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Abstract—Devising mathematical models with high accuracy,
but otherwise low interpretability as well as explainability is
no longer sufficient. This paper proposes a universal, model-
agnostic method for achieving a certain degree of explainability
of complex mathematical models including the models that are
used, for example, in computer simulations. Specifically, the
proposed method prescribes how to effectively perform Sobol’s
outer decomposition of a complex model by exploiting masking
of the model inputs by a default value. The masking can not only
divide the inputs into multiple orthogonal subspaces, but it also
determines the granularity, at which the model explainability
is studied. The outputs corresponding to every masked input
can be orthogonalized by some existing methods including, for
example, the Gram-Schmidt process. It enables readily finding
the optimum linear combining of these orthogonal outputs. It
should be noted that such a model decomposition is not intended
to improve the accuracy by ensemble modeling, but the goal is to
uncover an inherent structure and properties of complex models.

Keywords—Explainability; model-agnostic; multivariate func-
tion; orthogonal decomposition; Sobol’s decomposition.

I. INTRODUCTION

Mathematical modeling has become indispensable in many

scientific and engineering disciplines. In engineering, for ex-

ample, mathematical models are necessary for offering cred-

ible explanations about how the systems should be designed

in any particular way, or why the given system has a partic-

ular performance. The widespread adoption of mathematical

models is steadily driven by the modeling economics. Thus,

designing ever more complex engineering systems and eluci-

dating understanding of many physical and biological systems

have become much cheaper and faster when they are studied

as mathematical models rather than performing often costly

and tedious laboratory or field experiments. Mathematical

modeling allows guided searches and systematically exploring

very large spaces of domain knowledge by leveraging comput-

ing technology and algorithms. The expanding ecosystem of

mathematical models leads to much higher information gains,

and it also facilitates automated discovery of new knowledge.

Mathematical models can appear in several basic forms.

The first obvious form are mathematical expressions, which

can be manipulated using algebraic rules and calculus. It is

the only form, which guarantees reproducability. The second

form are algorithms and computer simulations represented

implicitly or explicitly by hierarchical mathematical structures.

They are mainly used for computing the outputs for given

input values. The third form are the sets of input-output data

values. The datasets can be used to infer other forms of

mathematical models with a varying degree of accuracy. Deep

learning models are particularly popular nowadays due to their

universality to fit different kinds of datasets within the same

model structure. Such a fundamental property can be attributed

to compositional sparsity of computable functions [1].

The model development and analysis often requires under-

standing how the model outputs are derived from its inputs. It

includes understanding how the input-output transformation

is affected by the model structure as well as by different

sets of model parameters. Such a task has been traditionally

referred to as sensitivity analysis [2], and it is key in providing

the model interpretability. It is generally accepted that there

is a trade-off between the model interpretability and the

model accuracy [3], although this assumption is currently

being debated. The model interpretability enables a variety of

model-related tasks such as calibrating, optimizing, selecting,

validating and simplifying the models, and making the models

more robust by reducing the model uncertainties.

The basic strategy for performing a local sensitivity analysis

of the model exploits derivatives in multiple input dimensions

[2]. The global sensitivity analysis can be obtained by expand-

ing the model outputs directly, or by expanding the model

output means or variances in terms of the input statistics

[2], [4]. The surrogate or meta models can be particularly

effective in reducing the computational costs, and providing

the faster convergence. The challenge is how to preserve the

key properties of the original model [4].

Furthermore, since the models are usually used to provide a

certain functionality within high-level applications, it may be

easier as well as sufficient to examine the model explainability

[5]. Unlike interpretability, explainability does not require

understanding a complete model structure. Instead, explain-

ability focuses on a more narrow objective of identifying,

which model inputs are more important in determining the

model outputs, This problem is also referred to as input

factors screening, or attribution problem. The most popular

methods for achieving the model explainability are model-

agnostic. They include permutation importance of features,

various dependency plots (e.g., individual conditional expec-

tation plots, and partial dependency plots), local interpretable

model-agnostic explanations (LIME) [6], and Shapley additive

explanations (SHAP) [7].
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In general, orthogonalizations can be used to improve the

convergence, and even the performance of models [8]. The

orthogonalization injects separability into the model, which

then leads to a reduced complexity and increased robustness,

since the model components have less effect on each other.

The orthogonal model components can be added or removed

without requiring to change the existing model structure. In

the literature, various orthogonalization methods of linear

and non-linear models were considered. For example, the

Gram-Schmidt process together with variable projections was

adopted in [9] to fit the data with a linear combination of

non-linear models. The Gram-Schmidt process was also used

in [10] to improve learning of deep neural networks. The

mixing of orthogonalized linear models was examined in [11]

to improve the scale and the convergence of data fitting. The

properties of orthogonalized linear regression were studied

in [12], [13]. A faster convergence of statistical parameter

estimation was obtained by exploring orthogonal statistical

moments in [14]. The methods for achieving explainability in

deep neural networks were reviewed in [15], although without

assuming any orthogonalization strategies.

The main problem with the above works is they implic-

itly assume that the model under consideration is a linear

combination of multiple sub-models. This excludes a large

number of other models, for example, the models that are

used in computer simulations, where explicit mathematical

description is often very limited. In this paper, we overcome

such a limitation by defining the model components using

multiple input projections with the model being considered,

so it does not matter how the given model is specified.

More specifically, our objective is to explore an inherent

structure of complex models by orthogonal projections of their

inputs and outputs. The proposed method obviates the need

to mathematically manipulate the model, so it is completely

model agnostic. The only requirement is that the model being

investigated is already “good enough”. The proposed method is

primarily motivated by Sobol’s decomposition of multivariate

functions [16]. The proposed method is similar to SHAP

method except that it does not require obtaining multiple

models, for example, retraining multiple machine learning

models, for different input subspaces. Moreover, both input

and output subspaces can be made orthogonal. It enables

exploiting other useful properties, and providing insights into

the dependency and importance of model inputs and outputs.

The rest of the paper is organized as follows. Section

II reviews common decomposition strategies of multivariate

functions. Section III introduces the proposed decomposition

method for explainability of complex models. Numerical ex-

ample is investigated in Section IV. Conclusion and future

work are summarized in Section V.

II. DECOMPOSITIONS OF MULTIVARIATE FUNCTIONS

Function decompositions allow uncovering their latent

structure, reducing the computational complexity by enabling

divide & conquer strategies, obtaining approximations, which

are amenable to optimizations and analysis, and most im-

portantly, they can also provide explainability. In the liter-

ature, function decomposition is also sometimes referred to

as function factorization, and function expansion, respectively,

depending on the specific objectives assumed.

Consider a multivariate vector function,

yyy = fff (xxx) = fff (x1, . . . ,xI) =







f1(xxx)
...

fO(xxx)






∈ R O, xxx ∈ R I (1)

representing a mapping between the Euclidean vector spaces,

R I 7→ R O. There are two basic function decomposition strate-

gies. In particular, the decomposition into n product-factors

can be written as,

fff (xxx) =
n

∏
i=1

fff i(sssi), sssi ⊆ {x1, . . . ,xI} (2)

whereas the decomposition into n sum-factors is defined as,

fff (xxx) =
n

∑
i=1

fff i(sssi), sssi ⊆ {x1, . . . ,xI}. (3)

These decompositions are very useful for effectively per-

forming, for example, the function marginalization and max-

imization over all except a small number of independent

input variables. Moreover, it is usually easier to express a

complicated support region, A , of the function, fff (xxx), ∀xxx ∈ A ,

using a scalar decision function, A(xxx), i.e.,

fff (xxx)A(xxx) =

{

fff (xxx), xxx ∈ A

0, xxx 6∈ A
(4)

which enforces zero function values, when the inputs are

outside the support region. Since A(xxx) is itself a multivariate

function, it can be decomposed using the same factorizations.

The multivariate Taylor expansion [17] was assumed in [4]

to obtain a polynomial expansion of stochastic functions in

multiple dimensions, i.e.,

yyy ≈
n

∑
i=1

ai |xxx − E[xxx]|i1 (5)

where E[·] denotes the expectation, and | · |1 is the absolute

value of a sum of the vector or matrix elements. The main

issue with the Taylor-based function expansion is that it is

very localized, so one has to decide about which point in the

input space the function is to be approximated.

In the literature, there are different versions of the universal

approximation theorem [18]. Specifically, this theorem claims

that certain broad classes of multivariate functions can be

approximated to an arbitrary accuracy by compounding a

sufficient number of linear transformations followed by a

dimension-wise non-linearity (activation function), i.e.

yyy ≈= · · · σσσ ◦ (AAAi,bbbi) ◦ · · ·σσσ(AAA1xxx + bbb1). (6)

The corresponding computing structure is known as a multi-

layer perceptron (MLP).

Alternatively, the Kolmogorov-Arnold theorem claims that

multivariate scalar functions defined on a unit hypercube can
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be approximated to an arbitrary accuracy by assuming the

decomposition [19],

f (xxx) =
2n

∑
i=0

Φ

(

n

∑
j=1

φi, j(x j)

)

. (7)

The caveat is that, in practice, the non-linear functions, Φ,

and, φi, j, can be very peaky, or otherwise ill-shaped. The cor-

responding computing structure is known as the Kolmogorov-

Arnold network (KAN) [20].

Another function decomposition, which will be assumed

in the following section to enable explainability of complex

models, is due to Sobol [2], [16]. It is referred to as Sobol’s

decomposition, and it is an example of the sum-factors de-

composition (3). In particular, a multivariate vector function,

fff , can be systematically expanded as,

fff (xxx) = fff 0 +
I

∑
i=1

fff i(xxxi) +
I

∑
i, j=1
i6= j

fff i, j(xxxi,xxx j) · · · +
I

∑
i=1

fff {1:I}\i(xxx)

(8)

where fff 0 is a constant vector, xxxi denotes the i-th variable of

the I-dimensional input vector, xxx, and, {1 : I}\ i, removes the

index i from the index set, {1,2, . . . , I}. Expansion (8) also

allows for symmetric component functions, i.e., the functions

that are invariant to permutations of their arguments. More

importantly, Sobol’s decomposition is not unique, however,

without any further constraints, it is exact.

There is yet another model-agnostic method for approxi-

mating multivariate functions, which turned out to be very ef-

fective in many practical scenarios involving complex models

that are expensive to evaluate. The basic idea of this method

is to approximate the model by the realization of a multi-

dimensional Gaussian process [21] assuming only a few points

where the function values are known. However, this method

is not considered in this paper.

III. ORTHOGONAL INPUT-OUTPUT DECOMPOSITIONS

Kolmogorov-Arnold decomposition (7) assumes only uni-

variate component functions, whereas Sobol’s decomposition

(8) combines component functions having different number

of variables. Assuming the latter, it can be argued that the

summands in (8) that are dependent on larger number of

input variables are more accurate approximations of the given

function, fff (xxx), then other component functions having smaller

number of variables. However, the component functions with

more variables are not only more difficult to obtain, but they

are also less interpretable.

In practice, a good trade-off between the decomposition

interpretability, complexity, and accuracy can be achieved

by assuming non-empty variable subsets, sss(i) ⊂ {x1, . . . ,xI},

i = 1, . . . ,N, such that the subsets, sss(i), fully cover all input

variables, xxx. Here, it is proposed to only consider the following

terms in decomposition (8) in order to obtain an interpretable

approximate representation of the original function, i.e., let,

fff (xxx) ≈ fff 0 +
N

∑
i=1

fff i(sss(i)) +
N

∑
i, j=1
i6= j

fff i, j(sss(i),sss( j)). (9)

The structural interpretation of decomposition (9) is obvi-

ous; it is a fully connected graph consisting of N vertices as

depicted in Figure 1. The vertices are assigned the component

functions, fff i(sss(i)), while the edges between the vertices are

assigned the pairwise component functions, fff i, j(sss(i),sss( j)).

f3(sss(3)) f2(sss(2))

f1(sss(1))

fN(sss(N))

fN−1(sss(N−1))

fi(sss(i)) f1,i(sss(1),sss(i))

f1,3(sss(1),sss(3))

f1,N−1(sss(1),sss(N−1))

Figure 1. Truncated Sobol’s decomposition of a multivariate function as an
interpretable and universal representation with good approximation accuracy.

In the sequel, we assume that the multivariate vector

function, fff , represents a complex model, M(xxx;ΩΩΩ), which is

parameterized by a set of parameters, ΩΩΩ, i.e.,

fff (xxx,ΩΩΩ) ≡ M(xxx;ΩΩΩ) ≡ MΩΩΩ(xxx). (10)

The parameters, ΩΩΩ, represent additional input dimensions of

the model. In practice, conditioning on parameters defines

a whole class of models, MΩΩΩ(xxx), so the input dimensions

are only represented by xxx. For example, the model, M, can

be a deep learning model with learnable parameters, ΩΩΩ. The

overall process of extracting the proposed model structure as

decomposition (9) is shown in Figure 2.

xxx
MΩΩΩ(〈mmm(2),xxx〉)

MΩΩΩ(〈mmm(1),xxx〉)

MΩΩΩ(〈mmm(N),xxx〉)

mmm(N)

mmm(2)

mmm(1)

o
rt

h
o

g
o

n
al

iz
at

io
n

eee(1)

eee(2)
a2

yyy

vvv(1)

vvv(2)

vvv(N) eee(N)
aN

a1

Figure 2. Model-agnostic decomposition (9) for extracting the input-output
structure of complex models, MΩΩΩ(xxx).

A. Orthogonal Inputs

It is desirable to consider the projections of model inputs

into multiple independent subspaces, since the information
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contents of a sum of independent components is then equal

to the sum of the information contents of these components.

The vector subspaces are independent, provided that they

are mutually orthogonal. Thus, assume the subsets of input

variables, sss(i), satisfying,
{

sss(i) ∩ sss( j 6=i) = /0 (disjoint)

∪i sss(i) = xxx (full coverage)
. (11)

If the model, M, is complex, and expensive to evaluate (a

typical case for deep learning models), the question arises

how to effectively find the component functions, fff i, and, fff i, j,

in decomposition (9). A possible solution is to combine the

given multi-dimensional complex model with the orthogonal

subspace projections of its inputs as shown next.

Let the input variables be arranged in a column vector, xxx.

Define the binary mask vectors, mmm(i), i = 1, . . . , I, of the same

length as xxx, i.e., mmm(i) ∈ {0,1}I . The zeros in mmm(i) indicate,

which components in xxx should be masked by setting them to

some default value, for example, to zero. Then, by slightly

abusing the notation when using the same symbol for a set

as well as for its vector representation, the orthogonal (i.e.,

mutually exclusive) variable subsets, sss(i), can be represented

as vectors,

sss(i) = 〈mmm(i),xxx〉 = (mmm(i))T · xxx =
I

∑
j=1

mmm
(i)
j xxx j (12)

where 〈·, ·〉 denotes the inner product of two vectors. The

corresponding output vectors for every masked input are,

vvvi = MΩΩΩ(〈mmm(i),xxx〉), i = 1,2, . . . ,N. (13)

B. Orthogonal Outputs

After computing the N output vectors for all N masked

inputs, it is useful to explore their structure too. In particular,

the outputs can be assumed to be deterministic vectors in

an O-dimensional vector space. In such a case, they can be

orthogonalized by the Gram-Schmidt procedure, provided that,

O ≥ N. In particular, the orthogonal vectors, eeei, are obtained

as linear projections of vectors, vvv(i), using the recurrence,

eee(i) = vvv(i) −
i−1

∑
j=1

〈vvv(i),eee( j)〉eee( j), i = 2,3, . . . ,N (14)

with the initial vector, eee(1) = vvv(1). Note that orthogonalization

(14) can be expressed as a linear transformation of vectors,

vvv(i). The caveat is that the linear transformation must be

recomputed for every new set of vectors, xxx.

In practice, often, N ≫ O, which rules out the Gram-

Schmidt procedure (more precisely, the vectors with O com-

ponents can span the subspaces in at most O dimensions). In

such a case, other orthogonalization strategies are possible that

exploit various matrix factorizations. In this paper, the vectors,

vvv(i), are decorrelated by first finding their empirical correlation

matrix, CCCvvv. The elements of CCCvvv are the average inner products.

They can be computed recursively as soon as the k-th set of

vectors, vvv(i)(k), has been obtained, i.e.,

CCC
(vvv)
i, j (k) =

k

k + 1
CCC

(vvv)
i, j (k − 1) +

1

k + 1
〈vvv(i)(k),vvv( j)(k)〉. (15)

Since the matrix, CCC(vvv), is guaranteed to be positive-definite,

it can be decomposed into a product of the square matrix,

DDD ∈ R N×N , i.e., , CCC(vvv) = DDDT DDDT , for example, using a singular

value decomposition (SVD). The matrix, DDD, can be then used

to decorrelate, i.e., orthogonalize the vectors, vvv(i)(k), as,

EEE(k) = [eee(1)(k) · · · eee(N)(k)] = VVV (k)DDD−T (k) ∈ R O×N (16)

where the vectors at instant, k, are gathered into matrices,

EEE(k), and, VVV (k), respectively.

The resulting vectors, eee(i), are orthogonal, so that,

〈eee(i),eee( j)〉 =

{

Ei, i = j

0, i 6= j
(17)

where the squared (Euclidean) length of these vectors is,

Ei = 〈eee(i),eee(i)〉 =
∥

∥

∥
eee(i)
∥

∥

∥

2

. (18)

The values, Ei, can be again computed recursively as,

Ei(k) =
k

k + 1
Ei(k − 1) +

1

k + 1

∥

∥

∥
eee(i)(k)

∥

∥

∥

2

. (19)

Recall also that, when the vectors, vvv(i), are assumed to be

random (the N ≫ O case), the inner products are computed as

empirical means (cf. eq. (15)).

Finally, the orthogonal vectors, eee(i), are linearly combined

to create the output vector, yyy, as,

yyy(k) =
N

∑
i=1

ai eee(i)(k). (20)

It is immediately obvious, why to make the vectors, vvv(i),

orthogonal. Thus, by multiplying both sides of (20) by the

vector, eee( j), and averaging, the combining coefficients can be

computed one-by-one as,

∑
k

〈eee( j)(k),yyy(k)〉 = ∑
k

N

∑
i=1

ai〈eee( j)(k),eee(i)(k)〉 = a jĒ j (21)

⇒ a j = 〈eee( j),yyy〉/E j = 〈eee( j),MΩΩΩ(xxx)〉/E j (22)

where the desired output vector, yyy = MΩΩΩ(xxx).

C. Obtaining Decomposition (9)

The procedure described so far can be readily used to obtain

the first two summands in decomposition (9), i.e., (N + 1)
functions, { fff 0, fff 1, . . . , fff N}. Even though it is possible to also

obtain, at the same time, the second-order functions, fff i, j, the

joint orthogonalization of all (N(N + 1)/2) vectors, vvv(i) =
MΩΩΩ(〈mmm(i),xxx〉), and, vvv(i, j) = MΩΩΩ(〈mmm(i, j),xxx〉), is rather cumber-

some. In order to overcome this difficulty, decomposition (9)

can be performed in two steps. In particular, after obtaining

the zero and the first-order functions, { fff 0, fff 1, . . . , fff N}, the

N(N − 1)/2 second order functions, fff i, j, are obtained in the

second step in order to approximate the left-hand side of the

expression,

fff (xxx) − fff 0 −
N

∑
i=1

fff i(sss(i)) ≈
N

∑
i, j=1
i6= j

fff i, j(sss(i),sss( j)). (23)
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This process can be continued to obtain the N(N − 1)(N −
2)/6 third-order functions, fff i, j,k, and so on. However, and

importantly, the input masks for higher-order functions are no

longer assumed to be disjoint (i.e., orthogonal), as they are

created by combining the first-order masks, mmm(i); for example,

mmm(i, j) = mmm(i) + mmm( j)

mmm(i, j,k) = mmm(i) + mmm( j) + mmm(k).
(24)

IV. NUMERICAL EXAMPLE

Machine learning is assumed as an example of a complex

model to illustrate the proposed explainability method. The

well-known MNIST dataset [22] of hand-written digits is used

with a basic MLP classifier. The training samples are gray-

scale images of (28 × 28) pixels with pixel values between

0 and 1. The MLP has two hidden layers with 30 and 20

neurons, respectively, and 10 softmax outputs. The MLP was

trained on all samples over only 10 epochs. The trained

model reached the training accuracy of 97.56%, and the

testing accuracy of 94.31%. The model was implemented

using Python class, “MLPClassifier”, from the Python module,

“sklearn.neural network”.

The goal is to decompose the trained MLP model into the

explainable structure in Figure 2. There are two key aspects

to investigate. First, we can compare the training samples

from the MNIST dataset, on which the MLP model was

trained, against the randomly generated inputs. Second, the

orthogonal masks can be compared with the masks generated

at random. In both cases, we compute the mean-square error

(MSE) between the trained MLP output, and the combined

output of the expanded model in Figure 2.

In the experiment concerning different distributions of in-

puts, in addition to training and testing samples from the

MNIST dataset, the same number of (28 × 28) independent

random inputs were generated from a uniform distribution.

The resulting MSE values are summarized in Table I, for

N = 7,14,28,56 and 112 subspace projections, respectively.

The MSE values were averaged over K input samples and N

model components as follows:

MSE0 =
1

K

K

∑
k=1

‖yyy(k)‖2

MSE1 =
1

NK

N

∑
i=1

K

∑
k=1

∥

∥

∥
vvv(i)(k) − yyy(k)

∥

∥

∥

2

min MSE1 = min
1≤i≤N

1

K

K

∑
k=1

∥

∥

∥
yyy(i)(k) − yyy(k)

∥

∥

∥

2

MSE2 =
1

K

K

∑
k=1

‖ỹyy(k) − yyy(k)‖2

(25)

where yyy = MΩΩΩ(xxx) is the output of the trained model, vvv(i) is the

output of the model using the i-th mask as its inputs, and ỹyy

denotes the overall combined output of the decomposed model.

Note also that MSE0 values are independent of N.

Examining the MSE values in Table I, it is obvious that

MSE1 values are comparable to MSE0 values, i.e., masking

TABLE I. COMPARISON of MSE VALUES

N inputs masks MSE0 MSE1 min MSE1 MSE2

7

train.
rand. 0.953 0.821 0.717 0.791

systm. 0.953 1.2085 0.912 0.767

rand.
rand. 0.416 0.432 0.336 0.275

systm. 0.418 0.892 0.466 0.253

14

train.
rand. 0.953 0.921 0.805 0.739

systm. 0.953 1.1028 0.835 0.739

rand.
rand. 0.417 0.430 0.330 0.270

systm. 0.417 0.727 0.362 0.252

28

train.
rand. 0.953 0.936 0.866 0.741

systm. 0.953 1.0348 0.844 0.751

rand.
rand. 0.417 0.442 0.322 0.258

systm. 0.416 0.584 0.279 0.233

56

train.
rand. 0.953 0.947 0.850 0.753

systm. 0.953 0.986 0.877 0.749

rand.
rand. 0.417 0.437 0.330 0.269

systm. 0.418 0.511 0.328 0.233

112

train.
rand. 0.954 0.950 0.890 0.731

systm. 0.954 0.972 0.878 0.742

rand.
rand. 0.418 0.465 0.351 0.280

systm. 0.417 0.474 0.315 0.232

the inputs can substantially reduce the classifier accuracy in

exchange for better interpretability. More importantly, combin-

ing all N outputs of the N model replicas with masked inputs

can greatly improve the accuracy. Thus, assuming not only

the first-order functions in decomposition (9) is expected to

further improve the approximation accuracy. Surprisingly, the

number of masks N considered seems to have a little effect on

the MSE. For training samples from the MNIST dataset, using

random or systematic masks make a little difference. However,

for randomly generated inputs, the original MLP model and

the expanded model have very similar MSE values.

Next, we display the correlation matrix, CCCvvv, and, the prob-

abilities, PPPi, j, that the MLP output predictions for the masked

inputs agree with the predictions obtained when the masks

are combined. We again consider four cases as in Table I.

Specifically, the probabilities, PPPi, j , are defined for the pairs

of masks, mmm(i), and, mmm( j), 1 ≤ i 6= j ≤ N, as the ratios of the

number of instances when the decisions for the two masked

inputs are the same as the decision when the two masks

are combined, i.e., for the mask, mmm(i) + mmm( j). The calculated

matrices, CCCvvv), and, PPP, are shown in Figure 3.

In Figure 3, there is an apparent line marking the main diag-

onal. All sub-figures are symmetric about the main diagonal.

Increasing N not only increases the resolution, but also the

variety of calculated values. There are clearly observable pat-

terns (the squares of various sizes and color shades) indicating

that orthogonal input subspaces might lead to similar output

decisions due to inherent cross-correlations. The probabilities

(right-column sub-figures) related to the final output decisions

appear to have visually richer patterns than the pairwise cor-
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Figure 3. The calculated correlations CCCvvv (left columns), and the decision probabilites (defined in the text; right columns).
For comparison purposes, the units are arbitrary, and the darker colors represent smaller values.

relations (left-column sub-figures). Interestingly, the patterns

for N = 28 start emerging as being in 3D. There is a clear

difference between the models processing random inputs, and

processing the inputs, on which they were trained. This can be

exploited for detecting the out-of-sample distributions. Similar

claims can be made about systematic (orthogonal) masks vs.

random masks. In both cases, the differences become more

recognizable when N is increased.

V. CONCLUSION AND FUTURE WORK

Sobol’s decomposition of multivariate functions was

adopted to expand complex models, and to support their

input-output explainability. This was achieved by masking the

inputs, which is equivalent to projections into orthogonal sub-

spaces. The component model outputs can be orthogonalized

in order to facilitate their linear combination. The number of

components in model expansion is a trade-off between com-

putational complexity and explainability. For MLP classifier

trained on the MNIST dataset, a good value of the number of

components for (28 × 28) inputs seems to be N = 28.

The proposed method opens up many opportunities for

future research. For instance, providing explainability for com-

plex models requires that explainability is sufficiently simple,

or at least much simpler than the model to be explained. For

large number of inputs and outputs, the number of possible

orthogonal projections, and thus, the number of possible

explanations, is exponentially large. It requires to analyze

how to choose these projections for a particular explainability

objective, which can be defined, for example, as an optimiza-

tion problem. Moreover, the inputs can be averaged out from

the model instead of being masked. There are several other

methods for orthogonalizing vectors that can be considered

involving, e.g., matrix factorizations (QR, Cholesky, PCA)

and lattice reductions. There may be other strategies how to

define the components of complex models. The models with

orthogonal components can be used as complex basis functions

for generating samples with the desired properties instead

of focusing on explainability. The dependencies between the

model components that are not orthogonal can be studied as

structural causal models using statistical methods of causal

inferences. Also, the vector space of model parameters can be

orthogonalized similarly as the vector space of model inputs in

order to perform the sensitivity analysis. Considering Sobol’s

expansion itself, it is useful to investigate how additional

higher-order terms can be used to create higher-order graphs

having beyond pairwise interactions. There is also a need to

obtain the approximation bounds for Sobol’s decomposition,

which does seem to have been provided in the literature.
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