
A Framework for Fast Development of Customized Telehealth Applications

Baptiste Alcalde

eHealth Institut

FH JOANNEUM

Graz, Austria

baptiste.alcalde@fh-joanneum.at

Lukas Wechtitsch

Independent

Graz, Austria

wechtitsch.lukas@gmail.com

Abstract — Telehealth has the potential to enhance health

services and lower their costs, particularly in remote regions.

Most telehealth applications in the literature and on the market

try to fulfill a similar set of functionalities. These functionalities

are identified and compared in several theoretical frameworks.

However, to our knowledge, there are no practical

implementations of such frameworks. An easy-to-use

framework to generate customizable telehealth applications

would be beneficial for health care providers, particularly for

small or middle-sized providers who lack the technical

knowledge or/and the budget for that. In this paper, we design

and develop a framework enabling health care providers the

fast development and extension of such applications.

Keywords – telemedicine; teletherapy; framework; personal

ehealth.

I. INTRODUCTION

Telemedicine and telehealth are defined as “the use of

information and communication technologies (ICTs) to solve

health problems, especially for people living in remote and

underserviced areas” [14]. Various services can be offered by

telemedicine, such as symptom assessments or the provision

of information about medications [6].

The range of new telehealth applications, including

changes and innovations in the digital health sector resulting

from the COVID-19 pandemic, significantly increased [27].

Not only larger, mostly government or institutional providers

but also private health providers in various specialization

fields need to resort to telehealth solutions.

However, independently of the specialization field, these

solutions share several basic functionalities [6]. For instance,

the solution must enable patient management, and remote

communication options.

In [31], a systematic review compares frameworks for the

implementation of telehealth services. However, the focus is

the contribution to the success rate of these services. Most of

the selected papers (and other like [32]) discuss the

evaluation of telehealth services. The framework proposed in

[30] identifies 6 structural layers for the key structural

components in telehealth applications along the patient

journey. However, this framework (and other like [33], or

[34]) is only theoretical, i.e., to our knowledge, no practical

implementations are available. Therefore, the aim of this

paper is to provide an easy to use and modular practical

implementation for telehealth services by means of a

framework.

Bearing in mind that the development of a software

solution is a costly activity [17], and that telehealth

applications share similar functionalities, we propose a

framework which aims at the fast development of customized

applications with almost no previous technical knowledge.

Therefore, utilizing this framework, the health service

provider can alleviate the development costs and benefit from

a customized application. This framework is particularly

targeted at small or middle-sized providers, who often lack a

budget for software development. This framework should

also fulfill several requirements among others modularity,

extensibility, and scalability. Moreover, the applications

generated through this framework share the same structure,

leading to higher interoperability.

II. REQUIREMENTS

Literature research was performed to identify the most

essential functionalities of a framework for telehealth

applications.

First, we identified relevant telehealth applications

available on the market. We selected the following

applications:

- Care01 [5]: Care01 is an application that specializes

in digital surgery management. Care01 covers

functions, such as appointment scheduling, patient

management, but also video calls with patients.

- Clearstep [7]: Clearstep offers components for

symptom checking and patient management. With

the Smart Care Routing™, and the use of Artificial

Intelligence (AI), the user should receive

information about the health status or whether a visit

to the doctor is necessary.

- Doxy.me [11]: With Doxy.me, components, such as

video telephony, chats, patient management, and a

dashboard are freely available. Certain functions,

such as referrals can also be commercially

subscribed to.

4Copyright (c) IARIA, 2024. ISBN: 978-1-68558-167-1

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

eTELEMED 2024 : The Sixteenth International Conference on eHealth, Telemedicine, and Social Medicine

- Latido [20]: offers a product that can be integrated

into existing medical software. Latido focuses on

video communication and patient management.

Additionally, functionalities, such as appointment

scheduling or financial management are also

provided.

- OpenEMR [23]: OpenEMR stands for Open

Electronic Medical Record and basically offers the

storage of EMRs, with which clinical data of

patients, information on invoices, or medical history

can be easily stored [22]. OpenEMR also offers

functionalities, such as creating patient

appointments or searching for medications.

- Samedi [26]: Samedi includes the following

functions: online appointment scheduling, calendar

and resource planning, payment function, video

consultation, vaccination management, online

patient forms, and a patient portal.

As a result of our literature research, we identified the

following most relevant functionalities or components:

- Patient management (core): information, such as

first and last names, and date of birth, should be

stored.

- Video calls: enabling health service providers and

their patients to communicate.

- Symptom tracking: recording symptoms of a given

patient is needed to assess the course of an illness.

- Online appointments: the patient and the health

service provider can book appointments with one

another.

- Content management: the health service providers

can create content, e.g., mini lessons, video

exercises, or information to enhance health literacy,

and grant access to this content to their patients.

- Interoperability & Data exportability: medical data

should be interoperable so that they can be

integrated in third party tools fulfilling the supported

standards.

- Personalization: the application should be adaptable

to the corporate design of the company. This

includes defining a name, a background color, and a

logo for the application.

In addition to these functionalities, we identified

requirements related to the flexibility and scalability of the

framework. These are:

- Open-closed principle [15]: it should be easy to add

new modules/functionalities to the framework

without modifying the existing code base.

- Dynamic: the user can select the modules that

should be included in the application.

- Secure: data security should conform to the General

Data Protection Regulations (GDPR) [12].

- Performance and availability [16]: modules and

databases should be replicable to allow on-demand

scalability.

III. FRAMEWORK ARCHITECTURE

The framework should contain the functionalities

identified in Section II. An overview of the framework

architecture is displayed in Figure 1.

The patient management functionality is the core of any

application and should always be present. All other

functionalities are optional and can be added to the generated

application when needed.

For instance, the users can decide that their application

may only contain the video calls, online appointments, and

content management functionalities in addition to the

mandatory patient management. This would be typical for

applications where a remote support or caring, but no medical

data are required: the user can book appointments which will

take place through video calls, and between these

appointments, the user can perform some exercises provided

in the content management.

The implementation of this architecture applies concepts

similar to the ones of microservices and modular

programming [19]. Microservices should fulfill the following

requirements:

- Independent databases per service.

- Independent hosting.

- Independent codebase.

As displayed in Figure 1, these requirements are only

partially fulfilled by our framework. Indeed, there is only one

database, and the hosting takes place on one target. This

decision was made to simplify the deployment of the

resulting telehealth application, since the framework should

also be used by persons with little technical knowledge.

However, the implementation is modular and sufficiently

scalable to fulfill all requirements defined in Section II.

Figure 2 displays the database model. The database stores

the data required for the functionalities explained previously

and illustrated in Figure 1.

The User table is needed for the core functionality patient

management. The patient data is limited to a minimum but

can be extended as we will discuss in Section VI. On the one

hand, we need data related to the registration for the resulting

application, such as an email-address, a username, and an

encrypted (hashed and salted) password.

On the other hand, we need real-life data related to the

user, such as the first name, last name, and date of birth. To

differentiate between patients and medical professionals, a

Role table was added. Therefore, the user will be assigned a

given role through an attribute in the User table.

For the symptom tracking functionality, we modeled the

Symptom table. A symptom has a name and a description, is

related to a user, and started on a given date. Moreover, we

can record if the symptom is active through the eponymous

attribute. This structure would be sufficient for relatively

small applications. However, the splitting of the symptom

name and description, as well as a code, in a separate table

could be performed if the resulting application must use

standards, such as SNOMED, or the International

5Copyright (c) IARIA, 2024. ISBN: 978-1-68558-167-1

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

eTELEMED 2024 : The Sixteenth International Conference on eHealth, Telemedicine, and Social Medicine

Classification of Diseases (ICD), or Logical Observation

Identifiers Names and Codes (LOINC) [4].

Figure 1. Framework architecture.

In order to implement the the online appointment

functionality, the Appointment table records a description for

this appointment, the location (for instance a link to a video

call), an attribute that states if the appointment is accepted,

and a reference to the two participants of the appointment.

Note that the participants simply are users recorded in the

User table. Checking if users are patients or medical

professionals can be done through the role (role_uid)

attribute of the user.

We designed two tables for the content management

functionality: Course and CourseEntry. Thus, the content

belonging to a course can modularly be organized in entries.

These entries can represent textual information or exercises,

in which case the text attribute can be used. However, they

can also incorporate other media, in which case the

attachment attribute can be utilized. The date enables the

chronological ordering of the course items.

The video communication and the data export

functionalities do not require their own tables. However, the

data export functionality needs to access the data stored in

other tables, for instance, the User and Symptom tables.

If a microservice architecture with separate databases shall

be implemented, the database and the relevant tables are split.

Then, a solution should be implemented to manage and grant

the appropriate access to the databases connected to the

various functionalities. This could be done, for instance,

through Application Programming Interfaces (APIs) for each

microservice.

Figure 2. Database Model.

IV. TECHNICAL DESCRIPTION OF THE FRAMEWORK

DEVELOPMENT

The implementation of this framework involved several

tools.

MariaDB [18] was used as the database. The database was

installed locally for development. It is a relational database

and freely available. It has a similar implementation to

MySQL but is a fork of the MySQL project. We chose a

relational database for its ACID (atomicity, consistency,

isolation, and durability) compliance and its transaction

capabilities.

The programming language Java [28] in its version 11 was

chosen for the backend and the initializer (see Section VI).

Java was preferred due to its platform independence, its

6Copyright (c) IARIA, 2024. ISBN: 978-1-68558-167-1

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

eTELEMED 2024 : The Sixteenth International Conference on eHealth, Telemedicine, and Social Medicine

relative popularity among developers over time, and the

availability of further frameworks such as the Spring

Framework.

The Spring Framework offers several functionalities in

the form of standalone projects for web applications [8]. The

following Spring projects were used as part of the

development:

- Spring Boot: for a standalone application that can

replace or embed resources, such as a web server.

- Spring Web: for the simplified creation of web

Model View Controller (MVC) applications.

- Spring Java Persistence API (JPA): as a persistence

framework alternative to Hibernate for database

operations.

- Spring Security: for user administration and security

in the application, as well as for authentication,

authorization, and registration.

- Spring Session: for managing the sessions of the

logged-in users.

- Spring Websocket: for the creation of web sockets,

needed for instance in the video communications.

WebRTC [3] is a technology or standard that offers free

video communication.

In the frontend, HTML was used as the basis, JS for

client-side operations and CSS for styling [25].

Maven was used as the build and configuration tool [9].

Gradle can be used as an alternative.

V. TECHNICAL DESCRIPTION OF DEPLOYMENT

As we explain in Section VI, the framework allows two

use cases: initializer and application development kit.

To perform the former use case, the initializer can be

hosted on a public website or locally.

For the latter use case, the framework components are

simply checked out and the required configurations, such as

the connection information (IP, etc.) of the database must be

completed.

Since all components are Spring Boot applications, no

separate web server, such as Tomcat and Glassfish is

required. However, Spring Boot still offers the option of

using a different web server.

The components are all implemented as independent web

applications. This means that they must also be accessible on

different ports. Six ports must therefore be reserved for the

six components. During development, an additional port

must also be reserved for the initializer. These seven ports are

set per default (8080-8085 and 8090) and can be configured

in the property files, if needed. The port configuration and

protection should be carefully performed to minimize

security risks and having several open ports might imply

more overhead for this task.

 Each component and the initializer have their own

property file, which can be accessed from outside the

compiled component. This implies that the port and other

settings can be adjusted without having to rebuild the

component and create a new resource file. On the one hand,

similarly to port configuration, having many property files

could increase the complexity and potentially the security

risks. On the other hand, a centralized property file would be

a single point of failure and would be less flexible.

If this number of ports is too high or unsuitable for

practical use, a reverse proxy can be used. This maps requests

and stands between the clients and the internal server, i.e.,

requests to the one public port are mapped to internal ports.

Therefore, only one public port would be needed and

declared as an open port in the reverse proxy configuration.

Nginx offers a possible implementation of reverse proxies

[2]. Obviously, the use of a reverse proxy would add another

layer of complexity and potential points of failure to the

system.

Docker can also be used to create the infrastructure more

easily. With Docker, the application and its dependencies can

be encapsulated [24]. The Docker image and container can

then be deployed independently of the underlying operating

system and enables more scalability. Nginx can also be used

within Docker to implement a reverse proxy and thus

minimizes the opened public ports as mentioned earlier.

VI. USE CASES

The framework can be used mainly in two ways:

- Initializer or application generator: the users just

want a way to produce a telehealth application in a

few clicks by selecting the functionalities they

desire and optionally their corporate design.

- Application development kit: the users modify and

enhance the framework with their own

functionalities and customizing. The framework is

then like a Software Development Kit (SDK), i.e.,

the core of the application is already available.

When utilizing the initializer, the user will go through

several steps leading to the generation of the desired

application. The user is guided through the process with help

of descriptions and explanations in each step.

In the first step or graphical user interface (GUI), the user

can personalize the appearance of the resulting application.

This is the chosen way to fulfill the personalization

functionality identified in Section II. Indeed, in the initializer,

the users can personalize the application in three ways: a

name corresponding to the name of their company or product,

a color corresponding to the corporate design of their

company, and a picture corresponding to the logo of the

company or product.

In the second step, the users select, by means of

checkboxes, the components, or functionalities that they want

to include in the generated application. The available

components are the ones listed in Section II: video calls,

symptom tracking, online appointments, content

management, interoperability & data exportability. Note

that there is no checkbox for the patient management

component since this component is mandatory and therefore,

always part of the generated application.

7Copyright (c) IARIA, 2024. ISBN: 978-1-68558-167-1

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

eTELEMED 2024 : The Sixteenth International Conference on eHealth, Telemedicine, and Social Medicine

Then, the user can click on a Download button and get a

zip file containing all the resources needed to start the

telehealth application. The resources are stored in three

directories: a config directory containing the configuration

files for each of the selected components, a file directory

containing the database creation scripts, and a module

directory containing the generated components as individual

jar-files. The database still needs to be created using the

included scripts. Subsequently, the user can already start the

application.

When utilizing the framework as an SDK, the developer

only needs to download the sources and develop the desired

extensions or modifications.

VII. LIMITATIONS

Economical, ethical, social, and legal aspects might not

have been considered to their full extent. The aim of this

paper was to present a prototype, not a market-ready product.

Telemedicine and telehealth result in cost savings through

reduced expenses for examinations in the clinical facilities or

travel times [29], as patients also receive treatment at home,

and could decrease the waiting times or bed occupancy in

hospitals [1].

The framework proposed in this paper aims at reducing the

effort required to design and develop a new software

architecture for telehealth applications, even if some tasks for

customization and deployment remain. However, new or

existing expenses should be taken into account, such as

investments in new hardware and software, organizational

and structural integration into existing supply structures [10].

Several ethical aspects should be considered when using

telemedicine and telehealth, such as the difference in quality

of the collected data. The quality of the data can have an

impact on the quality of the treatment and the trust between

medical staff and patients [1].

Patients may also be reticent to agree to a continuous

tracking and monitoring, even if this monitoring could lead

to a more successful treatment [21].

Telemedicine and telehealth can be a means against the

shortage of doctors in rural areas and poorer care in remote

areas, as patients can communicate and have access to health

services remotely.

However, it must also be noted that this might lead to

further concentration of the medical infrastructure in bigger

cities.

Moreover, the personal contact between patients and

health service providers, as well as between patients and their

relatives, for example when accompanying them to doctor's

visits could be gradually reduced [21]. Since social contacts

contribute to the health of patients, this aspect would be

counter-productive.

In this paper, we developed a framework for telehealth and

took legal aspects, such as GDPR into account. The use of

Spring Security enables the fulfillment of several

requirements of the GDPR through authentication,

authorization, and user administration and security in the

application. However, the users are responsible for the

security of the database – for instance the strength of the

password for the root users – which could be a security

weakness.

Other questions regarding the liability, attribution,

distribution, copyright, and warranty of the framework are

still open. For instance, the following options are available

for offering the framework: open source, GNU, or Creative

Common (CC).

Another question is to which extent the framework or part

of the framework fall under the Medical Device Regulations

(MDR) [13].

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we propose a framework for the fast

development of customized telehealth applications based on

requirements identified in the literature and in applications

available on the market (see Section II). We present an

architecture fulfilling these requirements (see Section III),

show how to implement it (see Section IV) and deploy the

product (see Section V). After that, we explain how the user

can create an application with help of this framework or

extend its functionalities (see Section VI). Finally, we

identify several limitations for this framework (see Section

VII).

As described in this paper, we tried to focus on the most

wide-spread functionalities found in telehealth applications.

The implementation of further components or functionalities

is obviously a topic of interest for future implementations.

For instance, one could evaluate the interest of an AI-chatbot,

or components dedicated to accounting tasks.

We also mentioned that the recorded data are only partially

following standards in the framework. To enable an easier

integration with other tools, more data interoperability,

reached through the implementations of standards, would be

an advantage.

We are aware that scalability is a challenge, and we show

how Docker can answer this question. However, with an

increasing number of components, Kubernetes could be a

better choice for the management of the containers.

Finally, we would like to evaluate the most appropriate

model (open source, GNU, CC, proprietary) and make this

framework available to the public.

 ACKNOWLEDGMENT

We thank our colleague Anita Töchterle for the comments

and proof-reading that greatly improved the manuscript.

REFERENCES

[1] A. Atac, E. Kurt, and S. E. Yurdakul, “An overview to ethical

problems in telemedicine technology”, Procedia-Social and
Behavioral Sciences, vol.103, pp. 116–121, 2013.

[2] A. Baeldung, “Serving Multiple Proxy Endpoints Under a
Location in Nginx”, 2022.

8Copyright (c) IARIA, 2024. ISBN: 978-1-68558-167-1

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

eTELEMED 2024 : The Sixteenth International Conference on eHealth, Telemedicine, and Social Medicine

https://www.baeldung.com/linux/nginx-multiple-proxy-
endpoints. Retrieved: February, 2024.

[3] N. Blum, S. Lachapelle, and H. Alvestrand, “Webrtc: Real-
time communication for the open web platform”,
Communications of the ACM, vol. 64, no. 8, pp. 50–54, 2021.

[4] O. Bodenreider, R. Cornet, and D. J. Vreeman, “Recent
developments in clinical terminologies — snomed ct, loinc,
and rxnorm”, yearbook of medical informatics, vol. 27, no. 01,
pp. 129–139, 2018.

[5] Care01. https://www.care01.com/. Retrieved: February, 2024.

[6] M. F. Chiang, J. B. Starren, and G. Demiris, “Telemedicine and
Telehealth”, Biomedical Informatics, pp. 667-692, 2021,
doi:10.1007/978-3-030-58721-5_20.

[7] Clearstep. https://www.clearstep.health/. Retrieved: February,
2024.

[8] I. Cosmina, R. Harrop, C. Schaefer, and C. Ho, “Pro Spring 6:
An In-Depth Guide to the Spring Framework”, Apress, July
2023. ISBN: 9781484286401.

[9] M. Tyson, “What is Apache Maven? Build and dependency
management for Java.”, 2020.
https://www.infoworld.com/article/3516426/what-is-apache-
maven-build-and-dependency-management-for-java.html.
Retrieved: February, 2024.

[10] S. Demirci, F. Kauffeld-Monz, and S. Schaat, “Perspectives for
Telemedicine – Prerequisites of the Scalability and Market
Potential” (original title: “Perspektiven für die Telemedizin –
Voraussetzungen der Skalierung und Marktpotenzial”), IIT
Berlin, May 2021.

[11] Doxy.me. https://doxy.me/en/. Retrieved: February, 2024.

[12] European Commission, “Regulation (EU) 2016/679 of the
European Parliament and of the Council of 27 April 2016 on
the protection of natural persons with regard to the processing
of personal data and on the free movement of such data, and
repealing Directive 95/46/EC (General Data Protection
Regulation) (Text with EEA relevance)”, European
Commission, 2016.

[13] European Parliament, “Regulation (EU) 2017/745 of the
European Parliament and of the Council of 5 April 2017 on
medical devices, amending Directive 2001/83/EC, Regulation
(EC) No 178/2002 and Regulation (EC) No 1223/2009 and
repealing Council Directives 90/385/EEC and 93/42/EEC
(Text with EEA relevance.)”, European Parliament, 2017.

[14] “Fundamentals of Telemedicine and Telehealth”, edited by
Shashi Gogia, Academic Press, Elsevier, 2019. ISBN: 978-0-
12-814309-4.

[15] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, “Design
Patterns: Elements of Reusable Object-Oriented Software”,
Addison-Wesley Professional, 1994, ISBN: 0201633612.

[16] R. Jiménez-Peris and M. Patiño-Martínez, “Replication for
Scalability”, in: L. Liu and M. T. Özsu (eds), Encyclopedia of
Database Systems, Springer, Boston, MA, 2009.
doi:10.1007/978-0-387-39940-9_314.

[17] M. Jorgensen and M. Shepperd, “A Systematic Review of
Software Development Cost Estimation Studies”, in IEEE
Transactions on Software Engineering, vol. 33, no. 1, pp. 33-
53, Jan. 2007. doi: 10.1109/TSE.2007.256943.

[18] E. Kenler and F. Razzoli, “MariaDB Essentials”, Packt
Publishing Ltd, 2015.

[19] M. Larsson, “Microservices with Spring Boot 3 and Spring
Cloud”, 3rd edition, Packt Publishing Ltd, Aug. 2023. ISBN:
9781805128694.

[20] Latido. https://latido.at. Retrieved: February, 2024.

[21] A. Manzeschke, “Telemedizin und ambient assisted living aus
ethischer perspektive”, Bayrisches Artzeblatt, 2014.

[22] J. Noll, S. Beecham, and D. Seichter, “A qualitative study of
open source software development: The open emr project”, in
2011 International Symposium on Empirical Software
Engineering and Measurement, pp. 30–39. IEEE, 2011.

[23] OpenEMR. https://www.open-emr.org/. Retrieved: February,
2024.

[24] N. Poulton, “Docker Deep Dive”, Nielson Book Services, Mai
2023. ISBN: 978-1916585256.

[25] J. N. Robbins, “Learning Web Design - A Beginner's Guide to
HTML, CSS, JavaScript, and Web Graphics”, 4th edition,
O'Reilly, 2012. ISBN: 978-1-449-31927-4.

[26] Samedi. https://www.samedi.com/en/. Retrieved: February,
2024.

[27] J. Shaver, “The State of Telehealth Before and After the
COVID-19 Pandemic”, Prim Care, vol. 49, no. 4, pp. 517-530,
2022. doi: 10.1016/j.pop.2022.04.002.

[28] K. Sierra and B. Bates, “Head First Java”, 2nd edition, O'Reilly
Media, Inc., 2005. ISBN: 0596009208.

[29] C. L. Snoswell et al., “Determining if telehealth can reduce
health system costs: scoping review”, Journal of medical
Internet research, vol. 22, no. 10, 2020. doi: 10.2196/17298.

[30] A. Prakash et al., "Building A Global Framework For
Telehealth", Health Affairs Forefront, June 27, 2023. doi:
10.1377/forefront.20230621.134595

[31] L. A. van Dyk, “A review of telehealth service implementation
frameworks”, Int J Environ Res Public Health, vol. 11, no. 2,
pp. 1279–1298, 2014. doi: 10.3390/ijerph110201279.

[32] “Creating a Framework to Support Measure Development for
Telehealth”, National Quality Forum, August 2017.

[33] D.W. Ford, J. Harvey, J.T. McElligott, and S. Valenta, “TSIM:
The Telehealth Framework - A comprehensive guide to
telehealth implementation and optimization”, Stationery Office
Books, 2021. ISBN: 9780117092969.

[34] “ACRRM Framework and Guidelines for Telehealth
Services”, Australian College of Rural and Remote Medicine,
June 2020.

[35] TIOBE Index. https://www.tiobe.com/tiobe-index/ Retrieved:
February, 2024.

9Copyright (c) IARIA, 2024. ISBN: 978-1-68558-167-1

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

eTELEMED 2024 : The Sixteenth International Conference on eHealth, Telemedicine, and Social Medicine

