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Abstract — This paper addresses the problem of providing 
fast and accurate approximations of Shapley values for neural 
networks by embedding the approximation directly into the 
network architecture. The approach is tested on a synthetic and 
a real world dataset. The results demonstrate that integrating 
Shapley value approximations into the loss function enables 
making a trade-off between explainability and prediction 
accuracy, optimizing both aspects. This method yields accurate 
approximations while improving the model's explainability, 
making it more stable and easier to explain in practical 
applications. 
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I. INTRODUCTION 

 In various applications, understanding and explaining the 
behavior of neural networks is crucial for both internal 
management decision-making and meeting the requirements 
of regulators and external stakeholders. As neural networks 
are increasingly deployed in critical areas such as finance, 
healthcare, and autonomous systems, the need for 
transparency and explainability becomes paramount. 
Stakeholders need to trust that the models are making 
decisions based on relevant and understandable factors, and 
they must be able to justify these decisions to regulatory 
bodies and customers alike [1]. 
 A powerful tool for gaining insights into the relevance of 
attributes in these models is the use of Shapley values [2]. 
Originating from cooperative game theory, Shapley values 
provide a fair distribution of the total gain generated by a 
coalition of players, attributing a value to each player's 
contribution. When applied to neural networks, Shapley 
values help users understand how each input feature 
contributes to the model's prediction. They are prized for their 
desirable properties, such as fairness, efficiency, and 
consistency, making them an ideal choice for feature 
attribution. A significant challenge with Shapley values is 
that their exact evaluation is computationally expensive, with 
the complexity growing exponentially with the number of 
input features [3]. This computational burden makes them 
impractical for large-scale applications involving high-
dimensional data. To mitigate this, researchers have 
developed various approximation methods. Notably, the 
authors in [4] introduced polynomial-time approximations, 

which significantly reduce the computational load while still 
providing useful insights into feature importance. 
 This work advances this field by demonstrating that the 
approximation of Shapley values can be seamlessly 
integrated into the training process of neural networks. 
Specifically, a method is proposed where the outputs of 
interest from the neural network are extended to include these 
approximated Shapley values. This integration occurs during 
the training phase, ensuring that the model not only learns to 
make accurate predictions but also provides explanations for 
these predictions concurrently. 
 A key benefit of this integration is that it enables a direct 
trade-off between model accuracy and Shapley value 
approximation. In addition, this approach enables improved 
explainability of the model as well as the immediate 
availability of explanations.  
 By integrating Shapley value approximations during 
training, the neural network converges to a state that is 
inherently easier to explain. For instance, the network's 
responses to changes in input features become more stable. 
This smoothing effect is often a desirable property, especially 
in domains where stakeholders need to understand the 
model’s behavior in intuitive terms. It prevents scenarios 
where minor changes in input result in disproportionately 
large and unexpected changes in the output, which can be 
challenging to justify to customers and regulators [1]. An 
explainable model enhances trust and facilitates better 
decision-making. 
 Additionally, the approximated Shapley values are 
produced as a direct result of the model's predictions. This 
means that for every prediction the model makes, an 
accompanying explanation is immediately available. This 
capability is appealing in applications requiring high-
frequency predictions and where each decision needs to be 
justified on the spot.  
 The approach is particularly valuable in applications 
where the model undergoes a single training phase followed 
by numerous predictions, each requiring an explanation. This 
ensures that the model not only performs well in terms of 
predictive accuracy but also remains transparent and 
explainable throughout its operational lifecycle. By 
embedding the approximation of Shapley values into the 
training process, the approach strikes a balance between 
computational efficiency and the need for clear, 

5Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-215-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EXPLAINABILITY 2024 : The First International Conference on Systems Explainability



understandable explanations, meeting the demands of both 
operational efficiency and regulatory compliance. 
 The remainder of the paper is structured as follows: 
Section 2 discusses the related work and the inclusion of 
Shapley values into the model’s prediction is laid out in 
Section 3. Section 4 presents an analysis with the data and 
model applied. The results are discussed in section 4. Section 
5 summarizes and concludes. 

II. RELATED WORK 

 Shapley values, originating from cooperative game theory, 
have become a fundamental tool for feature attribution in 
machine learning models [2]. They offer a fair distribution of 
the total gain generated by a coalition of players, attributing 
a value to each player's contribution [3][5]. However, their 
exact computation is computationally expensive, leading to 
the development of various approximation methods [6]. This 
section reviews these methods, highlighting the limitations 
they present, and the gaps the proposed approach aims to 
address. 
 Feature-removal approaches are central to feature 
contributions in Shapley value calculations [6]. They involve 
systematically removing features and assessing the impact on 
the model's output. The primary types are: (1) Baseline 
Shapley values where missing features are replaced with 
values from a baseline sample, such as zeros, means, or 
medians. This approach is simple to implement and interpret; 
however, the choice of baseline can be arbitrary and may not 
accurately represent the data distribution [5][7]. (2) Marginal 
Shapley values calculate the marginal expectation of the 
model output by treating absent features as random variables 
following their marginal distribution. It involves evaluating 
the model with subsets of features including and excluding 
the feature of interest. It provides a more accurate estimate of 
feature importance by considering the marginal distribution 
of features. However, it is computationally more expensive 
as it requires multiple model evaluations for different subsets 
of features [7]. (3) Conditional Shapley values which define 
the game by the conditional expectation of the model output, 
where absent features are treated as following a conditional 
distribution given the observed features. It considers the 
interdependencies between features [7]. This most accurately 
accounts for the conditional dependencies between features, 
providing a realistic assessment of feature importance. 
However, it is highly complex and computationally intensive 
due to the need for estimating conditional distributions, 
which can be challenging, especially in high-dimensional 
data. 
 To address the computational challenges of exact Shapley 
value calculations, various approximation strategies have 
been developed. These strategies can be broadly categorized 
into model-agnostic approximations, which are applicable to 
any model type, and model-specific approximations, which 
are tailored to specific model structures. Model-agnostic 
approximations include methods such as interactions-based 
method for explanation (IME) [9] and KernelSHAP [5][10]. 

IME utilizes stochastic sampling to provide unbiased 
estimates of Shapley values. While broadly applicable to 
various models, it is computationally intensive. KernelSHAP 
also employs a sampling-based approach, reducing 
computational load but still requiring significant resources. 
 In contrast, model-specific approximations are tailored to 
particular model structures. TreeSHAP [7] leverages the 
inherent structure of decision trees to compute exact Shapley 
values efficiently. It offers faster and more precise 
calculations but is limited to tree-based models. Similarly, 
LinearSHAP [11] computes Shapley values exactly for linear 
models with linear time complexity. It performs well for 
linear relationships, however, is not suitable for other models. 
While approximation methods like KernelSHAP and IME 
provide useful insights with reduced computational demands, 
they suffer from high variance and are still resource intensive. 
Assumption-based methods like TreeSHAP and LinearSHAP 
offer solutions with lower computational costs but are 
restricted to specific model types.  
 Some research has focused on considering Shapley value 
approximations into the model architecture itself to balance 
accuracy and computational efficiency. For instance, 
ShapNets [12] are designed to facilitate easier estimation of 
Shapley values through specific network architectures, 
enhancing both explainability and performance. Deep 
Approximate Shapley Propagation [4] leverages uncertainty 
propagation to estimate Shapley values, providing 
deterministic results with moderate computational 
requirements. 
 The proposed approach distinguishes itself by embedding 
Shapley value approximations directly into the neural 
network training process. This integration ensures that the 
model's predictions are inherently more explainable due to 
more stable responses to input feature changes. Additionally, 
it allows for the immediate availability of explanations with 
each prediction, a crucial advantage in settings requiring 
frequent and justifiable decisions. By embedding the Shapley 
value approximation into the network architecture, the 
proposed method achieves a balance between computational 
load and the need for clear, understandable explanations. It 
also enables an explicit trade-off between model performance 
and quality of Shapley value approximations. The proposed 
integrated approach offers a novel solution that enhances 
both explainability and efficiency, meeting the demands of 
real-world applications requiring transparency and 
accountability. 

III. MODELING SHAPLEY VALUES 

Shapley values are a well-established method to 
understand the impact of an attribute on the outcome [5]. 
Consider a data set of 𝑁 attributes and a model 𝑓 mapping 
each subset 𝑆 of the attributes to real numbers (i.e., a 
prediction). The Shapley value quantifies the importance of 
attribute 𝑖 to the prediction. To determine the effect, a model 
𝑓ௌ∪{௜}

 using data 𝑥ௌ∪{௜}
 for a subset 𝑆 of features including 
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feature 𝑖 and a model 𝑓ௌ using data 𝑥ௌ without feature 𝑖. Now 
for all possible subsets 𝑆 ⊆ 𝐹\{𝑖} the impact of withholding 
feature 𝑖 is calculated. The Shapley values are calculated 
based on the weighted average of all possible differences. 

𝜙௜(𝑥ௌ) = ෍
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
ௌ⊆ி\{௜}

ൣ𝑓ௌ∪{௜}൫𝑥ௌ∪{௜}൯ − 𝑓ௌ(𝑥ௌ)൧ 

 Computing Shapley values requires the evaluation of all 
possible feature subsets, which makes it infeasible for 
common practical applications with many features to 
consider. Shapley values sampling is most frequently used to 
approximate the Shapley values [13]. Despite the 
approximation, it still requires considerable calculation time. 
The standard approach to predict outcome 𝑦 based on input 

𝑥, is to minimize the objective 𝑓 = arg min
௙

𝐸 ቂ൫𝑦 − 𝑓(𝑥)൯
ଶ

ቃ. 

This work aims to predict the Shapley values of the features 
as well, hence optimizing function 𝑔: ℝே → ℝேାଵ, 𝑔(𝑥) →

൫𝑦, 𝜙ଵ(𝑥), . . , 𝜙௡(𝑥)൯ such that we minimize: 

g = arg min
୥

E ൥൫y − g଴(x)൯
ଶ

+ λ ෍൫ϕ୧(x) − g୧(x)൯
ଶ

୒

୧ୀଵ

൩ 

 The hyperparameter 𝜆 can be used for a trade-off between 
the standard approach (𝜆=0) and a joint prediction of outcome 
𝑦 and the Shapley values 𝜙௜ (𝜆>0). The hyperparameter λ 
controls the balance between prediction accuracy and 
Shapley value approximation. At λ = 0, the model optimizes 
accuracy, while increasing λ improves explainability by 
incorporating Shapley values, albeit with some loss in 
accuracy. Higher λ values shift the focus more toward 
generating accurate Shapley values.  

IV. EXPERIMENTAL SETUP  

 As a test model, a neural network with a three-node input 
layer, a hidden layer of 16 neurons, another hidden layer of 8 
neurons and a four-neurons output layer (see Figure 1) is 
built. The output contains 𝑦௝ as well as the three Shapley 
values 𝜙ଵ൫𝑥௝൯, 𝜙ଶ൫𝑥௝൯, 𝜙ଷ൫𝑥௝൯ for 𝑥௝ = ൫𝑥଴௝ , 𝑥ଵ௝ , 𝑥ଶ௝൯. For 
the hidden layers, a leaky ReLu is used (𝛼 = 0.1). The MSE 
is optimized using the ADAM [14] optimizer. 
 The model is trained once with minimizing the MSE of 
the output of interest 𝑦௝ only and no weight on accurate 
Shapley value approximations (𝜆=0). A second model is 
trained for the joint prediction of the output of interest as well 
as the Shapley values (𝜆=1). A third model is trained with 
joint prediction of the output of interest and a very high 
weight on Shapley value approximations (𝜆=1000). A batch 
size of one was chosen for pragmatic reasons. In each forward 
pass we compute the target Shapley values of the model with 
an existing technique. In our tests we used KernelExplainer 
from the SHAP library [5]. However, this may be replaced 

with any other method. We use these values to compute the 
error for 𝜙ଵ൫𝑥௝൯, 𝜙ଶ൫𝑥௝൯, 𝜙ଷ൫𝑥௝൯. 
 For bigger 𝜆 values we expect an increase of the MSE 
based on the outcome 𝑦௝, as the introduction of the Shapley 
values leads to a biased prediction. We also expect reduced 
errors for the Shapley value approximations as 𝜆 increases. 
Furthermore, we expect simpler relations between feature 
values and their corresponding Shapley values, which are 
easier to approximate. This should be apparent when plotting 
the feature values against the targeted Shapley values (in our 
tests computed with KernelExplainer from the SHAP library 
[5].  

A.  Experiments with synthetic data  

For illustration and initial analysis, we use a synthetic 
dataset generated as follows. The target variable 𝑦௝ is created 
using the linear relationship: 

𝑦௝ =  2 ⋅ 𝑥଴௝ +
1

2
𝜖௝, 𝑗 ∈ {1, … , 1000} 

where 𝑥଴௝ is the first feature, and 𝜀௝ represents independent 
and identically distributed (i.i.d.) noise drawn uniformly from 
the interval [0, 1]. The second feature 𝑥ଵ௝ is also i.i.d. and 
uniformly distributed, generated independently from the 
same interval. The third feature 𝑥ଶ௝ is then derived from a 
non-linear transformation of 𝑥ଵ௝ and 𝑦௝ as follows: 

𝑥ଶ௝ = ൫𝑥ଵ௝ + 𝑦௝൯
ଵ
ସ, 𝑗 ∈ {1, … ,1000} 

We use 80% of the generated data as the training set and 
20% as the test set. The synthetic data was designed to exhibit 
both simple and complex relationships between the features 
( 𝑥଴௝ ,  𝑥ଵ௝ ,  𝑥ଶ௝  ) and the target variable 𝑦௝. This setup allows 
us to demonstrate the desired trade-off between prediction 

Figure 1. Architecture for the neuronal network (created 
with https://alexlenail.me/NN-SVG/index.html) 
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accuracy and the approximability of Shapley values. The 
model and training procedure are implemented as described 
above. The number of epochs was chosen based on the 
learning curves observed across all tests, ensuring that 
training did not stop prematurely due to a sudden error spike 
in any model. The resulting learning cures are shown in 
Figure 2. The model outputs A, B, C, D, represent the model 
prediction y (i.e., y=A) and the predicted Shapley values for 
the features 1, 2, 3. 

As expected, higher 𝜆 values drive down the errors for 
Shapley value predictions and increase the prediction error 
for the target A. In detail the MSE for the model 𝜆=0 is 
0.0003, while the MSE for the 𝜆=100 model is 0.001. It is 
also observed – as expected – that the partial dependency 
plots show increasingly simpler structures (see Figure 3). The 
resulting curves become more smooth and less scattered. This 
makes them easier to approximate and easier to interpret by 
humans. 

  Feature 1 Feature 2 Feature 3 

𝝀
=

0
 

SH
A

P value for y=
A

 

𝝀
=

1
 

𝝀
=

1
0

0
 

  SHAP values for y=A vs feature 

Figure 3. Shapley values of features 1,2,3 (left to right) of models 𝜆 ∈ 0,1,10 (top to bottom) 

 
Figure 2. MSE for 𝜆 ∈ {0,1,100} (left to right) models for the outcome of interest y (blue) and the corresponding Shapley values (green, red, orange). 
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 The results demonstrate the desired tendency towards 
more explainable models with higher values for 𝜆. Overall, 
the tests verify the feasibility of the proposed approach and 
demonstrate the desired effects.  

B. Experiments with real data 

 A publicly available data set from openml.org was chosen 
to verify the applicability of the approach on real data. 
Specifically, the data set named wine-quality-red was used to 
predict wine quality [15]. The network structure remained the 

same as described above, with three features for predicting 
the target. The target variable includes 6 levels of quality, and 
the learning problem is treated as a regression problem. The 
selected features are 'sulphates', 'alcohol', and 
'total_sulfur_dioxide'. Feature selection was done based on 
exploratory analysis for identifying features with non-linear 
relations to the target. This was done to give room for a trade-
off between model accuracy and simplicity of the Shapley 
value approximation. 

 
Figure 4. MSE for 𝜆 ∈ {0, 10, 1000 }(left to right) models for the outcome of interest y (blue) and the corresponding Shapley values (green, red, orange). 

  Feature Alcohol Feature Sulphates Feature Total Sulfur Dioxide 

𝝀
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P value for y=
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𝝀
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1
0

 
𝝀

=
1

0
0

0
 

 

  SHAP values for y=A vs feature 

Figure 5. Shapley values of features 1,2,3 (left to right) of models 𝜆 ∈ 0,1,10 (top to bottom) 
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 Model and training procedure followed the procedure 
described above, with 100 training epochs. Again, the 
number of epochs was chosen based on the learning curves 
of all tests (i.e., ensuring not to stop at a sudden error spike 
for any model). The resulting learning curves are shown in 
Figure 4 The model outputs A, B, C, D, represent the model 
prediction y (i.e., y=A) and the predicted Shapley values for 
the features 'sulphates', 'alcohol', and 'total_sulfur_dioxide'. 
 The experiment with real data show the same general 
effects as the experiments with synthetic data. Specifically, 
higher λ values reduce the errors in Shapley value predictions 
but increase the prediction error for the target variable 𝑦. For 
instance, for epoch 100 the MSE the for model . 𝜆=0 is 0.460, 
while for the model with. 𝜆=10, the MSE decreases to 0.45. 
However, for . 𝜆=1000, an increase of the MSE to 0.54 can 
be observed. The learning curves for all models exhibit 
similar behavior, while the Shapley value approximation 
shows significant improvement in smoothness and 
explainability. Again, we observe that the partial dependency 
plots show increasingly simpler structures (see Figure 5). 
These findings confirm the applicability of the approach with 
real data.  

V. CONCLUSION AND FUTURE WORK 

Explaining neural networks remains a challenging task, 
often due to the complexity and non-linear nature of these 
models. Often minor changes in input data can lead to 
significantly different model outcomes, which complicates 
explaining these changes to users. It was found that training 
models with a focus on Shapley values results in more stable 
and explainable outputs. This approach enhances the 
consistency of explanations derived from Shapley values, 
making the model's behavior more predictable and 
understandable. Contrary to initial expectations, 
incorporating Shapley values into the training process did not 
lead to a significant decline in predictive performance, as 
measured by the mean squared error of the outcome of 
interest. This suggests that it is possible to maintain accuracy 
while improving explainability. 

Future work could explore adjusting batch sizes to 
balance convergence and estimation accuracy, as larger batch 
sizes, while smoothing convergence, may reduce the 
precision of Shapley value approximations. Moreover, 
increasing λ improves explainability, it may reduce 
sensitivity to rare or extreme cases. And scaling to high-
dimensional data poses challenges, suggesting more efficient 
methods for Shapley approximations should be developed. 
Additionally, expanding experiments to include more diverse 
datasets could further validate the approach and confirm its 
generalizability across different domains. 

Nevertheless, the proposed model offers the advantage of 
providing direct explanations for its predictions. This feature 
is particularly valuable for internal stakeholders, such as 
management, and external stakeholders, such as regulators, 
who often require transparent and understandable model 
explanations. 

Based on these findings, this paper recommends adopting 
our approach for AI models that have to be rarely updated but 

are frequently used for prediction tasks. This methodology 
ensures that the model not only performs well but also 
delivers reliable explanations in the form of Shapley values, 
thereby meeting the growing demand for transparency in AI 
systems. 
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