]. So, in every round a prosumer
subset P ′

r ⊆ P with |P ′
r| = C is randomly chosen to take part

in the training task in step 2.
Beside the number of prosumers involved in training, the

used aggregate-function offers additional flexibility. In [8],
the author introduces FedSGD and FedAvg, where the later
is the common approach for solving the FL problem by
calculating the (weighted) average (often mean) per param-
eter. Other aggregation approaches are, e.g., federated adap-
tive optimizers (FedAdam, FedAdagrad, FedYogi) [15],
momentum-based variance-reduced technique (FAFED) [16],
heterogeneity focused (FedProx [17], SCAFFOLD [18]).
There are plenty more proposed aggregate-methods, and
the related questions in terms of, e.g., applicability, optimality,
generalization, are major research topics.

At this point, it is worth noting that additional security
mechanism are needed to guarantee some desired security
level. Although, FL offers a framework for data-privacy in
distributed learning, data leakage or reconstruction attacks are
still possible [19]. Privacy enhancing techniques applicable for
FL settings are, e.g., differential privacy and homomorphic
encryption [20].

In the next section, we give an overview of existing FL
research with focus on STLF.

C. Related Work

After describing the FL approach in general, we give an
overview of existing FL research conducted in the field of
residential STLF. Here, we limit the related work explicitly to
(i) residential households and (ii) maximum 24-hour forecast
horizon.

A comparison between FedAvg and FedSGD with different
forecast horizons (1 h and 24 h) is given in [21]. They showed
that their proposed FL model with FedAvg reaches higher
accuracy than a centralized and a personalized model.

In [22], the authors compare the forecasting accuracy of a
FL model on prosumers involved in training and on hold-out
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prosumers. They choose this approach to evaluate how well
the global model fit for non-participating prosumers. Here,
the non-participant prosumers fine tune the pre-trained model
for 5 epochs locally. They conclude that this fine tuning step
improves the forecast accuracy compared to the global model.

In terms of unbalanced client data distribution, Liu et al.
proposed the closest approach [23]. Here, clients are divided
into 5 groups based on the resolution of their available
consumption data ranging from 300 s to 1.800 s.

A hybrid CNN-LSTM model is used in a FL setting in [24].
To handle the consumption heterogeneity, the authors propose
a model fine-tuning step after the weight aggregation based
on multiple kernel variant of maximum mean discrepancies.
Furthermore, all clients are involved in every training and the
number of data samples are equal over all clients.

The authors in [25] compare the accuracy of a centralized
model with a FL one, a FL plus clustering, and FL plus
clustering and subsequently local fine tuning. Here, the last
approach reaches the highest accuracy. But, to manage all
experiment permutations the evaluations are done with fixed
C = 0.1.

All of the mentioned related work are summarized with their
respective training and model parameters in Table I. It can be
seen that the related work in terms of unbalanced data sets is
non existing – as far as we know – for the STLF problem on
residential prosumer level.

III. METHODOLOGY

To evaluate our proposed FL approach, different exper-
iments are conducted in this work. Therefore, we build a
federation composed of prosumers represented by household
data taken from public available real-world electricity records
(see Section III-A).

A. Used Data Set

In this work, residential household data are taken from the
SmartMetersInLondon [26] data set, which is a refac-
tored version of the “Low Carbon London Project” data. This
data set contains electricity consumption records for 5, 567
London households between November 2011 and February
2014. In the following, the conducted data preprocessing
and preparation steps as well as the selection of suitable
households is described.

a) Household Selection: Since the date range differs
between prosumers in the data set, only houses with the
most overlap are selected. Furthermore, households with more
than three consecutive hours of missing values are removed
otherwise linear interpolated. In total, 20 households are
selected suitable for further usage. The hourly mean electricity
consumption is depicted for every day in the training set in
Figure 2. Subsequently, the respective consumption data is
preprocessed for every selected household in the following.

b) Data Preprocessing: Since the date ranges of avail-
able data varies tremendously across all prosumers, we select
the time between 1st January 2013 and 28th February 2014
with the most overlapping data. This interval is further divided
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Figure 2. Mean electricity consumption of all selected households from the
SmartMeterInLondon data set.

into train and test data (Dtrain and Dtest), whereas the whole
year 2013 is used for training and the remaining data for
testing. This leads to |D(p)

train| = 8, 760 and |D(p)
test| = 1, 416

samples for every prosumer. For every prosumer, both data
sets are normalized individually by x′ = x−σ

µ , where x′ is the
transformed consumption time series.

c) Look-back and Forecast Horizon: The accuracy of
time series forecasting depends on both, the chosen look-
back window as well as the forecast horizon. In the related
work (Section II-C), those parameter are also chosen variously.
Here, our proposed forecasting model uses the last 24 h as
input to predict the next 24 h. Although, additional features,
e.g., weather, holiday, weekday/weekend, can reduce the fore-
cast error, we restrict our model to the raw consumption
values. In [27], we evaluate the FL model with further feature
engineering.

After the household selection and necessary preprocessing
steps, the used ML model architecture, as well as further detail
on the overall development process is given in the next part.

B. System Setting

In this section, we give all the relevant information about
the model architecture and used hyperparameters. Afterwards,
a definition for different kinds of learning prosumers within
the federation based on the ability to store training data is
presented. A description of the used federation, as well as the
training procedure is given in the third part.

a) Model and Hyperparameters: In this work, we choose
a vanilla Multi-Layer Perceptron (MLP) as model architecture,
similar to the proposed model in [8]. This architecture allows
an easy implementation and training on lightweight devices
with limited computational resources. This fully connected
MLP has two hidden layers with 200 neurons each and uses
a Rectified Linear Unit as activation function.

b) Weak and Strong Prosumer: We introduce the terms
strong and weak prosumer, to describe two different types of
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TABLE I. OVERVIEW AND SUMMARY OF RELATED WORK FOR FEDERATED LEARNING (FL) APPROACHES FOR RESIDENTIAL SHORT-TERM LOAD
FORECASTING (STLF).

Related Work #Clients C ML-Model Data Set Balanced Data Aggregation

Taïk and Cherkaoui [22] 200 5, 10 LSTM AUSTIN yes FedAVG
Fekri et al. [21] 19 6 LSTM non-public yes FedSDG, FedAVG
Liu et al. [23] 50 10 iQGRU AUSTIN semi FedAVG

Shi and Xu [24] 10 10 CNN-LSTM LONDON yes FedAVG
Briggs et al. [25] 100 0.1 LSTM LONDON yes FedAVG

prosumers based on the amount of available training data. The
two types are defined the following way:

Definition 1. Let p ∈ P be a prosumer only able to store
training data between two consecutive communication rounds,
then it is called a weak prosumer pweak.

Definition 2. Let p ∈ P be a prosumer with no storage
limitations, then it is called a strong prosumer pstrong.

Based on the Definitions 1 and 2, we define the fraction of
strong prosumers within a federation as the so-called strong-
prosumer-fraction:

Definition 3. Let |pweak|, |pstrong| be the number of weak
respective strong prosumers in P , then the strong-prosumer-
fraction is defined as ϕ =

|pstrong|
|pweak|+|pstrong| .

This allows a straightforward distinction between prosumers
within a federation and introduces another parameter for the
overall training procedure.

c) Training Procedure: For all conducted experiments,
with or without strong and weak prosumers, the respective
training procedure takes r = 100 communication rounds in
total. At r = 0 the global model’s weights w are randomly
initialized. After every round, the global model’s weights are
updated by a weighted FedAvg aggregation function, s.t.
wr+1 ←

∑
p∈P′

r

np

n w
(p)
r , where np, n is the number of sample

per prosumer respective the number of all samples. The local
weights w(p)

r are calculated locally for every p ∈ P ′
r in parallel

by w
(p)
r ← wr − η∇wL(wr;xi,yi) for a single epoch with a

learning rate of η = 0.001 and the Mean Squared Error (MSE)
as loss function L(·).

To evaluate the proposed FL approach and also to analyze
the impact of unbalanced data sets, various experiments are
conducted, which are further detailed in the following section.

C. Experiment Settings

The proposed FL approach for residential STLF is evaluated
in different experiments. The evaluation is based on the MSE
error metric given as MSE = 1

n

∑n
i=1(ŷi − yi)

2, where n
is the number of test set samples and ŷi, yi is the predicted
respective actual consumption value. We run the following
three experiments:

I Benchmark A centralized model – as well as one local
model for every prosumer – is trained over r epochs.

II Number of Learners Since a new subset of learning
prosumers is selected in every round (see Section II-B),

TABLE II. TEST SET ERROR FOR EXPERIMENT I. MSE IS CALCULATED
OVER ALL 20 PROSUMERS

Model ↓ MSE (µ± σ) min max won

centralized 0.181± 0.13 0.030 0.545 3 out of 20
personalized 0.166± 0.13 0.021 0.514 17 out of 20
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Figure 3. Experiment II: Train loss and test set error with mean and standard
deviation over 10 repetitions for different values of C.

we evaluate the model’s forecast accuracy for different
number of learners C = {1, 3, 5, 7, 10, 20}.

III Strong Prosumer Fraction With the introduction of
weak and strong prosumers, we evaluate our FL approach
based on unbalanced data sets. For C = {1, 10, 20} the
strong-prosumer-fraction ϕ = {0.05, 0.25, 0.5, 0.75, 1} is
considered. Here, the unbalanced data set evolves over
the communication rounds r = {1, 2, . . . , 100} by:

weak: D(p)
r = D(p)

r−1:r (2)

strong: D(p)
r = D(p)

0:r . (3)

So, for strong prosumer the training samples increase by
n = ⌊ |D|

r ⌋ in every round, whereas for weak prosumer
the samples have a fixed size of n.

The experiments I-III are repeated for N = 10 times to handle
the randomness via model initialization and prosumer sam-
pling with C, ϕ. Our proposed FL approach is implemented
in Python=3.9 with PyTorch and model training was
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executed on a local machine with a Nvidia Geforce RTX 2080
graphic card. The experiments’ results are listed in the next
section.

IV. EXPERIMENT RESULTS & DISCUSSION

The results of the various experiments are presented in
the same order as defined in Section III-C. The respective
results are provided below, followed by a detailed analysis
and discussion.

Figure 3 illustrates the training loss across all communi-
cation rounds r as well as the test set error in the legend.
For the different values of C = {1, 3, 5, 10, 20}, the test set
error is given as mean with standard deviation over all 10
repetitions. Similar to experiment I, the MSE is calculated
over all prosumers p ∈ P without individual examination.

For experiment III, results are given in two ways. First, the
average training loss over all runs is depicted in Figure 4.
Second, Table III list the test set errors. In addition to nu-
merical values over all prosumers, the MSE is also calculated
separately for the sets of pweak and pstrong. The minimum
and maximum MSE values are determined over all 10 runs
combined for each combination of C- and ϕ-values.

In this work, a FL approach was proposed for the STLF
problem at residential prosumer level. Three experiments were
conducted to analyze the impact of unbalanced data distribu-
tion among prosumers within the federation.

The first experiment compared a centralized MLP trained
on all prosumers’ data with a personalized MLP trained
individually for each prosumer. Of 20 households in total, 17
times the personalized model reaches a higher accuracy (see
Table II). This indicates a strong distribution of consumption
behaviour across the prosumers since more data does not
guarantee better results.

The second experiment examined the effect of different
numbers of learners. As shown in Figure 3, test set errors
show minimal variation for C > 1, with nearly identical
training loss reduction. However, lower C-values introduce
more variance, emphasizing trade-off between distribution
computational resources and learning efficiency.

In real-world scenarios, training data availability varies
among prosumers due to recording and storage capabilities as
well as temporal offsets in joining the federation. To address
this, the third experiment introduced the distinction between
weak and strong prosumers, defined by storage capability.
The strong prosumer fraction ϕ represents the proportion of
strong prosumers within a federation. Figure 4 indicates slower
training convergence with a decreasing number of strong
prosumers, irrespective of C-values. However, reducing ϕ to
0.75 or 0.5 did not significantly impact training speed or test
set error. This finding is relevant for practical applications,
suggesting that not all prosumers need to contribute learning
resources to maintain overall performance.

V. CONCLUSION & FUTURE WORK

This work developed a ML-based model for the STLF prob-
lem at residential prosumer level. Given that high-resolution

TABLE III. TEST SET ERROR FOR EXPERIMENT III. ERROR IS GIVEN AS
MSE WITH MEAN AND STANDARD DEVIATION OVER ALL 10 REPETITIONS.

C ϕ
↓ MSE (µ± σ)

all strong weak min max

1

0.05 0 .215 ± 0 .14 0.192± 0.12 0.216± 0.14 0.026 0.674
0.25 0.193± 0.12 0.209± 0.15 0.188± 0.11 0.039 0.597
0.5 0.194± 0.12 0.202± 0.13 0.186± 0.12 0.037 0.565
0.75 0.196± 0.12 0.194± 0.12 0.199± 0.13 0.038 0.587

1 0.201± 0.13 0.201± 0.13 – 0.036 0.626

10

1 0 .223 ± 0 .15 0.142± 0.07 0.227± 0.15 0.029 0.750
0.25 0.186± 0.12 0.187± 0.13 0.186± 0.11 0.033 0.540
0.5 0.184± 0.12 0.182± 0.12 0.187± 0.12 0.038 0.550
0.75 0.181± 0.12 0.185± 0.12 0.170± 0.10 0.038 0.525

1 0.180± 0.12 0.180± 0.12 – 0.041 0.527

20

1 0 .198 ± 0 .13 0.205± 0.13 0.198± 0.13 0.034 0.711
0.25 0.190± 0.12 0.193± 0.13 0.189± 0.12 0.035 0.591
0.5 0.183± 0.12 0.173± 0.11 0.192± 0.13 0.040 0.546
0.75 0.181± 0.12 0.172± 0.11 0.208± 0.12 0.038 0.523

1 0.179± 0.11 0.179± 0.11 – 0.042 0.516

Note: lowest error is in bold, highest in italic.

electricity consumption data contain behavioral information,
data privacy concerns arise when transferring and processing
such data. To address this, FL was incorporated as a viable
approach to train ML models on distributed data without re-
quiring direct data exchange. Three experiments were designed
and conducted to evaluate the proposed FL approach. The re-
sults demonstrated that FL can achieve competitive forecasting
accuracy while preserving data privacy. The trade-off between
the number of learners and computational efficiency was also
analyzed, along with the effects of strong and weak prosumers
on training convergence and performance.

In future work, we will focus on extending and improv-
ing the proposed FL approach. This study primarily ad-
dressed unbalanced data sets within a federation, adopting
constraints such as a lightweight MLP architecture, state-of-
the-art FedAvg weight aggregation, and the exclusion of
external features. To enhance overall forecasting accuracy,
these constraints should be revisited. Preliminary results in-
dicate the utilizing more complex Long-Short Term Memory
Neural Network (LSTM) models and incorporating weather
information can reduce forecasting errors. Additionally, this
study did not explicitly implement a security layer. Future
research will explore methods to ensure data privacy and
prevent information leakage while integrating insights from
this study. Furthermore, the potential of Transformer-based
models for STLF remains an unexplored area, warranting
future investigation.
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