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Abstract— Non-small cell lung cancer is a prevalent form of 

lung cancer, with Solitary Pulmonary Nodules (SPNs) as a key 

indicator. Early detection and accurate diagnosis are critical 

for effective treatment. While Convolutional Neural Networks 

(CNNs) have been successful in diagnosing SPNs from 

Computed Tomography (CT) and Positron Emission 

Tomography (PET) imaging, they lack explainability. To 

address this, we applied DeepFCM, a multimodal approach 

that combines Fuzzy Cognitive Maps (FCMs) with CNNs, 

integrating clinical and PET imaging data to predict SPN 

malignancy. Clinical data include patient characteristics (i.e., 

gender, age, Body Mass Index, Glucose Levels) and SPN 

characteristics (diameter, Standardized Uptake Value 

(SUV)max, location, type, and margins). Predictions from the 

RGB-CNN, trained on PET images, are used as additional 

inputs for DeepFCM. Initially defined by nuclear experts using 

fuzzy sets, concept interconnections were adapted with Particle 

Swarm Optimization (PSO) and Genetic Algorithm (GA). 

DeepFCM is integrated into a Medical Decision Support 

System (MDSS) to enable data-driven predictions for NSCLC. 

To improve explainability, Gradient-weighted Class Activation 

Mapping (Grad-CAM) highlights significant image regions, 

while DeepFCM illustrates the relationships between each 

feature to NSCLC diagnosis. Natural Language Generation 

(NLG) is applied to explain the DeepFCM decision-making 

process by demonstrating each feature's impact on the 

diagnosis in human-understandable language. (Abstract) 

Keywords-Fuzzy Cognitive Maps; Non-small Cell Lung 

Cancer; Particle Swarm Optimization; Genetic Algorithm. 

I.  INTRODUCTION 

Non-Small Cell Lung Cancer (NSCLC) constitutes 
approximately 85% of all lung cancer cases globally [1]. 

NSCLC can often be presented as a Solitary Pulmonary 
Nodule (SPN) on imaging studies, necessitating further 
evaluation to determine if the nodule is benign or malignant, 
which presents challenges. Most individuals with early-stage 
lung cancer do not exhibit typical symptoms. However, once 
symptoms like cough and hemoptysis appear, many patients 
have already progressed to the middle or late stages of lung 
cancer, with metastasis occurring in some cases [2]. Deep 
Learning (DL) methodologies like CNN have been applied 
and published to detect SPN malignancies. In [3], the authors 
proposed an ensemble-based prediction model for NSCLC 
recurrence following surgical resection. The method 
integrated three neural network models, each trained 
separately on clinical data, handcrafted radiomic (HCR) 
features, and deep learning radiomic (DLR) features derived 
from CT images. The outputs of these models were 
combined using an ensemble analyzer to make the final 
prediction. Data from two institutions were utilized, 
involving standardized Computed Tomography (CT) images 
and relevant clinical features, excluding incomplete cases. 
The proposed ensemble model demonstrated superior 
accuracy using only single data types, achieving an 11.69% 
higher accuracy than the staging baseline.  In [4], the VGG19 
model was applied to classify CT and Positron Emission 
Tomography (PET) images, using the extracted features 
from VGG19 for further analysis. These outputs, along with 
additional SPN characteristics, were fed into an XGBoost 
model, which conducted the final diagnosis by merging 
imaging data and clinical features to enhance diagnostic 
precision. 402 patient cases were used with human 
annotations for internal validation and 96 histopathologically 
confirmed cases for external evaluation. The model achieved 
a 97% agreement with human experts and showed 85% 
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diagnostic accuracy on the external dataset. The most 
important predictors identified in this study were the 
Standardized Uptake Value (SUV)max value and the nodule 
diameter. Additionally, in [5], the authors explored 
multimodal learning on the «CoLlAborative multi-sources 
Radiopathomics approach for personalized Oncology in non-
small cell lung cancer» (CLARO) dataset for NSCLC, 
combining clinical data and imaging from a patient cohort to 
predict overall survival. A late fusion ensemble approach 
optimally integrated classifiers from different modalities, 
including a ResNet34 and a VGG11-BN for the imaging 
modality and a TABNET for the clinical modality, by 
solving a multiobjective optimization problem to maximize 
performance and diversity. Results indicate the proposed 
multimodal ensemble outperforms unimodal models, 
achieving 75% accuracy, 77.7% F1-score, and 84% recall. 
Furthermore, in [6], a two-stage multimodal learning 
framework was developed for diagnosing pulmonary nodules 
in PET/CT images. Pulmonary parenchyma segmentation 
was applied in the first stage with a pre-trained U-Net model. 
The second stage focused on extracting image-level and 
feature-level characteristics by utilizing a 3D Inception-
Residual Net (ResNet) with a convolutional block attention 
module and a dense-voting fusion mechanism. The model's 
performance was validated on real clinical data, achieving 
mean scores of 89.98% accuracy, 89.21% precision, 84.75% 
recall, 93.38% specificity, 86.83% F1 score, and 0.9227 area 
under the curve (AUC). In [7], a stacked 3D CNN model was 
implemented to classify SPN in PET/CT images. 113 
participants were included. Data augmentation was applied 
to increase the size of the training dataset, with random 
rotation, and by applying Gaussian noise, to differentiate the 
augmented images. Grad-CAM was applied as a post-hoc 
explainability technique to get insights from the CNN model. 
The 3D CNN attained a sensibility of 80.00%, a specificity 
of 69.23%, and an accuracy of 73.91%. Four-fold cross-
validation was performed as an evaluation method. 

In a preliminary previous work [8], DeepFCM was 
implemented in the context of a research-funded project 
named EMERALD [9] for the diagnosis of NSCLC assesing 
PET images with the diameter of the SPN and SUVmax 
variable as two only clinical features. RGB-CNN was 
constructed from scratch, and trained on PET images, where 
the CNN predictions for each image instance were included 
as an additional input concept. The FCM-weight analysis 
revealed the interconnections between various concepts, 
illustrating how they influence each other. In addition, 
DeepFCM was employed for the effective diagnosis of 
Coronary Artery Disease (CAD) with Polar map images, 
along with clinical and demographic information about the 
patients presenting the FCM-weighted analysis of concepts 
[10]  and in [11], where the results were enhanced with the 
incorporation of visual (Grad-CAM) and textual (supported 
by language models) explanations. This way, we go a step 
ahead from eXplainable Artificial Intelligence (XAI) 
methodologies towards Trustworthy AI [12]. 

This study aims to develop DeepFCM with the following 
set of clinical features, which include patient demographic 
information like gender, age, Body Mass Index (BMI), 

Glucose Level (GLU) value, and definite parameters such as 
SPN location, type, and margins, along with PET image data 
for NSCLC diagnosis. Robust XAI techniques are employed 
to facilitate understanding of the model, including Grad-
CAM, which explains the decision-making process of CNN 
results. Moreover, Natural Language Generation (NLG) 
techniques translate DeepFCM outputs into human-readable 
linguistic pieces of information, further enhancing the overall 
clarity and transparency of the model's predictions. 

The remainder of the paper is organized as follows: 
Section II presents the methods and methodology, including 
an overview of the patient data and the DeepFCM approach. 
Section III details the research results, while Section IV 
provides the concluding remarks. 

II. MATERIAL AND METHODS 

This section details the data acquisition process for PET 
data, followed by the steps of the proposed DeepFCM 
methodology. 

A. Patient Data 

The PET/CT image data was recorded in the Clinical 
Sector of the Department of Nuclear Medicine at the 
University Hospital of Patras using a hybrid PET/CT scanner 
(Discovery iQ3 sl16, General Electric Healthcare). This 
system uses three detector rings with a 15cm field of view to 
reconstruct 35 axial images at 4.25mm intervals. 3D volumes 
are acquired to represent the whole body using various bed 
positions. At the same time, the patient was in a supine 
position. Two experienced human readers (N.P., 10 years of 
experience, D.J.A., 30 years of experience) characterized the 
SPN malignancy with patient follow-up. The study's nature 
waives the requirement for obtaining patients' informed 
consent. From 2020 to 2023, more than 800 PET/CT scans 
were reviewed to identify potential participants. Patients 
without detected SPNs or with SPNs with a diameter greater 
than 30mm were excluded. 456 patients with a single SPN 
were qualified. The total benign cases were 222 and the total 
malignant cases were 234. Experts annotated CT scan slices, 
noting the finding's type, location, margins, diameter, and 
SUVmax and SPN diameter along with demographic 
information about each patient (gender, age, BMI). The 
SUVmax and diameter parameters were extracted from the 
PET scan. Each SPN finding is represented by a single 2D 
slice in which the full extent of the nodule is visible. 

B. Deep Fuzzy Cognitive Map 

In this research paper, we demonstrate the capabilities of 
our MDSS, specifically highlighting the DeepFCM method 
for diagnosing NSCLC using PET images alongside the 
clinical characteristics. The FCM-based model processed the 
values as input concepts, leveraging FCM's ability to convert 
input knowledge into system concepts with established 
causal relationships among them [13]. Expert knowledge is 
provided in the form of fuzzy sets with linguistic values 
defining the input-output interconnections among concepts. 
The linguistic values are transformed into numerical values 
to be utilized in the algorithm [14]. As interpretability 
techniques, Grad-CAM was employed to interpret CNN 

28Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-215-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EXPLAINABILITY 2024 : The First International Conference on Systems Explainability



 

predictions, while NLG was used to translate the DeepFCM 
outputs into human-readable explanations. Figure 1 presents 
the full methodological framework of the DeepFCM 
approach used in this study, detailing both the training 
process and the inference mechanism within the MDSS 
functionality. Following, the steps of the DeepFCM 
methodological process are analyzed. 

 

Figure 1.  DeepFCM Methodological Pipeline Framework for NSCLC 

Diagnosis Using Clinical Data and PET Imaging Data 

The clinical data includes patient demographic 
information about the patient such as gender, age, and BMI, 
GLU, as well as characteristics of the SPN such as SUVmax 
value, nodule diameter, and three SPN categorical variables 
type, location, and margins each segmented by their 
respective values. 

First, age was preprocessed with the Min-Max 
normalization technique [15] and the variables BMI, GLU, 
SUV, and diameter were divided with their maximum value 
of 70, 192, 30, and 3 accordingly to be rescaled into the 
spectrum [0,1]. The SPN categorical variables, including 
location, type, and margins, were separated into individual 
columns, with one-hot encoding process. The separated 
columns generated from categorical variables with SPN 
characteristics along with the demographic of the patient 
result in a total of twenty-three clinical characteristics. RGB-
CNN was constructed from scratch and trained with the PET 
dataset; being able to extract a prediction for each image 
instance. The RGB-CNN predictions were incorporated as an 
additional input concept alongside clinical data, collectively 
forming twenty-four distinct input concepts for the 
DeepFCM model. This model leverages both clinical values 
and CNN-derived predictions, integrating them into a 
cohesive framework that enhances interpretability and 
insight into the diagnostic process. By incorporating clinical 
and imaging data, DeepFCM generates results that are not 
only accurate but also transparent, enabling a clear 
understanding of how each concept impacts the final 
diagnosis. Through CNN’s robust feature extraction from 
imaging data, combined with the FCM’s transparent 
framework for mapping interconnections, DeepFCM delivers 
an insightful diagnostic tool that provides clinicians with a 
nuanced view of the decision-making process. This 
combined approach strengthens the system’s capacity to 
guide decisions, making DeepFCM a comprehensive and 

interpretable tool in the context of medical diagnostics [11]. 
A 10-fold cross-validation approach was implemented to 
ensure the generalizability of results by partitioning the 
dataset into 10 batches, where each batch served as the 
testing fold while the remaining nine served as the training 
folds [16].  

In this study, Particle Swarm Optimization (PSO), and 
Genetic Algorithm (GA) were incorporated into the 
DeepFCM learning process to adjust the interconnections 
among concepts and thus be in line with the provided expert 
knowledge. PSO [17] is a population-based approach with 
particles exploring the search space. PSO can be integrated 
into the FCM learning process by treating the 
interconnections (weights) between concepts as particles in 
the search space. Each particle (weight) adjusts its position 
based on its own best-known position and the best-known 
positions of its neighbors, iteratively optimizing the FCM 
weight matrix to minimize the error between predicted and 
actual outcomes. GA integrates with FCM learning by 
encoding the weights between concepts as chromosomes, 
which evolve over multiple generations. Through selection, 
crossover, and mutation, GA searches for the optimal weight 
matrix that best aligns with expert knowledge, improving the 
predictive power of the FCM model [18]. Both optimization 
methods calculate the weights (interconnections) among 
DeepFCM concepts to improve classification performance. 
Even though they perform similarly in the benchmark 
classification metrics, the GA applied for DeepFCM learning 
emerges with lower computational latency.  

Overall, the learning process creates a weight matrix to 
minimize the error function, used by DeepFCM for NSCLC 
diagnosis. For each case, DeepFCM uses the selected weight 
matrix to provide a diagnosis and at the same time to 
visualize the input-output relationships, enhancing 
transparency in the decision-making process. 

Regarding XAI techniques, Grad-CAM is used to 
interpret RGB-CNN predictions, by highlighting the most 
influential regions that signify the prediction. Grad-CAM 
implemented by Selvaraju [19] leverages the feature maps 
produced by the final convolutional layer of the CNN to 
identify the most relevant regions in the image that 
contribute to the model's prediction. By computing the 
gradients of the target class concerning these feature maps, 
Grad-CAM generates a heatmap that highlights the areas of 
the image most influential in the decision-making process, 
providing visual insights into the model’s focus [19]. In 
addition, textual explanations were generated with GPT-4, a 
pre-trained large language model, which has an Application 
Programming Interface (API) provided by OpenAI [20], as 
an NLG technique. Namely, a prompt is provided to GPT-4, 
containing the user-inputted variable values, the DeepFCM 
result, the CNN prediction, and the corresponding DeepFCM 
weight values, along with instructions about how to realize 
the structure of the requested textual explanation. This 
enables GPT-4 to generate a comprehensive natural 
explanation of the decision-making process, offering clear 
insights into how DeepFCM arrived at its diagnosis. 
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III. RESULTS 

This section presents the classification results along with 
the included XAI techniques, with the DeepFCM, generated 
interconnections, heatmap image, and NLG reasoning, to 
interpret the DeepFCM decision-making process. 
Additionally, it demonstrates the functionality of MDSS in 
classifying NSCLC diagnoses using PET and clinical data. 

A. Classification Results 

For classifying NSCLC data into two categories, benign 
and malignant, CNN models and DeepFCM were applied 
and compared with the literature state of the art for similar 
cases. Table I provides a summary of the performance 
metrics across different investigated models. Initially, the 
results of the RGB-CNN model, which was trained 
exclusively on PET image data are presented. Next, 
DeepFCM results are illustrated, following the proposed 
multimodal approach integrating clinical and imaging data 
(see section above), optimized using PSO and GA. Finally, 
the proposed models are compared against state-of-the-art 
models cited in the literature review [3]-[5]. Mean values and 
standard deviations illustrate the consistency of results for 
each model. Additionally, confidence intervals (CIs) are 
provided for the second to last model, offering insight into 
the precision and reliability of its performance estimates. 

TABLE I.  DEMONSTRATION OF RESULTS 

Accuracy Loss Sensitivity Specificity Precision 

RGB-CNN model 

83.12%±6.43% 0.3 92.26±6.18% 91.91±9.21% 91.31±5.75% 

Proposed study (DeepFCM-PSO and DeepFCM-GA) 

88.14%±3.8% 0.12 88.36±5.23% 87.29±7.48% 91.27±5.28% 

87.08%±5.96% 0.13 84.56±12.29% 85.38±6.83% 87.79±6.16% 

Literature study [3] 

73.23%±6.0% - 80.08±6.4% -  75.71±4.8% 

Literature study [4] 

85.21 (95% CI: 

83.74–86.68) 
 

81.23 (95% 

CI: 79.22–

83.24) 

95.37 (95% 

CI: 

92.99–97.75) 

 

Literature study [5] 

75%±16.2% - 84%±15.17% - - 

 
In particular, RGB-CNN achieved 83.12% accuracy, 

while DeepFCM's multimodal approach improved the 
classification accuracy, with PSO reaching 88.14% and GA 
87.08%. Incorporating additional clinical information, the 
overall performance has been enhanced. DeepFCM models 
showed smaller deviations in the calculated metrics, 
indicating consistency. State-of-the-art multimodal 
approaches attained 73.23% [3], 85.21% [4], and 75% [5] 
accuracy, highlighting the improvements achieved by the 
proposed model. 

B. MDSS illustrative  example 

We present the DeepFCM results through MDSS for 
NSCLC diagnosis using the DeepFCM-PSO model, which 
achieved the best metrics. The DeepFCM graph 
demonstrates the interconnections among concepts, Grad-
CAM provides visual CNN explanations, while GPT-4 
translates outputs into clear, understandable interpretations. 

1) MDSS Diagnosis 
Figure 2 showcases the DeepFCM diagnosis along with 

the generated DeepFCM graph, illustrating the 
interconnections between concepts. The patient refers to a 
63-year-old male patient with a BMI of 27.8, a GLU value of 
89, an SUVmax of 10.2, and an SPN diameter of 2.7 cm 
located in the right lower lobe. The type of SPN is semi-solid 
with lobulated margins.  

 

Figure 2.  MDSS screenshot: Illustrative example with DeepFCM-PSO 

Integration for NSCLC Diagnosis Using PET Imaging and Clinical Data. 

2) Grad-CAM 
Figure 3 showcases the Grad-CAM application through 

MDSS, with JET colormap to highlight impactful regions in 
red and less impactful ones in blue. The figure includes the 
cropped ROI image, the heatmap indicating key areas, and 
the overlay combining both. The CNN accurately classified 
the malignant lesion, and Grad-CAM effectively localized 
and highlighted in red the malignant SPN region, providing 
visual justification for the RGB-CNN model's prediction of 
malignancy.  
 

Figure 3.  Grad-CAM Application Integrated into MDSS as an XAI 

Technique for PET Image Analysis. 

3) Textual explanations 
In Figure 4, we present the results from the GPT-based 

textual explainer integrated within the MDSS, which offers a 
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clear and detailed analysis of the clinical factors contributing 
to the malignancy prediction. A prompt was carefully 
constructed, incorporating several key components: the CNN 
and DeepFCM predictions, the input clinical values, the 
heatmap image generated through Grad-CAM, and the 
DeepFCM-generated interconnections. This combination 
allows the explainer to highlight the most influential factors, 
while seamlessly integrating image analysis and model 
predictions. 

DeepFCM has accurately classified the SPN as 
malignant, supported by both clinical and imaging data. Key 
clinical factors such as high SUV (10.2), significant nodule 
diameter (2.7 cm), and lobulated margins play pivotal roles 
in this diagnosis. Additionally, the image analysis, including 
the original scan and Grad-CAM heatmap, reinforces the 
malignancy prediction by highlighting critical regions 
associated with increased metabolic activity and irregular 
growth patterns. The integration of clinical insights, CNN 
predictions, and visual heatmap evidence provides a 
comprehensive and explainable diagnosis for the nuclear 
doctor, ensuring consistency and clarity in the interpretation 
of the results. 

IV. CONCLUSIONS 

DeepFCM’s capabilities establish it as a fundamental tool 
for achieving accurate SPN diagnoses in PET images and 
clinical data while providing explainability of results, 
enhancing DeepFCM’s suitability to be incorporated into 
doctors’ diagnosis process. DeepFCM stands out as a 
transparent tool for effective NSCLC diagnosis by 
incorporating explainable methodologies.  

DeepFCM’s interconnections between clinical and 
imaging data, using PSO and GA, highlight key features like 
SUV, nodule diameter, and the SPN type. This alignment 
validates its accuracy in prioritizing factors influencing 
NSCLC malignancy. Its ability to reveal meaningful clinical-
imaging connections solidifies its potential as a reliable 
diagnostic tool, aiding clinicians in identifying critical 
factors for accurate NSCLC diagnosis. 

 

Figure 4.  Explanation of DeepFCM Prediction for NSCLC Analysis 

Using NLG Reasoning. 

This approach aligned with nuclear experts' assessments 
and helped non-specialists understand the model’s logic. 
Grad-CAM detected the SPN region in the PET image, 
which RGB-CNN classified as malignant. The heatmap 
highlighted key high metabolic activity areas within the 
nodule, visually explaining the model's decision. This 
validated the model’s focus on relevant regions, offering 
clinicians a clear understanding of CNN’s classification 
process, and enhancing transparency in diagnosis.The study 
has limitations, primarily due to the dataset being sourced 
from a single hospital, which affects its representativeness 
and generalizability across different regions and healthcare 
settings. This may limit the broader applicability of the 
findings. Further improvement could be achieved by 
incorporating diverse datasets to enhance model robustness 
and applicability. 

MDSS incorporating DeepFCM is a valuable tool for 
accurate SPN diagnosis in PET images and clinical data. By 
providing clear, explainable results, MDSS enhances the 
diagnostic process, making it a vital asset in clinical settings. 
This system not only improves the accuracy of diagnoses but 
also ensures that the reasoning behind each diagnosis is 
transparent and understandable, fostering trust in AI-driven 
healthcare solutions. 
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