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Abstract—Prolonged levels of high mental workload and re-

sulting stress are among the main causes of employee sickness.

A possible solution would be implementing business rules based

on objective analyses of stress levels and cognitive demands

produced in employees by given tasks. This study laid the

foundation for the development of personalized stress assistants.

Physiological data of five groups of two participants were

recorded, following a five-appointment study design. During the

appointments, each pair underwent a cognitive load induction

and subsequent stress reduction phase. Physiological signals

were recorded with low-cost wearable sensors, subsequently

analyzed for biomarkers, and compared for similarity between

participants and groups. Results show that the sensors are

capable of capturing descriptive data. Despite simultaneous task

executions, it was found from the similarity analysis that the

normalized Dynamic Time Warping distances between extracted

features are greater for yoga sessions than during the cognitive

load sessions. The classification of tasks was performed using

the Machine Learning algorithms (i) Logistic Regression, (ii)

Support Vector Machines, (iii) Nearest Neighbors, and (iv)

Decision Trees trained on feature sets of either the Muse S,

the Empatica E4, or both sensors together. Generalized as

well as personalized models achieved classification accuracies

over 85.00%. The recorded data is available upon request. The

stimulus elicitation framework developed using PsychoPy and the

software artifacts for data analysis were made publicly available,

enabling the research community to evaluate their methods on

this dataset and re-use analysis methods on their own or other

datasets.

Keywords—Mental Health; Mental Workload; Stress; Wear-
ables; eHealth.

I. INTRODUCTION

To perform any natural task, humans utilize mental re-

sources. In this context, a widely referenced concept is mental

workload. According to [1], “Mental workload may be viewed

as the difference between the capacities of the information

processing system that are required for task performance to

satisfy performance expectations and the capacity available at

any given time.”. It has been shown that the risk of coronary

heart disease and hypertension, amongst other diseases, is in-

creased if the mental workload is sustained at an elevated level

over a long time, as mental workload alters the cardiovascular

function, leading to a rising heart rate and blood pressure [2],

[3].

To counteract such adverse consequences, these elevated

levels of mental workload first need to be identified. Dif-

ferent avenues exist, such as performance-based, subjective,

and physiological approaches. Performance-based measures

mainly highlight situations where high levels of mental work-

load lead to mental overload. Subjective measures include

self-assessments, but it has been shown that humans perform

poorly in self-identifying decreased vigilance and cognitive

overload [4]. Physiological measures are based on changes in

the body incurred by mental workload, such as pupil dilation,

heart rate, and changes in skin conductance. These measures

can work on a continuous scale but usually require specialized

equipment and trained staff [5].

A review on measuring mental workload covering Electro-

cardiogram (ECG), blood pressure, respiratory, ocular and der-

mal sensors alongside Electroencephalography (EEG), found

that different measures can be used to discriminate task load,

task type, and task difficulty while underlining the importance

of multi-modal setups [6]. Furthermore, it was shown that one-

channel in-ear EEG might suffice in optimal circumstances [7],

while stress reduction can be predicted using ECG data from

wearable sensors, amongst others [8]. As for mental workload,

another interesting phenomenon was observed: by unconscious

synchronization of brain activity across individuals, these

individuals might utilize more mental resources than each

individual alone would be able to [9]. This phenomenon was

studied in various settings, such as communication [10] and

learning processes between teachers and students, where the

strength of the personal bond was found to be a modulator

[11], [12].

To the best of the authors’ knowledge, no related work

focused on incorporating the analysis of group-wide processes

of physiological signals in evaluating mental workload, stress,

and stress-reduction interventions. Here, the reliability of

wearable sensor systems on mental workload, stress, and

activity type classification was investigated. Furthermore, a

similarity analysis pipeline using the well-studied oddball
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paradigm [13] was validated, to quantify the effect of a yoga

intervention in reducing mental workload and stress.

The remainder of the work is structured as follows: in

Section II, related work is presented, while Section III details

the methods employed in this work. Section IV gives the

results of this work, for which future work is given in Section

V. Finally, the conclusion is given in Section VI.

II. RELATED WORK

It was found that EEG measurements have adequate time

resolution, conveying information online, and thus providing a

promising tool for assessing cognitive workload, comparable

in simplicity to measuring the physical workload with heart

rate monitors or pedometers [4]. This finding was extended

by another review of mental workload classification using

wearable on-body devices, finding that EEG seems most

promising and should be included in every multi-modal setup,

as ’it is the only method that is directly related to mental

workload’ according to [14].

Given the negative effect of distress, interventions to reduce

the stress levels of participants are plentiful. As such, studies

have investigated the effects of exposure to music and nature

sounds [15], mind-body connection courses designed to reduce

anxiety [16], and multi-dimensional stress reduction interven-

tions employing cognitive, somatic, dynamic, emotive and

hands-on interventions [17], amongst many more. In addition,

various literature reviews were conducted on this topic [18],

[19]. Yoga and breathing exercises are widely known as a

specific form of mindfulness, practiced in various forms for

thousands of years. Numerous literature reviews synthesized

some of the key findings for yoga on individuals concerning

reductions in depression symptoms, stress and anxiety ratings,

as well as the frequency of symptoms, such as headaches,

particularly also in a short time frame after the onset of the

intervention [20]–[22]. It was found that practices that include

yoga asanas appear to be associated with improved regulation

of the sympathetic nervous system and hypothalamic-pituitary-

adrenal system [22].

In light of movement-based interventions, the contamination

of physiological time series with movement artifacts needs to

be considered. As for ocular artifacts (looking at instructive

yoga videos in the present study), conflicting evidence was

found. One work found that no substantial artifacts were

present in mobile EEG readings, naturally except for frontal

recording sites [23], and another work found that eye move-

ments significantly distorted recordings from electrodes at

frontal, temporal, and ear positions [24]. Both works agree,

however, that artifacts are generally stronger in EEG bands

of higher frequency. Automatic artifact tagging algorithms

were proposed, to classify movement artifacts as emerging

from loss of contact with the sensor, or from movement of

the underlying tissue, as demonstrated on EEG data [25].

Recently, the current state of the art of movement artifact

removal from EEG was summarized, finding that software

and hardware solutions need to be utilized simultaneously, and

recommending guidelines [26].

As for another modality, the Photoplethysmography (PPG),

it was found that wavelet transforms as well as Kalman

filters might be needed to remove unwanted artifacts from

the data, mitigating the impact of artifacts [27]. With the rise

of Machine Learning (ML) techniques, artifact detection has

shifted to employ such measures as well, as demonstrated

by unsupervised artifact identification in another modality

recorded at the wrist: electrodermal activity [28].

While well-studied event elicitation tests exist, (such as

the Oddball paradigm, which is widely used for the analysis

of event-related potentials in schizophrenia patients [29]),

and synchronization algorithms for wearable devices exist

(e.g., [30]), measurements of synchronicity of event-related

responses recorded with wearable sensors are rarely but effec-

tively performed [13]. The utilization of similarity measures

for physiological data has recently gained some attention,

especially for clinical decision support systems [31], but has,

to the best of the authors’ knowledge, rarely been performed

for simultaneously recorded physiological data from wearable

devices.

III. METHODS

Many challenges come up when working to synchronously

record data from multiple participants, potentially even more

so with wearable sensors than with hard-wired clinical-grade

devices. As experimenters are usually not trained clinicians,

the sensor fit of wearable devices is often of poorer quality

than any clinical counterpart, with participant movements

worsening the signal quality as described. Furthermore, signal

transmission is mostly performed via third-party apps without

explicit support for synchronous data recordings, shielding the

experimenters from working with proprietary communication

channels, while hiding a lot of the complexity inherent in

synchronous data channels and potentially performing data

cleaning on the (asynchronously) recorded data. This can

lead to reduced trust in the recorded data if it was wholly

recorded synchronously, or if some sensor clock-drift occurred

or samples were dropped and interpolated at another time.

To enable the research community to perform synchronous

recordings in a multi-sensor and multi-user setup, a technical

feasibility study was conducted in this work, including the

conceptualization, development, and validation of a novel

technical recording framework.

A. Utilized Sensors

As wearable sensors, the widely utilized wearable devices

Empatica E4 and Muse S were employed. The Empatica

E4 is a wrist-worn device, which contains Photoplethysmog-

raphy (PPG; sensor read-out used to measure changes in

the blood volume pulse), Electrodermal Activity (EDA, skin

conductance measure correlating to stress, mental workload,

and emotional responses), and accelerometer sensors. The

Muse S headband contains four Electroencephalogram (EEG;

records changes of the brain’s electrical activity) sensors

placed according to the 10/20 international system. Two

frontal electrodes (AF7 and AF8) rest on the forehead and two
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temporal electrodes (TP9 and TP10) rest behind the ears. A

reference sensor is located at the center of the forehead (FpZ).

Apart from EEG sensors, Muse S contains PPG, gyroscope,

and accelerometer sensors. Both wearables are commercial

off-the-shelf devices, which have been tested and certified

for safety under various regulatory standards, such as FCC

and CE. The data was collected from the devices via a newly

developed recording platform, implemented in Python 3.9 and

building on top of PyLSL [32], a Python interface to the Lab

Streaming Layer (LSL)) as well as on top of the Empatica

E4 streaming server for Windows. For each wearable sensor,

a separate BLED112 Bluetooth Dongle had to be utilized.

The source code of the recording framework has been made

publicly available at [33].

B. Study Design

During the study, five groups of two participants underwent

five recording sessions on individual days. Each recording

session lasted approximately 90 minutes, split into welcoming

the respective pair of participants and fitting the sensors, a

stress induction phase of approximately 30 minutes, and a

yoga intervention of approximately 30 minutes succeeding the

phase of high mental workload. Before, in between, and after

the activities, subjective questionnaire data was collected from

the participants. However, the yoga practice has not been inter-

rupted to collect questionnaire answers, and as such subjective

mental state assessments were collected only before and after

the yoga practice. As questionnaires, the Brunel Mood Scale

Questionnaire (BRUMS-Q), Stanford Sleepiness Scale (SSS),

Visual Analogue Scale to Evaluate Fatigue Severity (VAS-F),

as well as five-point Likert scales in the dimensions of mental

workload and stress were utilized.

The induction of mental workload and stress was realized

using randomized assignments of the widely used mental

workload tasks AX-Continuous Performance Task (AX-CPT)

[34] and Time Load Dual Back Task (TloadDback) [35],

implemented in Python and presented using the PsychoPy

platform [36]. Figure 2 gives an overview of the cognitive load

induction framework. For the intervention, a publicly available

Yoga video [37] was reproduced on a 75-inch TV screen.

Half of the recordings (12 sessions) took place in a controlled

environment at the Hasso Plattner Institute Campus 3, House

G2, in Potsdam, Germany, a well-illuminated room with floor-

to-ceiling windows on two sides of the room offering a

view to trees. The other half of the recordings took place in

uncontrolled environments. Out of a variety of options, the

homes of some of the participants were chosen as uncontrolled

environments at the request of the participants. Repeating

some yoga poses, a sequence of 29 asanas was performed and

finished with Shavasana and a chant of Om. Figure 1 gives

a schematic overview of the study design. The cognitive load

induction is described in detail in Figure 2. After twenty trials,

the performance was assessed. If less than 85% of correct

responses were achieved, the system added 0.1 seconds to each

Stimulus Time (ST) and Response Time (RT) and repeated the

process of Individualization. However, if the user had achieved

85% performance or more, the framework moved on with the

current ST and RT settings to the final task for the remaining

duration of the cognitive load induction phase.

Figure 1: Overview of the study design. As for the Yoga intervention,

20 unique asanas were utilized by the video instructor (e.g., Child

Pose, Cat and Cow, Downward-Facing Dog, etc.).

Figure 2: Overview of the cognitive load induction framework.

Participants were first familiarized with the individual tasks. After a

total of 60 trials, the participant’s performance was assessed. If more

than 85% of the cues were responded correctly, the user moved on

to the individualization phase, which started directly with the lowest

Stimulus Time (ST) and Response Time (RT).

Ethical approval has been obtained from the Institutional

Review Board (IRB) of the University of Potsdam (application

number 69/2023), and written informed consent was given by

all participants before participating in the study. The study

inclusion criteria required participants to be aged 18 to 33,

sufficiently fluent in English (at least B2 level), have a normal

or corrected-to-normal vision, know how to use a smartphone,

and have to regularly perform work that was performance-

evaluated (e.g., students or employees). Participants were

required to regularly perform sports or yoga, to be experienced

with moderate at-home workouts, stretching, and video-based
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yoga, and to be in a close relationship with the participant

they registered with.

The study exclusion criteria excluded participants who

needed to regularly take medication, such as mood stabilizers

or psychotropic drugs and could not record data for approxi-

mately 90 minutes without interruptions except for bathroom

visits.

As the study required the participants to perform specific

yoga exercises, physically disabled or injured persons (re-

covered for less than six months) had to be excluded in

case the prospective participant was unable to perform the

majority of the required movements. Furthermore, partici-

pants who could have been in any dependent relationship

with the experimenters, pregnant women, and participants

with hypertension were excluded. Out of an overwhelming

response to study recruitment efforts, a random total number

of ten participants were recruited and recorded to evaluate the

technical feasibility of the study setup.

C. Similarity

To confirm the synchrony of the recorded data, two sanity

checks were integrated into the study protocol. Firstly, the

experimenters vigorously shook the recording devices at the

beginning and end of the recordings for approximately ten

seconds. This ensured simultaneous peaks in the acceleration

data of the wearables, and as a result enabled the comparison

of peak onset and offset times, validating that no clock drift

had occurred during the recordings and that by consequence

the time series between the well-aligned peaks in the start

and at the end of the recordings had to be well-aligned as

well. Secondly, an Oddball paradigm was utilized to validate

if it was possible to measure Steady-State Visual Evoked

Potentials (SSVEPs) with the Muse S wearable EEG headband

and to analyze the synchrony of these SSVEPs.

However, due to calibration issues with the TV screen,

the majority of the Oddball paradigm sessions were not

reproduced with the anticipated 60 Hz refresh rate of the

screen and a matching signal rate, but with a refresh rate

much lower, resulting in invalid Oddball recordings that

had to be interrupted due to excessive durations and very

slow signal changes. Due to Bluetooth data transmission and

Bluetooth channel saturation, drops in sampling frequencies of

the individual sensors occurred. Mostly, however, the Muse

S sampled EEG data at 256 Hz, PPG data at 64 Hz, and

Gyroscope and Acceleration data at 50 Hz. The Empatica E4

mostly sampled BVP data at 64 Hz, Acceleration data at 32

Hz, and GSR as well as Skin Temperature data at 4 Hz.

D. Data Processing

During data recording, the data was stored in .h5 format.

After each recording session was stopped, the newly developed

streaming platform StreamSense immediately triggered a data

cleaning and data processing pipeline ProSense, creating signal

quality reports and subsequently storing the recorded data

in .pkl format. Figure 3 gives an abstract representation

of the data preprocessing flow, triggered automatically after

each recording session. The individual parameters, such as

outlier rejection thresholds for the dynamic Interquartile Range

(IQR) method, pass- and stop-band definitions, as well as the

normalization method utilized (min-max), are documented in

the source code documentation of ProSense. Alongside the

sensor data, log files were created from Questionnaire answers,

performance times, reaction times, and system logs. For each

recording, the logs were cleaned, a processed subset was

stored, and features were extracted and stored in individual

.csv files corresponding to the respective modality.

Figure 3: Overview of the data processing pipeline, triggered auto-

matically by ProSense after each recording.

Across files, the same (anonymized) identifiers for partici-

pants as well as timestamps were utilized. Features that were

extracted are Kurtosis, Skewness, Entropy, Min, Mean, and

Max for Acceleration data, BVP data, and Gyroscope data,

amongst others. For EEG data, the main features extracted

were power spectral densities, band-powers, band ratios at the

different electrodes, spectral entropy, and various statistical

features. For the GSR data, the skin conductance level and

the skin conductance response value were extracted, amongst

others. For the PPG data, the heart rate, heart rate variability,

and others were extracted. As a window length of features, an

epoch duration of five seconds was utilized. The source code

for the data storage and feature extraction was made publicly

available at [38].

E. Machine Learning

As a final step, Machine Learning (ML) models were

trained to distinguish between the activities performed by the

study participants. As ML models, the widely used model-

families Logistic Regression (LR), Decision Trees (DT), Near-

est Neighbors (NN), and Support Vector Machines (SVM)

were employed. Effectively, the ML models were trained as

generalized binary activity classifiers. The hyperparameters

for each ML model were derived using a nested 5-fold

cross-validation scheme, training and evaluating the model

performance for a given set of hyperparameters and testing the

generalization capabilities on a held-out test set. Hyperparam-

eters for the LR were penalty (l1, l2, None) and solver (lbfgs,

liblinear, sag, saga), for the DT were criterion (gini, entropy),

splitter (best, random, and max_depth (5, 10, ..., 300, None)),

for the SVM (Linear Support Vector Classifier) were penalty

(l1, l2), as well as the regularization parameter C (0.01, 0.1, 1,
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10, 100, 1000), and for the NN were (leaf_size (1, 2, ..., 50),

n_neighbors (1, 2, ..., 30), and p (1, 2)). The train-validate-

test split was 60%-20%-20%, and as outer stratified 5-fold CV

was employed, while the experimental HalvingGridSearchCV

from scikit-learn was utilized for the inner CV [39].

Finally, the resulting performances were averaged and the

best hyperparameters were noted down. Due to data imbal-

ances, (41%:59% for Cognitive-Load:Intervention), the data

was once randomly resampled before the experiments, result-

ing in balanced data sets.

IV. RESULTS

A. Machine Learning

The mean age of the ten participants was 27.6 years, with

a standard deviation of 4.34 years. Due to the sickness of

one pair of participants, their respective fifth recording could

not be performed, and as such a total of 48 data recordings

(24 sessions) were performed. After hyperparameter tuning

utilizing nested 5-fold CV and HalvingGridSearchCV, the

following hyperparameters were utilized across most of

the model runs: for the LR (penalty = None, solver =

lbfgs), for the DT (criterion = entropy, splitter = best,

max_depth = 145), for the SVM (penalty = l1, C = 1000),

and for the NN (leaf_size = 25, n_neighbors = 21, p =

1). The resulting model performances for distinguishing

between cognitive load induction and yoga intervention

are detailed in Table I. The mean across nested CVs

(Generalized) or across nested CVs and across participants

(Personalized) is reported. The feature sets utilized contained

Kurtosis, HRV, HR, SCL, SCR_Freq, and Temp features (E4),

AF7_alpha_power, AF8_alpha_power, TP9_alpha_power,

TP10_alpha_power, AF8_theta_delta, AF7_theta_delta,

AF7_low_beta, AF8_low_beta, tfr_9Hz, tfr_18Hz, tfr_27Hz,

entropy_AF8, entropy_AF7, entropy_TP9, and entropy_TP10

features (Muse), or all of these (All). As can be seen, both

for Generalized and Personalized models, the NN (printed in

boldface) performed best, while overall DT performed worst.

The best performance was consistently achieved using the

feature set All, followed by the Muse features, and finally by

the E4 features.

An exemplary visualization of some features averaged

across all participants is given in Figure 4. Feature values were

averaged per participant across the min-max normalized values

(and for the EEG features at the electrode positions AF7,

AF8, TP9, and TP10), and averaged across recordings. As

can be seen, the Alpha Power, which correlates positively with

relaxation [40], is increased during the yoga intervention when

compared to the cognitive load induction phase, validating its

use as a biomarker for cognitive demands. While the heart rate

does not seem to change significantly between conditions, the

SCL is higher during the intervention than during the load

induction at rest. The strong distortion in the physiological

signals around the time of the transition from one phase

to another, including a lot of uncontrolled movements, is

reflected in the data.

Model Feature-Set Generalized Personalized

NN All 88.80% 90.01%

NN Muse 84.28% 86.59%

NN E4 72.64% 79.68%

LR All 80.12% 82.13%

LR Muse 68.94% 80.77%

LR E4 73.36% 73.81%

SVM All 79.73% 81.33%

SVM Muse 68.40% 80.45%

SVM E4 73.32% 73.98%

DT All 78.06% 78.60%

DT Muse 71.62% 79.51%

DT E4 68.42% 75.75%

Table I: Classification accuracy for binary classification models on

well-balanced (50%:50% datasets for cognitive load:yoga), derived

after nested 5-fold Cross-Validations (CV). Generalized models were

built using data from all participants while personalized models

utilized data from only one participant (no outliers removed). Overall

model performances are color-coded from best (blue) to worst (red).

The best performance per row is printed in boldface.
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Figure 4: Generalized mean feature values for mean power in the

alpha frequency band (8 - 12 Hz; Alpha), spectral entropy (Entropy),

and the spectral power at 27 Hz (TFR-27) derived for the Muse S

(top), and the skin conductance level (SCL), heart rate (HR), and

skin temperature (TEMP) derived for the Empatica E4 (bottom). The

signal was smoothed over twelve consecutive epochs of five seconds,

i.e., over one minute.

B. Similarity Analysis

To confirm the validity of synchrony of the recorded EEG

data, initially a comparison of the SSVEPs after Oddball

paradigm had been planned. However, due to the issues
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outlined in the Subsection Similarity, only two recordings out

of the total of 48 data recordings could be considered for the

analysis of Event-Related Potentials (ERPs). Figure 5 visual-

izes these results, which are not generalizable as the analysis

was performed only on a few data points. Due to technical

difficulties with the oddball presentation paradigm outlined in

the Subsection Similarity, the data shown is averaged over one

session of two participants, respectively. The well-studied ERP

components N200 and P300 are well-visible for the oddball

paradigm. While the absence of the P300 in the control task is

expected [13], it is unexpected that no N200 ERP is visible. As

a result of the technical difficulties, the absence of the N200 in

the control task, and the low number of samples, the reliability

of ERP analysis on this data is limited. However, in line with

related work [13], these results underline the possibility of

researching SSVEPs with the utilized low-cost sensors.
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Figure 5: Event-Related Potential (ERP) analysis after oddball

paradigm during oddball (blue) and control (green) tasks, respec-

tively.

Another approach to analyzing the similarity of the recorded

physiological signals is utilizing a distance-based measure for

the features extracted from the physiological data [41]. In this

work, a Python implementation for Dynamic Time Warping

(DTW) was utilized [42]. Compared to some other similarity

measures, DTW allows for non-linear matching by stretching

or shrinking the compared signals [43], and has also been

explored in ML [44]. One challenge for this analysis is that the

participants were instructed via video-based yoga to perform

the same movements. Consequently, during the recordings,

participants did not necessarily perform the same exercise

the same way at the same time after an instructed change of

pose. A non-linear distance-based measure, such as DTW,

is well-suited for this analysis [42]. Here, the normalized

DTW distance across the Empatica E4 feature sets Kurtosis,

HRV, HR, SCL, SCR_Freq, and Temp features, and across the

Muse S feature sets AF7_alpha_power, AF8_alpha_power,

TP9_alpha_power, TP10_alpha_power, AF8_theta_delta,

AF7_theta_delta, AF7_low_beta, AF8_low_beta, tfr_9Hz,

tfr_18Hz, tfr_27Hz, entropy_AF8, entropy_AF7, entropy_TP9,

and entropy_TP10, was computed between each epoch of

each recording. Special interest was placed on enabling the

comparison between the pairs of participants. The results are

visualized in Figure 6. The color-coded boxes represent the

distance within a group of participants, across all sessions.

The white box represents the distance of all participants not

within the same group, across all sessions. Boxes start at the

mean distances during cognitive load and yoga sessions, and

their width and height are given by the respective standard

deviations. As can be seen, the distances within the groups

are smaller than between participants from different groups,

but with a high standard deviation. Across participants and

groups, the Standard Deviation (STD) of the mean normalized

distance across all features and epochs is smaller than the

STD over all Muse S features. Generally, the distances

within the groups are smaller than the distances between the

individuals of the respective group and other recordings.

C. Feature Importance

The importance of individual features was investigated

using a correlation analysis performed after artifact removal.

To remove the artifacts, a dynamic Interquartile Range (IQR)

method built on the STD in each feature was utilized. Details

can be found in the source code at [38]. Especially the

statistical features extracted from the EEG data (correlation

over 0.58 at p-values under 0.001), the heart rate variability

(correlation of 0.51 at p-value under 0.001), and the skin

conductance level (correlation of 0.45 at p-value under 0.001)

were highly correlated with the phase.

D. Limitations

As the technical framework was constantly developed once

a bug or a sub-optimal solution was noticed, some recordings

produced slightly different artifacts than others. As a result

thereof and of issues encountered in the uncontrolled environ-

ments, such as a vast amount of Bluetooth devices present

in the immediate neighborhood, three recordings show a

significant amount of artifacts, and one out of these recordings

stored data for all modalities only at a maximum sampling rate

of 10 Hz. Generally, due to the nature of the bodily exercise

of yoga, the second half of the recordings is partially distorted

due to strong movement artifacts when participants changed

their yoga poses (only during said change). Furthermore,

data labelling during yoga was impractical, as it would have

interfered with the participants performing the stress-reducing

intervention. Consequently, the temporal resolution of self-

assessed labels is significantly higher for the cognitive load

task than for the relaxation intervention task. Finally, the

recordings were performed in winter, and some participants

reported feeling a bit sick. Therefore, some participants asked

for the windows to be closed, while other participants appreci-

ated open windows, potentially influencing the comparability

of temperature and GSR readings across recordings.

V. FUTURE WORK

Due to the richness of the dataset collected, some aspects

remain to be analyzed further. The synchronicity of physiolog-

ical responses during cognitive load induction, but especially
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Figure 6: Mean normalized Dynamic Time Warping distances across features from the Empatica E4 (top) and Muse S (bottom), respectively

[42]. The pairings of distances are given for each session for the participants not within the same group (i.e., session one of participant P1

was compared to all the 1st sessions of all other participants but the group-partner of P1) and labeled with the markers in the legend.

during the stress reduction mechanisms, should be investigated

further. By performing subsequent data collection using the

same protocol on individuals rather than on small groups,

the stress reduction as determined by the biomarkers could

be analyzed and compared, potentially leading to tangible

recommendations for organizations’ policies. Personalizing

the analysis even further, it would be possible to conduct

the same analyses and ML regressions using the participant-

given labels. If the binary classifiers were trained on the

actual user-perceived labels and not on predefined task labels

(data available), the classification results are expected to be

different. Lastly, ML and Deep Learning models existing in

related work could be further personalized on this dataset, and

the resulting models could be made publicly available while

investigating the effective usefulness of ML and DL compared

with traditional statistics.

VI. CONCLUSION

This study’s findings on biomarkers of cognitive demands

and their ease of use for ML classifiers have significant

implications for Personalized eHealth, particularly regarding

the development of personalized stress management solutions.

Physiological data of five groups of two participants were

recorded, following a five-appointment study design. During

the appointments, each pair underwent a cognitive load in-

duction and subsequent stress reduction phase. Results show

that the sensors are capable of capturing descriptive data.

Despite simultaneous task executions, it was found from the

similarity analysis that the normalized Dynamic Time Warping

distances between extracted features are greater for yoga ses-

sions than during the cognitive load sessions. The derived load

classifiers can be integrated into eHealth platforms and offer

monitoring or tailored advice on interventions based on the

individuals’ stress patterns. As such, real-time stress detection

would enable immediate suggestions of coping mechanisms

like guided breathing exercises or mindfulness meditation

prompts. Moreover, the rich dataset of this study, available

upon request, offers immense potential for advancing the

understanding of stress physiology in real-world applications,

which can be leveraged to refine eHealth technologies further,

ensuring they meet the unique needs of each individual. This

personalized approach not only enhances user engagement but

also promises improved health outcomes by addressing stress

in a timely and relevant manner and could therefore help shift

organizations towards an employee-focused workplace.
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