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Abstract - Responding to large-scale medical emergencies tends 
to quickly overwhelm a single agency’s recourses and demand 
multi-jurisdictional response. As the number of responder 
organizations grows so does the importance and complexity of 
effective, efficient, and timely information sharing. This is 
particularly true in the context of operations that may demand 
collaboration between military and civilian agencies, such as 
responding to Chemical, Biological, Nuclear, or Explosive 
(CBRNE) events. With the addition of digital infrastructure 
and wireless data networks as intrinsic Incident Command 
tools, a significant barrier to efficient information availability 
and dissemination is the tiered, multi-domain access paradigm 
that is typically employed by response agencies, particularly 
military organizations. While treaty-based response protocols 
can successfully create digital shared domains, information 
sharing, particularly in an automated or software-driven 
fashion, remains exigent. Fundamentally, the challenge belies 
in the need for heterogeneous system infrastructures and 
architectures to rapidly fuse in an adhoc fashion, a task that 
raises wide ranging technical challenges. The cross-domain 
access mitigation is particularly important in the context of 
medical information since providing timely care has to be 
balanced against patient privacy and, in events that may 
involve biological or nuclear agents, against the best interest of 
the community at large. Asynchronous Web Services offer a 
practical solution to the problem of multi-organizational 
information sharing in the context of time-critical medical 
emergency response. However, asynchronous operations are 
not a native component of the W3C standards and while a 
number of approaches have been suggested, none meet the 
security and privacy requirements of medical emergency 
response. This paper describes a design pattern that addresses 
many challenges of deploying web services in support of 
information sharing processes across heterogeneous domains 
in the particular context of the medical component of large-
scale multi-jurisdictional emergency response.  

Keywords - CBRNE, Collaborative Emergency Medical 
Response,  Service Oriented Architecture,  information Sharing 

I.  INTRODUCTION 
Medical emergency response is inherently a 

collaborative, multi-organizational operation where patients 
are cared for in a continuum, by professionals who specialize 
in various aspects of rescue, treatment, and rehabilitation. In 
most emergency operations responding organizations belong 
to the same jurisdiction and, as such, work and train together 

on a regular basis. This level of exposure helps local 
responders develop a familial sense about how to best 
support each other to ensure a successful operation. 
However, as the incidents grow beyond a single jurisdiction, 
such as in the case of CBRNE events, the response operation 
requires inclusion of mutual-aid resources that can only 
relate to local responders via protocol [1]. 

 
Medical component of collaborative response to large 

scale incidents is an arduous task due to a number of unique 
properties. For example, while delivering rapid and 
appropriate care is absolutely vital to victim survival, it must 
be done in compliance with privacy laws in the response 
jurisdiction. Furthermore, a complex set of legal and case 
laws stipulate information dissemination guidelines to other 
sources, such as the press or law enforcement agencies, that 
have a legitimate mandate to protect the community. The 
latter is particularly relevant in incidents involving biological 
agents with high risk of spreading through human contact, 
when the need to identify and locate specific individuals may 
be the key to a timely or effective response. Other unique 
properties of medical emergency response are the incident 
tempo that can range from minutes to months; impact on a 
single individual or the global citizenry; The scope of the 
incident that can quickly create a chain reaction straining 
social services; and the secondary societal impact that can 
inflict severe financial damage to industries such as travel.  

 
Given these attributes, a key success factor in effective 

large scale medical emergency response is managing 
information distribution and access amongst the myriad of 
responders and stakeholder. Due to the increased availability 
of reliable and persistent digital infrastructure in emergency 
operations, automated information sharing holds the promise 
to offer significant benefits in joint operations [2][3][4]. 

 
Here we describe a design pattern that eliminates much 

of the a priori work required in implementing digital data 
sharing eco-systems. In particular, it will obviate much of the 
treaty-based agreements in information sharing, such as 
common servers and data formats. This paper first reviews 
the background of our research as well as the relevant related 
work to date. We then focus on the technical implementation 
details.  
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II. RELATED WORK 
For the past several years, we have been researching 

massively scaled, multi-jurisdictional, automated 
information sharing infrastructures, with a focus on 
emergency response. The discipline is a uniquely 
challenging example of a time-sensitive, complex, 
distributed, and networked eco-system because of the 
extremely broad range of competencies, technologies and 
resources of network participants. Therefore, as response 
operations grow in scale, the task of maintaining a shared 
informational framework becomes increasingly difficult. 

 
While it is possible to create treaty-based, umbrella 

digital shared domains for a group of response organizations, 
a Service Oriented Architecture (SOA) is the only logical 
choice to create a common operational environment that 
does not require prior technical or policy agreements 
between all participants [2][5]. Furthermore, the emergency 
response domain has a number of properties that ideally fit 
Service Oriented Architecture as the architectural 
underpinning of a field-deployable information management 
framework. A number of these properties are: 

 
• Domain is extremely fragmented, with participants 

having a wide range of capabilities, training, and 
resources; 
 

• There are key regulations in the US and Europe that 
limit how health care data is managed and shared. 
The US Health Information Portability and 
Accountability Act (HIPAA) regulates data sharing 
across domains (i.e., police and hospital, or state and 
federal) as well as temporally along the continuum 
of care; 

 
• In most cases response must be rapid and decisive, 

with minutes making the difference between life and 
death; and finally 

 
• There is frequent need to consult with specialists and 

other experts on cases such as poisoning or CBRNE 
response. 

 
The SOA is the only approach that would allow all 

responders to use their existing infrastructures while 
cooperating via the wide-area connectivity afforded by the 
Internet. Using IP-based networks inside the firewall, also a 
common practice, allowed us to implement the services 
without the need to distinguish where they were running 
(e.g., inside or outside an organization’s network) and secure 
the communication using standard strategies such as creating 
a Virtual Private Network (VPN) to support each incident. 

 
Employing a Service-Oriented Architecture also solves 

the challenge of duplicating the infrastructure underpinnings, 
particularly with respect to adhoc coalitions that are formed 
in response to specific incidents. Service Oriented 
Architecture alone, however, does not address the single, 

most prominent attribute in emergency response, 
Asynchronicity, which is amplified exponentially as the 
number of responders increases. Asynchronous operations, 
however, are not a native component of the W3C standards. 
This paper describes a Design Pattern that implements a 
transaction-based, secured, verifiable, and auditable 
extension to the W3C Web Services Standards. 
 

Exploiting technology in medical emergency response is 
not a new research topic. The field of practice largely grew 
out of the desire to reduce response times as detailed in 
[3][4], with a current survey of the field presented in [6]. 

 
In terms of CBRNE response, most jurisdictions use 

technology to support high-risk response operations. Almost 
all agencies also carry some variation of sensors to detect 
presence of CBRN agents on the scene and there is a desire 
to couple wireless-capable sensors with real-time analysis. 
Numerous modeling and simulations activities are currently 
underway to support medical response. Noteworthy in 
context are EPA’s MENTOR-2E [7], a collection of models 
that use an integrated, mechanistically consistent source-to-
dose-to-response framework to quantify inhalation exposure 
and doses resulting from emergency events; the Integrated 
Weapons of Mass Destruction Toolkit (IMWDT) that is used 
to support our research [8], and the DHS effort to create 
models of bio-terrorism risk assessment [9]. Active research 
also includes study of Time Critical Information Services 
[10]. Furthermore, research is in progress to develop 
methods of introducing domain expertise in emergency 
response, for example via Ontology [11][12]. Given the 
significant collaborative nature of CBRNE response, and 
large-scale emergency response operations in general, 
relevant research also includes collaboration and cross-
domain information sharing. Of particular relevance are 
efforts reported in [12], investigating use of Ontologies as 
knowledge representation instrument in the emergency 
response domain to enhance automated information sharing. 
Finally, CBRNE events almost always require multi-
jurisdictional response, possibly including support from the 
military. Research in Command and Control in multi-
organizational mission operations includes work reported in 
[6][11][12].  

III. DESIGN PATTERN 
This pattern is designed to support tactical operations 

between networked cooperative participants. As visually 
depicted in Figure 1, the pattern has two major components: 
Nodes and Transaction Object. A node, synonymous with a 
“server”, is a collection of web services that are cooperating 
in support of a mission. The transaction object is used to 
create and maintain a persistent state throughout the 
networked environment and to exchange information.

 

 
Figure 1: Communications Pattern 
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The key is that the node must support a default 
connection service that accepts a transaction as the only 
argument. The default service is one that is activated when 
the node is referenced using a normal http or https reference. 
In networks with high security considerations, the 
connection service may be “hidden” behind a specific 
socket 1 , and the network may further require human 
intervention to receive the connection specifications. The 
node itself may be architected using any number of patterns 
that utilize an Edge Service. A sample pattern is shown in 
Figure 2. As depicted, the transaction arrives, (1), and is 
received by the node’s Edge Service, (2). The service will 
immediately off-load the transaction to a staging area, (3), 
where it will wait for processing. The rapid off-load enables 
significantly higher performance by the Edge Service, 
particularly if connection is made over UDP 2 . In our 
implementation the staging area is a directory on disk. While 
the staging area could be implemented in a database, we 
found the overhead of database write operations an 
unnecessary burden in this specific case. 

 

 
Figure 2: Components 

 
In our implementation redundancy, not shown in figure, was 
provided via RAID-0 (mirroring) of disks and audit trail, also 

                                                           
1 Security operations are generally easier when using a 
single Edge Service vs. a directory approach that publishes 
numerous services supported by the node. This, however, 
does not reduce the security burden beyond easing 
connection security issues. 
2 For completeness: While UDP connections are not lossless 
operations, they are the ideal connection type for peer-to-
peer operations since the server will not need to maintain a 
persistent connection. This is property is particularly useful 
in massively scaled, peer-to-peer networks, such as 
emergency response where the nature of an incident will 
determine the response network and a-priori network design 
is fundamentally futile.  

not shown, can be implemented using the disk logs. A post 
process, (4), will loop over the staging area. New 
transactions are pulled off, (4a), from the staging area 
written, (4b), to an operational database, (5). The post 
process may perform additional security or assurance 
operations before inserting the transaction in the database. 
Note that, as discussed in the Section entitled ‘Transaction 
Processing’, the transaction may include encrypted 
components. A third process, a scheduler, (6), loops over the 
operational database. This process will examine, (6a), each 
transaction and dispatches it to an appropriate internal 
service for processing. Based on results, the system may 
update the transaction in the database, (6b), may place a new 
transaction in the staging area for re-posting, (6c), or may 
send an outbound transaction, (6d), to the edge service, (2). 
This outbound transaction is, most likely, either an 
acknowledgement or response to a transaction and is sent to 
the originating node, (7). Since this process is duplicated on 
each node, a collective system state is established and 
maintained.  

A. Database Tables 
Two database tables are used in support of transaction 

management; a Queue table, and a Transaction History table. 
Both have the same schema, shown in Table 1, that matches 
the transaction object.  

 
TABLE 1: TRANSACTION TABLE 

Column Meaning 
TID Transaction ID (originator) 
TRefID Transaction ID (recipient) 
Tchannel 
Priority 

Self-explanatory 

Ttype See Transactions Processing 
Tcode See Transaction Processing 
Tformat TXT, XML, Binary, Etc. 
Tlength Length of this Transaction 
TinitDate Self-explanatory 
TlastTouched 
Date 

Self-explanatory 

TcaseInfo Additional Reference Number or 
designator, if needed. 

TCRC Self-explanatory 
Treserved Self-explanatory 
Tdata Data Segment. Variable length 

See Transactions Processing 
Tsender Self-explanatory 
Ttarget Self-explanatory 
TStatus Current Status. 

See Transactions Processing. 
 
To ease implementation and improve performance the 

Queue Table can further be sub-divided into three tables, 
Low Priority Queue  (LPQ), Medium Priority Queue (MPQ) 
and High Priority Queue (HPQ). 
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B. Transaction Processing 
As compared with traditional client-server, transaction 

processing in a distributed environment and dynamic peer-
to-peer connection is somewhat more complex.  

 
As with a client-server environment, a Transaction ID, 

(TID), is assigned to each transaction at initiation time by 
the node that is acting as the “sender”. The TID alone, 
however, is not enough of a tracking instrument in a 
distributed system since it is not possible to guarantee 
system-wide uniqueness. To address the issue the pattern 
employs a second field, a Transaction Reference ID, 
(TrefID), that is assigned by the target of the transaction, or 
the node that is acting as a “recipient”. The combination is 
guaranteed to uniquely identify the transaction system-wide. 
Actions are requested through the combination of 
Transaction Type (Ttype), and Transaction Code (Tcode) 
determines the action being requested, by the sender or an 
acknowledgement or reply to the request, by the recipient. 
Transaction codes and types are shared by all nodes and are 
part of the foundational core system that is shown Figure 2, 
and a sample code is shown in below. 

 
// GENERAL STATUS CODES (00) 
int GENINIT=0x0000; //init 
int GENFINOK=0x0001; //finished w/o err 
int GENFINERR=0x0002; //finished w/err 
int GENUNRESP=0x0003; //unreponsive proc 
int GENORHPAN=0x0004; //orphaned process 
int GENWAIT=0x0005; //Waiting.  
int GENREADY=0x0006; //txn ready to run 
int GENPRIHOLD=0x0095; //priority hold 
int GENADMINHOLD =0x0096; //adm hold 
int GENSECHOLD=0x0097; // security hold 

 
//DAT STATUS CODES (02) 
int DATBegin=0x0200; //query begin 
int DATEnd=0x0299; //End of Data 
int DATWait=0x0201; //Waiting for data  
int DATACK=0x0202; //Data-related ACK  
int DATQuery=0x0203; //new query  
int DATSend=0x0204; //Ready for data  
int DATReceive=0x0205; //Rdy to send 
 

All necessary parameters are transmitted through the 
Transaction Data (Tdata) component of the transaction 
object. This component can be encrypted. The ability to 
encrypt data and parameters, coupled with the singular edge 
service, substantially addresses many of thorny cross-domain 
data access and information sharing issues – this is simply 
accomplished by the intermediary node, placed between 
higher and lower echelon nodes, duplicating segments of an 
incoming transaction, then forming a new transaction and 
submitting that transaction for processing to a lower echelon 
node for processing. The two transactions can be related by 
utilizing either the Transaction Case Info (TcaseInfo) field, 
or as another encrypted element in the data component of the 
transaction (Tdata).  

 

C. Transaction History and Audit Trail 
A Database Trigger, shown below, accurately manages 

the transaction history table. 
 
create trigger txnq after insert on txnhistory 
for each row begin 
delete from lpq where tid = new.tid; -- delete it if exists 
insert into lpq values (new.TID,…); 
end; 
 
A similar trigger is implemented to execute after update. 

The net effect of the triggers is that a copy of the old 
transaction (before the queue is updated) is inserted into the 
Transaction History Table and the entery in the Queue 
Table, e.g., LPQ, is overwritten with the most current status. 
Querying the transaction history table on a single node 
(based on the TID) will provide an audit trail on that node. 
To produce a system-wide audit trail all nodes must be 
queried. 

D. Scheduling 
As shown in Figure 2, a scheduler loops over the 

transaction queue(s) – tables – in the production database. If 
the transaction status (TStatus) is not any of the hold status 
codes, i.e., priority, administrative, or security holds, the 
transaction will be dispatched, as discussed in the next 
Section. The scheduler will update the status code before 
dispatch. This act creates an entry in the transaction history 
table, providing an audit trail. The Scheduler has a discrete 
component that will dispatch – execute – code that perform 
tasks necessary for, or requested by, other nodes via the 
transaction object.  

E. Dispatch 
Tasks, i.e., responding to a request for data, are 

accomplished by dispatching the transaction to a handler 
code. Handler codes do not have to be determined in advance 
and a default handler is available as part of the core 
foundation. Each handler may be a Web Service inside the 
fire wall (behind the Edge Service) and is not visible to 
outside callers.  Handlers can also be implemented in 
different forms, such as libraries or class that are loaded or 
linked dynamically at run time. This allows each node full 
capability to customize handling of each transaction. 

 
Handlers are specified via a database table in the 

production database. This table can be stored in a separate or 
more secure database, or be encrypted for additional security. 
Table 2 shows the schema for the handler table in the 
production database. 

 
TABLE 2: HANDLER TABLE SCHEMA 

Column Meaning 
CMDGroup Transaction Type 
Handler Handler Name 
CallType Handler Type 
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Each handler is tied to a transaction type via the 
Command Group, (CMDGroup), field. The Handler Name, 
(Handler), specified the programming name for the handler. 
The final database column, (CallType), specifies the specific 
handler type, for example a servlet, a class, or a dynamic 
library. An actual sample of the table is shown in Table 3. 
Note the relationship to the sample code above. 
 

TABLE 3: HANDLER TABLE 

CMDGroup Handler CallType 
CNC C2 1 
DAT dataManager 1 
GENACK GENACKClass 0 
ICH InfoChain 1 
INIT INITClass 0 
RDR fileReader 1 
 

The dispatcher follows a relatively simple algorithm: it 
determines, based on the transaction type, which handler to 
invoke. It then applies the appropriate call type sequence 
based on the information in the handler table (CallType), and 
passes the entire transaction object to the handler code. 
Nothing else is passed on, expected, or accepted as a 
parameter. This approach drastically simplifies not only 
management and maintenance of the database support for 
scheduling and dispatch operations, but also measurably 
reduces the complexity of extending the environment 
through custom code.  

 

IV. CONCLUSION AND FUTURE WORK 
Asynchronous operations are the cornerstone of all but 

the simplest of collaborative tasks. As such, they are an 
important component of joint operations, particularly in 
specialized, non-persistent or mission-based tasks such as 
military-civilian disaster response. Unfortunately, 
asynchronous operations are not part of the W3C standards 
specifications for web services. In this paper we discussed a 
transaction-based design pattern to implement massively 
scalable, cooperating asynchronous web services. The 
pattern was developed and tested as part of a research project 
focused in the military-civilian information sharing and has, 
thus far, proven functional, stable, and consistent. 
Consistency is a large component of a useful pattern since 
building extensive exceptions will eventually render the 
pattern useless. We have not thus far encountered a situation 
where the pattern needed to be augmented or mediated 
through exception processing. Our future work in this regard 
is now shifting to application of the pattern to additional 
domains such as simulation and training. 
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