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Abstract—Conventional reactive power control is typically
performed by operators through coordinated switching of power
electronic devices. This task is becoming increasingly complex
as the integration of renewable energy sources, such as rooftop
photovoltaic systems and wind turbines, expands. Maintaining
grid stability is critical to ensure energy supply without risking
equipment damage. In this context, artificial Reinforcement
Learning (RL) agents for reactive power control can assist
operators by suggesting actions, though final decisions remain
with the operator. High-performing automated RL algorithms
are essential for this as they enable execution of complex actions
through trial and error, facilitating the adaptable transfer of
learning to the real world. While established algorithms, such
as Soft Actor-Critic (SAC), Deep Deterministic Policy Gradient
(DDPG), Twin-Delayed DDPG and Proximal Policy Optimization
(PPO), offer solutions, each has limitations. Training artificial
RL agents in real-world power grids is impractical due to the
safety-critical concerns, stressing the need for an alternative
approach. SAC provides benefits in continuous action space, such
as improved exploration and leveraging past experiences, but
suffers from long training times. This paper addresses the issue
by reducing SAC training periods through the integration of
the Behavior Cloning from Observation (BCO) algorithm. This
approach enhances performance by initializing SAC with a high-
performing, pre-trained Artificial Neural Network (ANN) rather
than a random policy, providing a strong starting point while
preserving the benefits of SAC.

Keywords-Smart Grid Management; Reactive Power Control;
Artificial Intelligence; Soft Actor-Critic; Behavioral Cloning from
Observation; Renewable Energy Integration; Offline Reinforcement
Learning.

I. INTRODUCTION

Autonomous systems hold significant potential for power
systems, a domain where mismanagement can have extensive
societal repercussions. As power systems evolve with increas-
ing dynamic complexity and renewable integration, traditional
control methods are becoming inadequate. Autonomous sys-
tems provide real-time decision-making, optimize resource
allocation and adapt to fluctuating conditions with minimal
human input. This transition to autonomy not only enhances
operational efficiency but also ensures grid reliability amid
rapid technological advancements and energy demands.

Reinforcement Learning (RL), as defined by Sutton et
al. [1], is “learning what to do—how to map situations to
actions—so as to maximize a numerical reward signal.” Here,
an agent learns by interacting with its environment, receiving
feedback in the form of rewards to guide its actions. Two key
aspects of RL are its reliance on trial-and-error learning and
its consideration of delayed rewards.

Offline RL, or batch RL, trains agents on static datasets,
which is advantageous in fields like healthcare, autonomous
driving and power systems, where real-time data gathering
can be costly or risky [2]. Unlike online RL, which contin-
uously interacts with the environment, offline RL relies on
pre-existing datasets to learn policies, minimizing costs and
enhancing safety. However, a challenge in offline learning is
concerning distributional shift, which arises when the training
data differs significantly from real-world scenarios, necessitat-
ing high-quality datasets to ensure reliable outcomes.

Behavior Cloning from Observation (BCO) is a notable
offline RL algorithm that enables an agent to learn tasks
by observations only, without direct access to an expert’s
actions. By leveraging pre-existing data, BCO mimics expert
behavior and iteratively refines policies to perform accurately
in complex settings. If the data is optimal, BCO can help
overcome common challenges in offline RL, providing robust,
efficient learning strategies.

Distributed generators, like Photovoltaic (PV) systems with
inverters, offer strategic advantages for reactive power control
at key locations. Effective voltage control and Reactive Power
Management (RPM) are crucial for power system reliability,
typically managed through centralized control by system op-
erators [3]. These operators use comprehensive system data
and advanced computer models to make informed decisions,
as suppliers do not have direct control over voltage control
needs. The operators would benefit from quick assistance in
making timely decisions, with a potential Artificial Intelligence
(AI) agent suggesting corrective actions while leaving the
final decision to the operator. This seamless integration of
centralized control and distributed resources could enhance the
efficiency and reliability of voltage stability and RPM in power
systems.

The primary contributions of this paper are as follows:
1) Addressing controller conflicts arising from physical con-

straints, such as the impossibility of achieving a 1 voltage
magnitude per unit (p.u.) across multiple buses in series
simultaneously. In standard Soft Actor-Critic (SAC), an
exploration dilemma emerges, as the agent incorrectly
assumes actuator independence across buses, where, in
reality, actuator behavior is interdependent due to the
physical limitations. To address this, we developed a
specialized RL agent tailored for this RPM context.
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2) Applying BCO to expedite training while maintaining key
benefits of off-policy learning and robust exploration. The
use of BCO directly aids in overcoming the exploration
challenge outlined above, where agents benefit from a
structured observational learning approach.

3) Demonstrating the scalability and transferability of the
proposed approach for application to more complex tasks
within the power systems domain.

This study is constrained by the following factors:
1) The PalaestrAI framework is used for reactive power

control implementation.
2) SAC is selected for policy learning due to its suitability

for continuous action spaces and superior stability over
Deep Deterministic Policy Gradient (DDPG) and Proxi-
mal Policy Optimization (PPO) [4].

3) BCO is preferred due to the availability of high-
quality MIDAS data (discussed later), making Advantage
Weighted Actor-Critic (AWAC) unnecessary [5].

4) Each one-year simulation requires one hour, with addi-
tional time for training and testing.

The remainder of this paper is structured as follows: Sec-
tion II surveys the related work, covering key literature on
SAC, BCO and recent advancements in RPM utilizing AI,
in addition to open-source tools used in this work such as
Midas and palaestrAI. Section III presents the methodology,
describing the grid environment and grid code utilized. It also
covers the development of three scenarios, experiment setup
and the performance metrics applied for evaluation. Section IV
presents the results while Section V provides an analysis and
discussion of the results for each scenario, as well as ablation
experiment. Lastly, Section VI summarizes the main findings
and offers potential avenues for future research.

II. RELATED WORK

This section examines the integration of SAC, a state-of-the-
art RL method, with BCO, for reactive power control, lever-
aging historical data and entropy-based learning for enhanced
stability. It also reviews advancements in AI-driven reactive
power management, identifies research gaps and highlights
the open-source tools Midas and palaestrAI for scalable and
reproducible simulations.

A. Soft Actor-Critic

The SAC algorithm, introduced by Haarnoja et al. [6], is an
off-policy maximum entropy actor-critic framework designed
to balance exploration with reward maximization. In entropy-
regularized reinforcement learning, entropy—representing ran-
domness in a policy—adds a bonus reward at each step.
This motivates agents to explore more by maximizing both
the cumulative reward and entropy [7] [8]. This entropy-
enhanced approach provides sample-efficient learning, stability
and adaptability to complex tasks. For further details on SAC
and its implementation, refer to [4] and [7]. The resulting
objective function is:

π∗ =

argmax
π

Eτ∼π

[ ∞∑
t=0

γt (R(st, at, st+1) + αH (π(·|st)))

]
(1)

where α > 0 is a regularization factor. The modified value
functions Vπ(s) and Qπ(s, a) now include entropy terms, with
the following transformations:

Vπ(s) = Ea∼π[Qπ(s, a)] + αH (π(·|s)) (2)

Qπ(s, a) = Es′∼P,a′∼π[R(s, a, s′)

+ γ(Vπ(s
′) + αH(π(·|s′)))] (3)

This entropy-enhanced approach provides sample-efficient
learning, stability and adaptability to complex tasks. For
further details on SAC and its implementation, refer to [4]
and [7].

B. Behavior Cloning from Observation

As outlined in the introduction, BCO is a learning approach
that enables an agent to mimic expert actions by observing
state transitions, bypassing the need for explicit action data
and allowing skill acquisition without complete state-action
mappings.

The BCO framework begins by initializing policy and model
training with an offline dataset, eliminating the need for real-
time environment interaction during this stage. Once an initial
policy is derived, it is refined through online RL. A common
challenge in BCO is the risk of distributional shift, where
changes in the offline dataset adversely impact performance, as
noted by Prudencio et al. [2]. Thus, a reliable dataset, ideally
from expert sources, is crucial for initial training.

In this study, BCO is combined with SAC, which uses
entropy-based learning, enhancing the agent’s capacity for
complex decision-making tasks. Together, BCO and SAC
principles contribute to accelerated learning and increased
adaptability in reinforcement learning settings. For a more
detailed BCO understanding, refer to [9].

C. Progress in Reactive Power Management via AI

Prior research has focused on using artificial intelligence
with renewable energy sources to enhance reactive power
control and voltage stability in smart grids. For instance,
Chandrasekaran et al. [10] propose a hybrid model using solar
and wind energy with Artificial Neural Network (ANN) and
Distribution Static Synchronous Compensator (DSTATCOM),
achieving a voltage profile accuracy of 98.45% and reducing
real power loss by 15%. Similarly, Utama et al. [11] leverage
ANN-based controllers to manage reactive power in the CI-
GRE Medium Voltage (MV) grid with PV systems, addressing
issues such as voltage fluctuations and line congestion in both
centralized and decentralized frameworks. To improve smart
grid operations, Fiorotti et al. [12] apply a Genetic Algorithm
for optimal active and reactive power management, decreasing
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net present value by 28.15% and energy costs by 78.16%
by adapting to diverse consumption profiles. However, an
approach is needed that can better adapt to complex real-
world scenarios and leverage the wealth of historical data
effectively. In this context various RL algorithms can be highly
advantageous.

Rehman et al. [13] investigate reactive power control in PV
inverters through a decentralized actor-critic RL framework,
achieving stable voltage control ratios and minimized power
loss, with voltage levels consistently within 0.95-1.05 p.u. The
authors suggest exploring alternative algorithms for enhanced
control in future work. Wolgast et al. [14] employed RL
agents for voltage control, with a focus on the impact of
environment definitions on performance; however, their study
did not explore the influence of advanced RL algorithms.
Addressing these limitations, this paper introduces a more
advanced algorithm, SAC, over the actor-critic approach and
incorporates an ANN for initialization instead of random
policy initialization, thereby also implementing BCO.

D. Research Gap

Applying BCO through SAC in RL benchmark environ-
ments has, to date, been explored only in one master’s thesis
by D’Silva et al. [15]. To our knowledge, the application
of BCO with SAC specifically in reactive power control for
MV grids remains unexplored. Prior research by Dey et al.
[16] has utilized BCO with PPO for building energy control;
however, the on-policy nature of PPO limits its efficiency in
multi-task settings. By substituting PPO with SAC, an off-
policy algorithm, this study overcomes these constraints, en-
abling more efficient training and enhanced grid management
performance. This approach extends BCO to grid integration
scenarios, leveraging abundant historical data and an ANN-
trained policy to initialize SAC for managing reactive power
control in an MV grid.

This research investigates whether constructing BCO by
integrating the SAC algorithm with ANN policy initialization
can reduce training latency for SAC agents in achieving
effective reactive power control.

E. Open-Source Tools

1) Midas: Midas is an open-source framework that allows
easy configuration of a power system co-simulation [17] and
uses the co-simulation framework Mosaik as backend [18].
It features various time series for consumers and producers,
weather time series and simulation models of renewable en-
ergy sources like photovoltaic, wind and biogas, as well as
a battery and a cold warehouse. Midas is configured with
scenario files in YAML format, which specify what kind of
load or generation is connected to certain buses in the grid. The
framework provides a seamless integration into palaestrAI,
which is described in the following section.

2) PalaestrAI: The palaestrAI framework is instrumental
in simulating real-world scenarios for electricity grid inte-
gration, offering a comprehensive set of components. It is
designed to implement the Adversarial Resilience Learning

(ARL) methodology by Veith et al. [19]. It encompasses vari-
ous packages, emphasizing a reliable experimentation process
through experiment definitions and proper data storage. Users
can easily create experiment files to achieve reproducible sim-
ulations, defining environments, agents and their parameters
for experimentation within palaestrAI.

F. Objective Function

The reward function of the RL agent used for this study
is composed of four main components, each associated with
specific weighting variables represented by the world state of
the system in terms of voltage levels across all buses, buses
particularly under control, the bus status based on the impact of
grid code violations and the quantity of real power production
within the grid relative to total demand. For more details on
the formulation of objective function please refer [20].

III. METHODOLOGY

All experiments in this paper utilize the palaestrAI frame-
work from Veith et al. [19] focusing on a single agent.
Each experiment includes distinct training and testing phases,
with a maximum simulated duration of one year and a 15-
minute interval for each step. The overall process flow for
methodology is depicted in Figure 2.

A. Grid Environment

In this study, a 20 kV MV grid is connected to a 110 kV
transmission network, with a total power capacity of 2000
kW. The grid is modeled after the CIGRE MV benchmark grid
[21], comprising 14 buses, each equipped with a PV generator
with randomly assigned output for variability. Weather data
from Bremen, Germany (see Figure 1) and static load time
series from the Midas project simulate realistic conditions [17].
Additionally, commercial loads, such as a supermarket and a
small hotel, enrich the grid’s complexity.

Figure 1. Global Solar Radiation in Bremen, Germany 2020.

This paper follows technical guidelines (VDE-AR-N 4110)
published by the German Association for Electrical, Elec-
tronic & Information Technologies for MV grids in Germany,
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ensuring compliance with standards for the safe integration
of renewable energy. The reactive power limits of each PV
inverter are strictly followed, with any excess set points
automatically adjusted to the maximum allowed value, using
Volt-VAR control.

The determination of the bus’s operational status adheres
to the rules outlined in the grid code DIN 50160 for medium
voltage grid, also detailed in Table I and adopted from [22].

TABLE I. GRID CONSTRAINTS FOR MEDIUM VOLTAGE GRID.

Grid constraints Limits

Bus ∆V must be within ≤ 0.1 p.u./min
Loads to sustain ∆V of ≤ 0.02 p.u./min
Generators must endure ∆V of ≤ 0.05 p.u./min
Line load must be ≤ 100%

B. Reactive Power Management
1) Building Experiments: The challenge of finding reliable

data is mitigated by using the Q-Controller (4) as the expert
data source, validated by Ju et al. [23] for stability in reactive
power control. The reactive power controller is implemented
using the palaestrAI framework, with SAC chosen for its effi-
ciency in continuous action spaces, outperforming DDPG and
PPO [4]. BCO is selected for its simplicity. Each simulation
spans one year, with data collected in 15-minute intervals,
incorporating both a one-year training period and a subsequent
one-year testing phase.

The primary objective is to construct an ANN architecture
focused on reactive power control, utilizing data generated
from the Midas simulation, used as the offline data, to enable
BCO in a later stage. Before designing the ANN, the dataset
is prepared using (4) to generate qt+1 based on the qt and Vt

values. This equation, adapted from Ju et al. [23], provides
stability and convergence in reactive power control and serves
as the foundation for controlling reactive power set points in
the grid.

qt+1 = [qt −D(Vt − 1)]+ (4)

Using the simulated data, consisting of voltage (Vt) and
reactive power (qt) values, the effectiveness of (4) is evaluated
by generating qt+1 values and comparing them to the original
qt values. This analysis spans all 14 buses over a year. The
neural network is then developed using Vt[p.u.] and qt[MVAr]
as inputs (x) and qt+1[MVAr] as the output (y).

14 datasets, ranging from 2500 to 34050 data points in
increments of 2500, were generated from simulated data.
For each dataset, a model is developed (e.g., model2500 for
2500 data points, model5000 for 5000 data points, etc.) with
default hyperparameters initially, repeating this process across
all datasets. The dataset is divided into training and testing
sets, allowing for an assessment of model performance.

Along with generating 14 models for varying dataset sizes,
hyperparameter optimization is performed using a randomized
search method from Pedregosa et al. [24], to enhance perfor-
mance of each model. This optimization targets five out of six

hyperparameters—activation function, learning rate, number
of neurons per layer, number of layers and batch size—while
the number of episodes is fixed at 100. This choice is based
on the observed trend in loss versus episode plots for the
testing sets, where no significant reduction in loss occurs
beyond 100 episodes. The evaluation of the models is based
on mean, variance, Root Mean Square Error (RMSE) and
Coefficient of Determination (R2). The model with the most
favorable metrics—a mean similar to the original data, reduced
variance, lower RMSE and higher R2—is selected for further
experimentation.

These models are central to two of the three experiments
explained later in Section III-B2, highlighting the importance
of establishing a resilient network at this stage. Following
this, three experimental approaches are explored: Supervised
Experiment (SUP), SAC algorithm and a combination of SAC
and ANN, thereby implementing BCO as depicted in Figure
2.

Start

Grid data
(Vt, qt)

Compute qt+1

Build and optimize ANN

Models

Performance

1

SUP

2

BCOSAC

43

Analysis metrics on
milestones 2, 3 & 4

Stop

Bad

↓ σ2 ↓ RMSE ↑ R2

SACSAC

Figure 2. Process Flow Chart for Methodology.
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2) Experiment Setup: The structure of the three experi-
ments is presented in Table II. These experiments are designed
to build progressively upon each other.

The first experiment, referred to as the SUP experiment,
is the simplest and is based entirely on expert knowledge
derived from (4), without any RL training process. This
expert knowledge is transferred to the ANN using supervised
learning. At each time step, sensor values (Vt, qt) are input into
ANN, which produces an output used to set the value of qt+1.
Therefore, in this setup, the ANN acts as an actuator without
policy initialization, interacting with a medium-voltage (MV)
grid environment.

In the second experiment, the SAC algorithm, a well-
established method in RL, serves as a baseline for comparison.
SAC encourages exploration in RL and operates as an off-
policy algorithm, leveraging prior knowledge. However, due to
random policy initialization, the SAC algorithm can experience
prolonged simulation times in the learning phase.

The third experiment addresses the limitations of both
earlier approaches by combining the SAC algorithm with the
ANN constructed from the expert knowledge, as the initial
policy instead of a random initialization. The objective of
this experiment is to integrate the characteristics of the two
previous experiments.

This approach, known as BCO, mitigates the initial slow
learning problem observed in the SAC experiment, as the
ANN provides a more effective starting point. Consequently,
the third experiment is expected to outperform both the SUP
experiment, which lacks a RL simulation process and the SAC
experiment, which suffers from random policy initialization,
as illustrated in Table II.

The fourth experiment is an ablation study that compares
the voltage profiles and reward values across all three previ-
ously mentioned experiments, considering both single bus and
multiple bus scenarios.

TABLE II. DESCRIPTION OF AGENT CONFIGURATIONS FOR EACH
EXPERIMENT ON THE MV GRID ENVIRONMENT.

Experiment SUP SAC BCO

Objective Reward calculation

Sensor Vt, qt, %load &
in-service status

Actuator qt+1

Policy None Random ANNInitialization

3) Performance Metrics:
a) Models

In the SUP and BCO experiments, a total of 14 models,
each trained on datasets of varying sizes, are analyzed
to identify the model that achieves optimal performance
with minimal data usage. Key evaluation metrics for the
ANN models include mean, variance, R2 and RMSE.
These metrics will guide the selection of sample-efficient
models for both SUP and BCO experiments. In the SUP
experiment, the models are used as actuators and in BCO,
the models are used in policy initialization as mentioned
in Section III-B2, experiment setup.

b) Experiments
The evaluation of experiments is based on six key met-
rics: voltage stability, adherence to voltage limits, high-
reward performance, consistency, sample efficiency and
robustness under controlling multi-bus scenarios.

(i) Both voltage and reward values are tracked over time
to assess stability, compliance and overall performance.

(ii) Performance Consistency is ensured by repeating each
experiment four times and comparing the outcomes
across trials, focusing on voltage and reward stability.

(iii) Sample Efficiency is evaluated differently for SUP and
SAC. In the SUP experiment, it is identifying the model
that achieves the best performance with the least data.
The model providing the reactive power set point is
trained on various datasets of differing sizes (from
2500 until 35040 data points), with each training re-
peated four times to evaluate performance consistency.
The selection of dataset sizes was intended to examine
the impact of sample size on model performance and
efficiency. In SAC experiments, sample efficiency is
calculated using the following two criteria:
• The rate of change of reward:

ηs =
dR

dt
(5)

• The area under the reward versus time plot.
(iv) Robustness is evaluated by simultaneously managing

two buses, while other buses maintain a cosϕ = 0.9
so the reactive power depends on the PV power
injection, which significantly impacts grid dynamics.
A model was developed using 35040 data points,
incorporating four inputs—voltage and reactive power
for each bus—and two outputs for the reactive power
of both buses. This model enables the simulation of
concurrent control of the buses. Scenarios are deemed
robust when the voltage remains within the range
0.85 ≤ Vb,t[p.u.] < 1.15 for all buses b and time t,
since beyond these limits buses will get disconnected
from the grid and when the rewards are within the
range of 0.90 ≤ Rb,t[-] < 1.00. The percentage of
values within these specified limits is calculated to
assess robustness.

(v) Comparison of Experiments uses a rolling average
analysis over ten days to compare voltage and reward
outcomes, while sample efficiency is assessed through
reward rate of change and Area Under the Curve
(AUC) values as mentioned earlier.

IV. RESULTS

This section presents the performance evaluation of different
reinforcement learning approaches for voltage control in a
power grid scenario. The effectiveness of the SUP, SAC and
BCO methods is analyzed in maintaining voltage stability and
optimizing rewards under both single and multi-bus control
scenarios. The evaluation is conducted by measuring the
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percentage of voltage and reward values that fall within the
acceptable ranges of 0.85 ≤ Vb,t[p.u.] ≤ 1.15 and 0.90 ≤
Rb,t[−] ≤ 1.00, respectively, ensuring reliable grid operation.
The results of these experiments are summarized in Tables III
and IV, where the former illustrates the single bus performance
while the latter demonstrates the robustness against controlling
two buses.

A. SUP Experiment

The sample efficient model for single bus scenario ensures
99.9% of voltage and 97.0% of rewards fall within the desired
ranges as shown in Table III. Buses 5 and 11 are chosen
for evaluation of robustness against controlling two buses
simultaneously for all the three scenarios. 99.83% of voltage
values and 70.80% of reward values are within the specified
ranges.

B. SAC Experiment

Since SAC uses random initialization and no models, model
optimization is not applicable. Therefore, simple SAC training
runs are carried out. For single bus scenario, SAC has 99.9%
of voltage values within 0.85 ≤ Vb,t[p.u.] ≤ 1.15 and 47.0%
of reward values within 0.90 ≤ Rb,t[−] ≤ 1.00, as shown
in Table III. The robustness against controlling two buses is
demonstrated by 100.00% of voltage values and 70.59% of
reward values falling within their respective desired ranges, as
seen in Table IV.

C. BCO Experiment

The sample efficient model for single bus scenario ensures
99.9% of voltage and 65.60% of rewards fall within the
desired ranges (see Table III). For the robustness of BCO ex-
periment involving simultaneous control of two buses, 100%
of the voltage values and 81.56% of the reward values fall
within the respectively desirable ranges.

V. DISCUSSION

This section presents key findings from the experiments,
focusing on the performance of the proposed approach across
different evaluation metrics.

A. SUP Experiment

The analysis based on voltage violations and reward perfor-
mance concluded that model5000 outperformed those trained
on larger datasets, demonstrating the trade-off between dataset
size and model efficiency. This shows the potential advantages
of smaller datasets in achieving improved model performance
and robustness against over-fitting.

During the robustness analysis, both buses exhibited sig-
nificant performance issues, with voltage levels dropping to
zero in 59 instances (0.17%), violating the grid code require-
ments. Although the overall objective function remained high
(ranging from 0.7 to 1) for most of the simulation period,
these voltage drops adversely affected the reward, reducing
it to approximately 0.5 in certain instances. In total, 10232

occurrences of rewards below 0.9 accounted for 29.20% of
the total time steps.

These sudden voltage spikes, observed in Figures 4a and
4b, primarily occurred during periods of high solar irradiation
from April to September. These spikes are likely due to solar
input exceeding the voltage limits set by the grid code. As
shown in Figure 4c, the reward follows an opposing pattern
to the voltage spikes, with the reward decreasing for high
voltage deltas, in accordance with the grid code. Consequently,
the current model’s robustness is questioned, as it fails to
maintain compliance with the voltage limits across multiple
buses, despite achieving reward performance for 70.80% of
the total time steps. For the robustness analysis, a consistency
check through multiple simulation runs was not conducted to
minimize the overall number of simulations performed.

An overview of the evaluated criteria is provided in Table
III. The values displayed are for the best performing models
only.

B. SAC Experiment

In the single-bus scenario, the performance of the SAC
experiment is the weakest among the three experiments eval-
uated. While the voltage values largely remain within the
desired range, as presented in Table III, only 47.0% of the
reward values fall within the range 0.90 ≤ Rb,t[−] ≤ 1.00,
indicating poor adherence to the reward function. Considering
the robustness of the SAC algorithm in multi-bus scenarios, it
demonstrates impressive robustness. The average voltage per-
formance of both buses, consistently maintains values between
0.96 and 1.03, with no grid code violations. Although reward
values remain high, only 70.56% of the values are between
0.9 and 1. This consistent voltage stability and moderately
satisfactory reward performance demonstrate the resilience of
the SAC algorithm (see Table IV).

C. BCO Experiment

Performance of model30000 is the most sample-efficient
performance based on voltage violations and reward values
whereas the robustness analysis reveals that both buses exhibit
higher voltages during sunny periods, likely due to increased
solar irradiation, which affects reward acquisition but main-
tains grid code compliance. In contrast, voltages during the
less sunny months remain within the desired range, with
zero grid code violations observed. Overall, this scenario
demonstrates a 0.17% improvement in performance compared
to the initial SUP experiment, suggesting that the ANN model,
enhanced by the SAC algorithm, slightly outperforms the
standalone SUP experiment.

The voltage distribution is primarily concentrated between
1 and 1.02 p.u., with some outliers between 1.02 and 1.06
p.u.. Interestingly, the reward performance reflects the inverse
of the solar irradiation profile, with most values between 0.9
and 1 and 81.56% falling within this range (see Table IV).
This indicates a 10.97% performance improvement for BCO
over SAC, as both maintain 100% compliance with voltage
standards.
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(a) Voltages of Single Bus.

(b) Rewards for Single Bus.

Figure 3. Comparison of Performances for Single Bus.

TABLE III. PERFORMANCE EVALUATION FOR SINGLE BUS

Metrics SUP SAC BCO

Voltage [%] 99.9 99.9 99.9
Reward [%] 97.0 47.0 65.6
Sample efficiency

Data points 5000 N/A 30000
SAC algorithm N/A

Slope N/A -0.0020 -0.0024
AUC N/A 22.45 22.75

TABLE IV. ROBUSTNESS EVALUATION FOR TWO BUSES

Metrics ANN SAC BCO

Voltage [%] 99.83 100.00 100.00
Reward [%] 70.80 70.59 81.56

D. Ablation Experiment

Table III represents a summary of the performance of
single bus scenario for all the three experiments. The voltage
occurrences within 0.85 ≤ Vb,t[p.u.] ≤ 1.15 and reward
occurrences within 0.90 ≤ Rb,t[−] ≤ 1.00 are reported as
percentages. Sample efficiency is measured by data points
required for high model performance and by reward rate of
change over the first 25 training hours for the SAC algorithm.
Only the best-performing models’ values are shown in this
table.

1) Rolling Average for Single and Multiple Bus Cases: Fig-
ures 3a and 3b present the rolling voltage and reward averages
respectively over the 34050 time steps for each experiment

in the single bus case. The SUP experiment is constructed
using 5000 data points model, while BCO experiment uses
model generated from 30000 data points. In the multiple-bus
case, Figures 4a and 4b show the voltage performances for
Buses 5 and 11, respectively and Figure 4c demonstrates the
reward performance. The rolling average approach smooths
out outliers, enhancing the visibility of performance trends
across time.

Figure 3a shows that all three experiments, SUP, SAC and
BCO, maintain stable voltage performance. However, Figure
3b reveals that both SUP and BCO outperform SAC in reward
collection, benefiting from the ANN model and initialization
advantage, respectively. This model initialization, along with
the high entropy inherited from SAC algorithm, consistently
keeps BCO experiment ahead in reward collection compared
to the SAC experiment. It is intriguing to observe that the
performance of SUP experiment remains consistently higher
than the other two experiments, making it the best performing
experiment in the single bus case.

Figures 4a and 4b depict the voltage performances for
Buses 5 and 11 in the multi-bus scenario. SUP shows frequent
voltage drops, reflecting poor voltage management across both
buses. However, both BCO and SAC experiments exhibit con-
sistent voltage control, without any grid code violations. Short
periods of voltage exceeding 1.02 p.u. reduce the rewards for
SAC and BCO, but their overall performance remains excellent
with performance improving with time. Figure 4c illustrates
reward behavior for the multi-bus case, where BCO shows
the best overall performance. SAC exhibits more resilient
behavior than BCO during the high solar irradiation period,
maintaining slightly higher rewards. BCO outperforms SAC
in collecting more rewards during the lower solar irradia-
tion period. Despite occasional voltage irregularities, BCO’s
performance highlights the effectiveness of using the ANN
model for initialization, which consistently gives it a head
start in reward collection, compared to SAC. Overall, BCO
outperforms SAC by collecting 10.97% higher rewards. SUP’s
performance, while strong in the single-bus case, falls short in
multi-bus control scenarios.

2) Sample Efficiency Comparison: A comparison between
SUP and BCO highlights the differences in sample efficiency
in Table III. For the comparison of SAC and BCO sample
efficiency, Figure 5 and Table V are used, as described in
Section III, Methodology.

Referring to Table III, SUP, using only 5000 data points
versus BCO’s 30000, is more sample efficient, likely due to
SAC’s enhanced exploration capability. The complexity of
BCO’s combined model requires a larger dataset to capture
patterns.

Considering (5), BCO shows a 20% steeper slope and
a 1.34% larger AUC than SAC during the initial training
phase (Figure 5), confirming its superior sample efficiency,
summarized in Table V.

3) Consistency and Robustness Assessment: Consistency is
evaluated by carrying out 4 repetitions for each experiment.
Figures 3 and 4 show an average of these four repetitions.
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TABLE V. COMPARISON OF SLOPE AND AUC IN THE FIRST 25
HOURS OF SAC AND BCO TRAINING.

Criteria SAC BCO % Difference
Slope -0.0020 -0.0024 20.00
AUC 22.45 22.75 1.34

(a) Voltages of Bus 5.

(b) Voltages of Bus 11.

(c) Rewards for Two Buses.

Figure 4. Comparison of Performances for Two Buses.

Figure 5. Sample Efficiency: Comparison of reward collection for initial 25
hours of training phase for SAC and BCO experiments.

Robustness against controlling two buses is evaluated based
on the criteria mentioned in Section III, Methodology .

All three experiments demonstrate a certain level of con-
sistency, although a minor inconsistency arises due to the
distributional shift caused by employing different seed values
for each of the four repetitions.

In terms of robustness in managing multiple buses, as-
sessed by the percentage of occurrences where voltage and
reward values stay within specified limits, BCO demonstrates
the highest resilience. It is followed by SAC, which shows
10.97% lower reward collection and then SUP, which, al-
though gradually becoming more robust over time, exhibits
lowest stability in multi-bus control due to frequent voltage
violations and extended learning times.

VI. CONCLUSIONS AND FUTURE WORK

In the single-bus control scenario, the SUP experiment ex-
hibits high sample efficiency for model by effectively utilizing
a smaller dataset, achieving strong reward collection and stable
voltage control. However, in multi-bus scenarios, it struggles
with voltage stability and reward collection, bringing attention
to limitations in handling more complex environments. Table
VI can be referred for a summary of the results.

TABLE VI. OVERVIEW OF THE RESULTS.

Evaluation Criteria SUP SAC BCO
Si

ng
le

B
us Voltage Stability ✓ ✓ ✓

Reward Collection ✓ × -
Sample Efficiency:
Model ✓ ×
SAC algorithm × ✓

Tw
o

B
us

es Voltage Stability × ✓ ✓

Reward gained - × ✓

The SAC experiment demonstrates reliable voltage stability
in both single- and multi-bus experiments but falls short in
reward collection compared to the other methods, due to its
weaker model initialization. Despite this, SAC’s algorithm
proves robust in managing complex grid conditions, although
at the cost of sample efficiency.

The BCO experiment emerges as the best-performing
method overall. It maintains superior voltage stability across
both scenarios, shows excellent sample efficiency for the SAC
algorithm and achieves higher reward collection, making it
the most effective solution for both simple and complex grid
control tasks.

Future research could enhance performance by exploring
advanced neural network architectures and alternative hyper-
parameter optimization methods. Additionally, modifying the
objective function to penalize voltage violations and conduct-
ing more repetitions could improve adherence to grid standards
and strengthen result confidence.
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