
A Design Pattern for Information Sharing in
Medical Emergency Response to CBRNE Events

Robert Dourandish
Quimba Software

San Mateo, United States
bob@quimba.com

Abstract - Responding to large-scale medical emergencies tends
to quickly overwhelm a single agency’s recourses and demand
multi-jurisdictional response. As the number of responder
organizations grows so does the importance and complexity of
effective, efficient, and timely information sharing. This is
particularly true in the context of operations that may demand
collaboration between military and civilian agencies, such as
responding to Chemical, Biological, Nuclear, or Explosive
(CBRNE) events. With the addition of digital infrastructure
and wireless data networks as intrinsic Incident Command
tools, a significant barrier to efficient information availability
and dissemination is the tiered, multi-domain access paradigm
that is typically employed by response agencies, particularly
military organizations. While treaty-based response protocols
can successfully create digital shared domains, information
sharing, particularly in an automated or software-driven
fashion, remains exigent. Fundamentally, the challenge belies
in the need for heterogeneous system infrastructures and
architectures to rapidly fuse in an adhoc fashion, a task that
raises wide ranging technical challenges. The cross-domain
access mitigation is particularly important in the context of
medical information since providing timely care has to be
balanced against patient privacy and, in events that may
involve biological or nuclear agents, against the best interest of
the community at large. Asynchronous Web Services offer a
practical solution to the problem of multi-organizational
information sharing in the context of time-critical medical
emergency response. However, asynchronous operations are
not a native component of the W3C standards and while a
number of approaches have been suggested, none meet the
security and privacy requirements of medical emergency
response. This paper describes a design pattern that addresses
many challenges of deploying web services in support of
information sharing processes across heterogeneous domains
in the particular context of the medical component of large-
scale multi-jurisdictional emergency response.

Keywords - CBRNE, Collaborative Emergency Medical
Response, Service Oriented Architecture, information Sharing

I. INTRODUCTION
Medical emergency response is inherently a

collaborative, multi-organizational operation where patients
are cared for in a continuum, by professionals who specialize
in various aspects of rescue, treatment, and rehabilitation. In
most emergency operations responding organizations belong
to the same jurisdiction and, as such, work and train together

on a regular basis. This level of exposure helps local
responders develop a familial sense about how to best
support each other to ensure a successful operation.
However, as the incidents grow beyond a single jurisdiction,
such as in the case of CBRNE events, the response operation
requires inclusion of mutual-aid resources that can only
relate to local responders via protocol [1].

Medical component of collaborative response to large

scale incidents is an arduous task due to a number of unique
properties. For example, while delivering rapid and
appropriate care is absolutely vital to victim survival, it must
be done in compliance with privacy laws in the response
jurisdiction. Furthermore, a complex set of legal and case
laws stipulate information dissemination guidelines to other
sources, such as the press or law enforcement agencies, that
have a legitimate mandate to protect the community. The
latter is particularly relevant in incidents involving biological
agents with high risk of spreading through human contact,
when the need to identify and locate specific individuals may
be the key to a timely or effective response. Other unique
properties of medical emergency response are the incident
tempo that can range from minutes to months; impact on a
single individual or the global citizenry; The scope of the
incident that can quickly create a chain reaction straining
social services; and the secondary societal impact that can
inflict severe financial damage to industries such as travel.

Given these attributes, a key success factor in effective

large scale medical emergency response is managing
information distribution and access amongst the myriad of
responders and stakeholder. Due to the increased availability
of reliable and persistent digital infrastructure in emergency
operations, automated information sharing holds the promise
to offer significant benefits in joint operations [2][3][4].

Here we describe a design pattern that eliminates much

of the a priori work required in implementing digital data
sharing eco-systems. In particular, it will obviate much of the
treaty-based agreements in information sharing, such as
common servers and data formats. This paper first reviews
the background of our research as well as the relevant related
work to date. We then focus on the technical implementation
details.

164

eTELEMED 2011 : The Third International Conference on eHealth, Telemedicine, and Social Medicine

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-119-9

II. RELATED WORK
For the past several years, we have been researching

massively scaled, multi-jurisdictional, automated
information sharing infrastructures, with a focus on
emergency response. The discipline is a uniquely
challenging example of a time-sensitive, complex,
distributed, and networked eco-system because of the
extremely broad range of competencies, technologies and
resources of network participants. Therefore, as response
operations grow in scale, the task of maintaining a shared
informational framework becomes increasingly difficult.

While it is possible to create treaty-based, umbrella

digital shared domains for a group of response organizations,
a Service Oriented Architecture (SOA) is the only logical
choice to create a common operational environment that
does not require prior technical or policy agreements
between all participants [2][5]. Furthermore, the emergency
response domain has a number of properties that ideally fit
Service Oriented Architecture as the architectural
underpinning of a field-deployable information management
framework. A number of these properties are:

• Domain is extremely fragmented, with participants

having a wide range of capabilities, training, and
resources;

• There are key regulations in the US and Europe that
limit how health care data is managed and shared.
The US Health Information Portability and
Accountability Act (HIPAA) regulates data sharing
across domains (i.e., police and hospital, or state and
federal) as well as temporally along the continuum
of care;

• In most cases response must be rapid and decisive,

with minutes making the difference between life and
death; and finally

• There is frequent need to consult with specialists and

other experts on cases such as poisoning or CBRNE
response.

The SOA is the only approach that would allow all

responders to use their existing infrastructures while
cooperating via the wide-area connectivity afforded by the
Internet. Using IP-based networks inside the firewall, also a
common practice, allowed us to implement the services
without the need to distinguish where they were running
(e.g., inside or outside an organization’s network) and secure
the communication using standard strategies such as creating
a Virtual Private Network (VPN) to support each incident.

Employing a Service-Oriented Architecture also solves

the challenge of duplicating the infrastructure underpinnings,
particularly with respect to adhoc coalitions that are formed
in response to specific incidents. Service Oriented
Architecture alone, however, does not address the single,

most prominent attribute in emergency response,
Asynchronicity, which is amplified exponentially as the
number of responders increases. Asynchronous operations,
however, are not a native component of the W3C standards.
This paper describes a Design Pattern that implements a
transaction-based, secured, verifiable, and auditable
extension to the W3C Web Services Standards.

Exploiting technology in medical emergency response is
not a new research topic. The field of practice largely grew
out of the desire to reduce response times as detailed in
[3][4], with a current survey of the field presented in [6].

In terms of CBRNE response, most jurisdictions use

technology to support high-risk response operations. Almost
all agencies also carry some variation of sensors to detect
presence of CBRN agents on the scene and there is a desire
to couple wireless-capable sensors with real-time analysis.
Numerous modeling and simulations activities are currently
underway to support medical response. Noteworthy in
context are EPA’s MENTOR-2E [7], a collection of models
that use an integrated, mechanistically consistent source-to-
dose-to-response framework to quantify inhalation exposure
and doses resulting from emergency events; the Integrated
Weapons of Mass Destruction Toolkit (IMWDT) that is used
to support our research [8], and the DHS effort to create
models of bio-terrorism risk assessment [9]. Active research
also includes study of Time Critical Information Services
[10]. Furthermore, research is in progress to develop
methods of introducing domain expertise in emergency
response, for example via Ontology [11][12]. Given the
significant collaborative nature of CBRNE response, and
large-scale emergency response operations in general,
relevant research also includes collaboration and cross-
domain information sharing. Of particular relevance are
efforts reported in [12], investigating use of Ontologies as
knowledge representation instrument in the emergency
response domain to enhance automated information sharing.
Finally, CBRNE events almost always require multi-
jurisdictional response, possibly including support from the
military. Research in Command and Control in multi-
organizational mission operations includes work reported in
[6][11][12].

III. DESIGN PATTERN
This pattern is designed to support tactical operations

between networked cooperative participants. As visually
depicted in Figure 1, the pattern has two major components:
Nodes and Transaction Object. A node, synonymous with a
“server”, is a collection of web services that are cooperating
in support of a mission. The transaction object is used to
create and maintain a persistent state throughout the
networked environment and to exchange information.

Figure 1: Communications Pattern

165

eTELEMED 2011 : The Third International Conference on eHealth, Telemedicine, and Social Medicine

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-119-9

The key is that the node must support a default
connection service that accepts a transaction as the only
argument. The default service is one that is activated when
the node is referenced using a normal http or https reference.
In networks with high security considerations, the
connection service may be “hidden” behind a specific
socket 1 , and the network may further require human
intervention to receive the connection specifications. The
node itself may be architected using any number of patterns
that utilize an Edge Service. A sample pattern is shown in
Figure 2. As depicted, the transaction arrives, (1), and is
received by the node’s Edge Service, (2). The service will
immediately off-load the transaction to a staging area, (3),
where it will wait for processing. The rapid off-load enables
significantly higher performance by the Edge Service,
particularly if connection is made over UDP 2 . In our
implementation the staging area is a directory on disk. While
the staging area could be implemented in a database, we
found the overhead of database write operations an
unnecessary burden in this specific case.

Figure 2: Components

In our implementation redundancy, not shown in figure, was
provided via RAID-0 (mirroring) of disks and audit trail, also

1 Security operations are generally easier when using a
single Edge Service vs. a directory approach that publishes
numerous services supported by the node. This, however,
does not reduce the security burden beyond easing
connection security issues.
2 For completeness: While UDP connections are not lossless
operations, they are the ideal connection type for peer-to-
peer operations since the server will not need to maintain a
persistent connection. This is property is particularly useful
in massively scaled, peer-to-peer networks, such as
emergency response where the nature of an incident will
determine the response network and a-priori network design
is fundamentally futile.

not shown, can be implemented using the disk logs. A post
process, (4), will loop over the staging area. New
transactions are pulled off, (4a), from the staging area
written, (4b), to an operational database, (5). The post
process may perform additional security or assurance
operations before inserting the transaction in the database.
Note that, as discussed in the Section entitled ‘Transaction
Processing’, the transaction may include encrypted
components. A third process, a scheduler, (6), loops over the
operational database. This process will examine, (6a), each
transaction and dispatches it to an appropriate internal
service for processing. Based on results, the system may
update the transaction in the database, (6b), may place a new
transaction in the staging area for re-posting, (6c), or may
send an outbound transaction, (6d), to the edge service, (2).
This outbound transaction is, most likely, either an
acknowledgement or response to a transaction and is sent to
the originating node, (7). Since this process is duplicated on
each node, a collective system state is established and
maintained.

A. Database Tables
Two database tables are used in support of transaction

management; a Queue table, and a Transaction History table.
Both have the same schema, shown in Table 1, that matches
the transaction object.

TABLE 1: TRANSACTION TABLE

Column Meaning
TID Transaction ID (originator)
TRefID Transaction ID (recipient)
Tchannel
Priority

Self-explanatory

Ttype See Transactions Processing
Tcode See Transaction Processing
Tformat TXT, XML, Binary, Etc.
Tlength Length of this Transaction
TinitDate Self-explanatory
TlastTouched
Date

Self-explanatory

TcaseInfo Additional Reference Number or
designator, if needed.

TCRC Self-explanatory
Treserved Self-explanatory
Tdata Data Segment. Variable length

See Transactions Processing
Tsender Self-explanatory
Ttarget Self-explanatory
TStatus Current Status.

See Transactions Processing.

To ease implementation and improve performance the

Queue Table can further be sub-divided into three tables,
Low Priority Queue (LPQ), Medium Priority Queue (MPQ)
and High Priority Queue (HPQ).

166

eTELEMED 2011 : The Third International Conference on eHealth, Telemedicine, and Social Medicine

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-119-9

B. Transaction Processing
As compared with traditional client-server, transaction

processing in a distributed environment and dynamic peer-
to-peer connection is somewhat more complex.

As with a client-server environment, a Transaction ID,

(TID), is assigned to each transaction at initiation time by
the node that is acting as the “sender”. The TID alone,
however, is not enough of a tracking instrument in a
distributed system since it is not possible to guarantee
system-wide uniqueness. To address the issue the pattern
employs a second field, a Transaction Reference ID,
(TrefID), that is assigned by the target of the transaction, or
the node that is acting as a “recipient”. The combination is
guaranteed to uniquely identify the transaction system-wide.
Actions are requested through the combination of
Transaction Type (Ttype), and Transaction Code (Tcode)
determines the action being requested, by the sender or an
acknowledgement or reply to the request, by the recipient.
Transaction codes and types are shared by all nodes and are
part of the foundational core system that is shown Figure 2,
and a sample code is shown in below.

// GENERAL STATUS CODES (00)
int GENINIT=0x0000; //init
int GENFINOK=0x0001; //finished w/o err
int GENFINERR=0x0002; //finished w/err
int GENUNRESP=0x0003; //unreponsive proc
int GENORHPAN=0x0004; //orphaned process
int GENWAIT=0x0005; //Waiting.
int GENREADY=0x0006; //txn ready to run
int GENPRIHOLD=0x0095; //priority hold
int GENADMINHOLD =0x0096; //adm hold
int GENSECHOLD=0x0097; // security hold

//DAT STATUS CODES (02)
int DATBegin=0x0200; //query begin
int DATEnd=0x0299; //End of Data
int DATWait=0x0201; //Waiting for data
int DATACK=0x0202; //Data-related ACK
int DATQuery=0x0203; //new query
int DATSend=0x0204; //Ready for data
int DATReceive=0x0205; //Rdy to send

All necessary parameters are transmitted through the
Transaction Data (Tdata) component of the transaction
object. This component can be encrypted. The ability to
encrypt data and parameters, coupled with the singular edge
service, substantially addresses many of thorny cross-domain
data access and information sharing issues – this is simply
accomplished by the intermediary node, placed between
higher and lower echelon nodes, duplicating segments of an
incoming transaction, then forming a new transaction and
submitting that transaction for processing to a lower echelon
node for processing. The two transactions can be related by
utilizing either the Transaction Case Info (TcaseInfo) field,
or as another encrypted element in the data component of the
transaction (Tdata).

C. Transaction History and Audit Trail
A Database Trigger, shown below, accurately manages

the transaction history table.

create trigger txnq after insert on txnhistory
for each row begin
delete from lpq where tid = new.tid; -- delete it if exists
insert into lpq values (new.TID,…);
end;

A similar trigger is implemented to execute after update.

The net effect of the triggers is that a copy of the old
transaction (before the queue is updated) is inserted into the
Transaction History Table and the entery in the Queue
Table, e.g., LPQ, is overwritten with the most current status.
Querying the transaction history table on a single node
(based on the TID) will provide an audit trail on that node.
To produce a system-wide audit trail all nodes must be
queried.

D. Scheduling
As shown in Figure 2, a scheduler loops over the

transaction queue(s) – tables – in the production database. If
the transaction status (TStatus) is not any of the hold status
codes, i.e., priority, administrative, or security holds, the
transaction will be dispatched, as discussed in the next
Section. The scheduler will update the status code before
dispatch. This act creates an entry in the transaction history
table, providing an audit trail. The Scheduler has a discrete
component that will dispatch – execute – code that perform
tasks necessary for, or requested by, other nodes via the
transaction object.

E. Dispatch
Tasks, i.e., responding to a request for data, are

accomplished by dispatching the transaction to a handler
code. Handler codes do not have to be determined in advance
and a default handler is available as part of the core
foundation. Each handler may be a Web Service inside the
fire wall (behind the Edge Service) and is not visible to
outside callers. Handlers can also be implemented in
different forms, such as libraries or class that are loaded or
linked dynamically at run time. This allows each node full
capability to customize handling of each transaction.

Handlers are specified via a database table in the

production database. This table can be stored in a separate or
more secure database, or be encrypted for additional security.
Table 2 shows the schema for the handler table in the
production database.

TABLE 2: HANDLER TABLE SCHEMA

Column Meaning
CMDGroup Transaction Type
Handler Handler Name
CallType Handler Type

167

eTELEMED 2011 : The Third International Conference on eHealth, Telemedicine, and Social Medicine

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-119-9

Each handler is tied to a transaction type via the
Command Group, (CMDGroup), field. The Handler Name,
(Handler), specified the programming name for the handler.
The final database column, (CallType), specifies the specific
handler type, for example a servlet, a class, or a dynamic
library. An actual sample of the table is shown in Table 3.
Note the relationship to the sample code above.

TABLE 3: HANDLER TABLE

CMDGroup Handler CallType
CNC C2 1
DAT dataManager 1
GENACK GENACKClass 0
ICH InfoChain 1
INIT INITClass 0
RDR fileReader 1

The dispatcher follows a relatively simple algorithm: it
determines, based on the transaction type, which handler to
invoke. It then applies the appropriate call type sequence
based on the information in the handler table (CallType), and
passes the entire transaction object to the handler code.
Nothing else is passed on, expected, or accepted as a
parameter. This approach drastically simplifies not only
management and maintenance of the database support for
scheduling and dispatch operations, but also measurably
reduces the complexity of extending the environment
through custom code.

IV. CONCLUSION AND FUTURE WORK
Asynchronous operations are the cornerstone of all but

the simplest of collaborative tasks. As such, they are an
important component of joint operations, particularly in
specialized, non-persistent or mission-based tasks such as
military-civilian disaster response. Unfortunately,
asynchronous operations are not part of the W3C standards
specifications for web services. In this paper we discussed a
transaction-based design pattern to implement massively
scalable, cooperating asynchronous web services. The
pattern was developed and tested as part of a research project
focused in the military-civilian information sharing and has,
thus far, proven functional, stable, and consistent.
Consistency is a large component of a useful pattern since
building extensive exceptions will eventually render the
pattern useless. We have not thus far encountered a situation
where the pattern needed to be augmented or mediated
through exception processing. Our future work in this regard
is now shifting to application of the pattern to additional
domains such as simulation and training.

ACKNOWLEDGMENT
The various efforts culminating in this paper were

supported by a number of small business research grants
awarded by various United Sates federal agencies over a five
year period. Specific details of the awards, and their
contribution to this research, may be obtained by contacting
the author.

The views presented in this paper are those of the author

and do not necessarily reflect the opinion of the funding
agencies or the United States government.

REFERENCES
[1] J. Barbera, and A. Macintyre, “Medical Surge Capacity and

Capability: A Management Sytem for Integrating Medical and Health
Resources During Large Scale Emgergencies”, US Department of
Health and Human Services, 2nd Edition, pp. ix-xii, September 2007.

[2] R. Dourandish, N. Zumel, and M. Manno, “A Design Pattern for
Asynchronous Web Services in Secure, Cross-Domain, Information
Sharing,” Proc. MILCOM 2007, Orlando, FL, 2007.

[3] B. Schooley, T. Horan, and M. Marich, “User Perspectives on the
Minnesota Inter-organizational Mayday Information System,” in
AMIS Monograph Series: Volume on Information Systems for
Emergency Management, Van De Valle and Turoff, Eds.: IDEA
Press, 2008.

[4] J. Peters, and B. Hall, “Assessment of ambulance response
performance using a geographic information system,” Social Science
and Medicine, vol. 49, 1999.

[5] H. Adams, “Asynchronous operations and Web services, Part 1 and
2,” IBM Systems Journal, available on ibm.com/developer, Last
accessed December 2010.

[6] B. Schooley, T. Horan, and M. Marich, “Integrated Patient Health
Information Systems to Improve Traffic Crash Emergency Response
and Treatment,” Proc. 42nd Hawaii International Conference on
System Sciences, 2009.

[7] Cuncil for Regularory Environmental Modeling, Model Report, on
cfpub.epa.gov/crem/knowledge_base/crem_report.cfm?deid=193583,
last accessed December 2010.

[8] R. Dourandish, N. Zumel, and M. Manno, “Automated Military-
Civilian Information Sharing,” Proc. 2nd IEEE conference on
Situation Management, MILCOM 2006, Washington, D.C., 2006.

[9] The National Research Council,” Department of Homeland Security
Bioterrorism Risk Assessment: A Call for Change,” National
Academies Press, ISBN 0309120292, 2008.

[10] T. Horan, and B. Schooley, “Time-Critical Information Services”,
Communications of the ACM, 50, 3, 73-78, 2007.

[11] M. Turoff, C. White, L. Plotnick, and S. Hiltz, “Dynamic Emergency
Response for Large Scale Decision Making in Extreme Events,” Proc.
of the 5th International ISCRAM Conference, Washington, DC, 2008.

[12] R. Dourandish, N. Zumel, and M. Manno, “A Design Pattern for
Automatic Generation of Web Services from Domain Ontologies,”
Proc. 3rd International Conference on Web Information Systems
Technology (WEBIST), Barcelona, 2005.

168

eTELEMED 2011 : The Third International Conference on eHealth, Telemedicine, and Social Medicine

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-119-9

	I. Introduction
	II. Related Work
	III. Design Pattern
	A. Database Tables
	B. Transaction Processing
	C. Transaction History and Audit Trail
	D. Scheduling
	E. Dispatch

	IV. Conclusion and Future Work
	Acknowledgment
	References

