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Abstract—Directed graphs such as neural networks can be 

described by arrow terms linking a finite set of incoming nodes 

to some response nodes. Scott and Engeler [1] have shown that 

its powerset is a model for combinatory logic. This algebra is 

called Graph Model of Combinatory Logic. Combinatory logic 

is Turing-complete; thus, the model explains both traditional 

programming as well as neural networks such as the brain. The 

graph model would yield a performant AI-tool if used as a 

blueprint for implementing AI. A chain of thoughts would come 

for free, and explainability with it. However, its performance 

would make such a tool impractical and useless. We propose a 

combined approach for adding explainability to AI. It is the 

strategy humans use when they try to explain their ideas. First, 

we use the generative power of neural networks to produce an 

idea or solution. Next, we create a chain of thoughts that 

explains such ideas to others. AI could follow the same strategy. 

Anything generated by an AI engine can be analyzed as a 

sequence of set of arrow terms that explain the line of thinking, 

provided the AI engine had been trained properly. Improper 

training, biases, and hallucinations would become detectable. 

Since the target is known, guided search can find suitable arrow 

terms in predictable time. The architecture of this proposed 

AGI engine consists of three distinct elements: a well-trained 

artificial neural network, a deduction engine for the arrow term 

sets, and a search engine for fact checking. 

Keywords—Chain-of-Thought (CoT); Artificial General 

Intelligence (AGI); Artificial Neural Networks (ANN); 

Combinatory Logic; Quality Function Deployment (QFD). 

I.  INTRODUCTION 

A. Short History of AI and a its Philosophical Background 

In the early 20th century, there were some shocking events 
taking place in mathematical logic and natural science. Gödel 
[2], when trying to solve some of Hilbert’s 23 problems, 
detected that predicate logic, something with a long history 
dating back to the ancient Greeks, is undecidable. This insight 
gave birth to theoretical computer science, including the 
theory of computation, founded by Turing [3]. For a modern 
compilation, see Raatikainen [4]. 

Schönfinkel and Curry [5] developed Combinatory Logic 
to avoid the problems introduced when using logical 
quantifiers, and Church invented Lambda Calculus as a rival 
formalism [6]. Scott and Engeler developed the Graph Model 
[1], based on Arrow Terms, and proved that this is a model of 

combinatory logic. This means that you can combine sets of 
arrow terms to get new arrow terms, and that combinators, 
accelerators, and constructors can be used to create new 
elements of algebra. 

Graphs in the form of neural networks appeared already at 
the origins of Artificial Intelligence (AI). Its first instantiation 
in modern times was the Perceptron, a network of neurons 
postulated by Rosenblatt [7]. It later became a directed graph 
[8]. Rosenblatt was also the first who postulated concepts, 
among perception and recognition, as constituent parts of AI 
[7, p. 1]. 

Since its origins, AI has experienced difficulties; however, 
today it seems to have become mainstream as far as there are 
many AI applications that provide value for the user. In some 
areas, training an AI model is much simpler and more 
rewarding than finding and programming an algorithm. 

AI-powered visual recognition systems excel in 
recognizing and classifying objects, following the ideas 
established by Rosenblatt [7]. However, they are weak at 
recognizing temporal dependencies and unable to combine 
learnings, despite attempts to develop methods with 
sequential data and the ability to capture temporal patterns. AI 
lacks what humans use in such cases: a concept. 

Logical skills such as inference and deduction provide 
quite a challenge, as exemplified by the ARC Price challenge, 
a sort of intelligence test for AI models, proposed by Chollet 
[9]. A Large Language Model (LLM) easily summarizes texts 
or books but it still does not understand what is written in it, 
in the sense that the US National Council of English Teachers 
calls Literacy, see [10], [11].  

Regarding LLM or any other variant of Artificial Neural 
Networks (ANN), we refer to the rapidly evolving literature. 
As an entry point, Gerven & Bothe’s classification might be a 
good start [12]. Natural Neural Networks, in analogy to 
ANNs, are abbreviated by NNN. 

IBM defines Explainable Artificial Intelligence (XAI) as 
a set of processes and methods that allows human users to 
comprehend and trust the results and output created by 
machine learning algorithms [13]. This is a bold attempt to use 
statistical correlations as a basis for reasoning. From a 
theoretical perspective, this is unlikely to work, because of 
Gödel [2]; however, from an engineering prospective, it is an 
attempt to work around undecidability. Dallanoce compiled a 
list of available processes and methods for XAI [14]. 
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Artificial General Intelligence (AGI) is a type of artificial 
intelligence (AI) that falls within the lower and upper limits of 
human cognitive capabilities across a wide range of cognitive 
tasks. The creation of AGI is a primary goal of AI research 
and companies such as OpenAI and Meta, but what exactly 
AGI refers to is controversial [15]. 

B. Research Questions 

The aim of this paper is to recall prior work in logic and 
AI to understand how neural networks work. To do this, we 
investigate into the following three research questions: 

 
RQ 1: How are neural networks and especially ANNs 

linked to the graph model? 
RQ 2: Does a chain of thoughts relate to a sequence 

of arrow schemes? 
RQ 3: Can arrow schemes explain AI? 

 
The motivation for this is that we are currently 

experiencing the fourth AI hype in sixty years and that its 
acceptance in society is currently transitioning from 
admiration to rejection. Because the nature of AI is poorly 
understood not only by society but also by the AI research 
community. We believe that the graph model is an excellent 
way to understand what intelligence is, both natural and 
artificial. However, it is not an answer to how to construct 
XAI. 

C. Paper Structure 

We first explain combinatory logic (section II) and the 
motivation for building a model (section III). Then we 
compare ANNs with graphs and explain how arrow schemes 
represent what an ANN does and have an outlook on the 
architecture of intelligent systems (section IV). 

II. COMBINATORY LOGIC 

Here has been a lack of attention and consequently of 
publications on Combinatory Logic. Nevertheless, it explains 
quite a bit what artificial intelligence can do and what not.  

A. Combinatory Logic and Axiom of Choice  

Combinatorial Logic is a notation that eliminates the need 
for quantified variables in mathematical logic, and thus the 
need to explain what the meaning of existential quantifiers 
∃𝑥 ∈ 𝑀 is, see Curry [5] and [16]. Eliminating quantifiers is 
an elegant way to avoid the Axiom of Choice [17] in its 
traditional form. Combinatory Logic can be used as a 
theoretical model for computation and as design for functional 
languages (Engeler [18]); however, the original motivation for 
combinatory logic was to better understand the role of 
quantifiers in mathematical logic. 

It is based on Combinators which were introduced by 
Schönfinkel in 1920. A combinator is a higher-order function 
that uses only functional application, and earlier defined 
combinators, to define a result from its arguments. 

The combination operation is denoted as 𝑀 • 𝑁  for all 
combinatory terms 𝑀,𝑁. To make sure there are at least two 
combinatory terms, we postulate the existence of two special 
combinators 𝐒 and 𝐊.  

They are characterized by the following two properties (1) 
and (2): 

 𝐊 • 𝑃 • 𝑄 = 𝑃 (1) 

 𝐒 • 𝑃 • 𝑄 • 𝑅 = 𝑃 • 𝑄 • (𝑃 • 𝑅) (2) 

𝑃,𝑄, 𝑅 are terms in combinatory logic. The combinator 𝐊 
acts as projection, and 𝐒  is a substitution operator for 
combinatory terms. Equations (1) and (2) act like axioms in 
traditional mathematical logic. 

Like an assembly language for computers, or a Turing 
machine, the 𝐒-𝐊 terms become quite lengthy and are barely 
readable by humans, but they work fine as a foundation for 
computer science. The power of these two operators is best 
understood when we use them to define other, handier, and 
more understandable combinators.  

The identity combinator for instance is defined as 

 𝐈: = 𝐒 • 𝐊 • 𝐊 (3) 

 Indeed, 𝐈 • 𝑀 = 𝐒 • 𝐊 • 𝐊 • 𝑀 = 𝐊 •𝑀 • (𝐊 • 𝑀) = 𝑀 . 
Association is to the left. Moreover, 𝐒 and 𝐊 are sufficient to 
build a Turing-machine. Thus, combinatory logic is Turing-
complete. For a modern proof, consult Barendregt [19, pp. 17-
22]. 

B. Functionality by the Lambda Combinator 

Curry’s Lambda Calculus [20] is a formal language that 
can be understood as a prototype programming language. The 
𝐒 -𝐊  terms implement the lambda calculus by recursively 
defining the Lambda Combinator 𝐋𝐱  for a variable 𝑥  as 
follows: 

 

𝐋𝐱 • 𝑥 = 𝐈 
𝐋𝐱 • 𝑌 = 𝐊 • 𝑌 if 𝑌 different from 𝐱 

𝐋𝐱 • 𝑀 • 𝑁 = 𝐒 • 𝐋𝐱 • 𝑀 • 𝐋𝐱 • 𝑁 

(4) 

The definition holds for any term 𝐱 of combinatory logic. 
Usually, on writes suggestively 𝜆𝑥.𝑀 instead of 𝐋𝐱 • 𝑀, for 
any combinatory term 𝑀 . Lambda Terms 𝜆𝑥.𝑀  offer the 
possibility of programmatic parametrization. Note that 𝜆𝑥.𝑀 
is a combinatory term, as proofed by (4), and that this 
introduces a kind of variable in combinatory logic with a 
precisely defined binding behavior.  

The Lambda combinator allows writing programs in 
combinatory logic using a higher-level language. When a 
Lambda term gets compiled, the resulting combinatory term 
is like machine code for traditional programming languages.  

C. The Fixpoint Combinator 

Given any combinatory term 𝑍, the Fixpoint Combinator 
𝐘 generates a combinatory term 𝐘 • 𝑍, called Fixpoint of 𝑍, 
that fulfills 𝐘 • 𝑍 = 𝑍 • (𝐘 • 𝑍). This means that 𝑍  can be 
applied to its fixpoint as many times as wanted and still yields 
back the same combinatory term.  

In linear algebra, such fixpoint combinators yield an 
eigenvector solution 𝐘 • 𝑍 to some problem 𝑍.  

According to Barendregt in his textbook about Lambda 
calculus [19, p. 12], the fixpoint combinator can be written as  
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 𝐘:= 𝜆𝑓. (𝜆𝑥. 𝑓 • (𝑥 • 𝑥)) • (𝜆𝑥. 𝑓 • (𝑥 • 𝑥)) (5) 

Translating (5) into an 𝐒–𝐊  term demonstrates how 
combinatory logic works, see the authors’ paper from 2022 
[21].  

When translated into arrow terms, the fixpoint combinator 
contains loops. Fixpoint operations are related to infinite 
loops, programming constructs that never end in some normal 
form. Applying 𝐘, or any equivalent fixpoint combinator to a 
combinatory term Z, usually does not terminate. An infinite 
loop can occur, and must sometimes occur, otherwise Turing 
would be wrong and all finite state machines would reach a 
finishing state [3].  

III. THE GRAPH MODEL OF COMBINATORY LOGIC 

The graph model is a versatile model for knowledge in all 
its instantiations. It is highly recursive and Turing-complete, 
which means, it also describes conventional algorithmic 
programming. 

A. A Logic Needs a Model  

A Model for a logical structure is a set-theoretic 
construction that has the properties postulated for the logic 
and can be proved to be non-empty. Then it means that logic 
makes sense as far as it describes some structure that really 
exists. If a non-empty model exists, then the logic exists in the 
sense that it can be used to prove something about the model. 

Let ℒ be a non-empty set. Engeler [1] defined a Graph as 
the set of ordered pairs: 

 〈{𝑎1, 𝑎2, … , 𝑎𝑚}, 𝑏〉 (6) 

with 𝑎1, 𝑎2, … , 𝑎𝑚 , 𝑏 ∈ ℒ. We write {𝑎1, … , 𝑎𝑚} → 𝑏 for 
the ordered pair to make notation mnemonic, i.e., referring to 
directed graphs, and call them Arrow Terms. These terms 
describe the constituent elements of directed graphs with 
multiple origins and a single node. We extend the definition 
of arrow terms to include all formal set-theoretic objects 
recursively defined as follows: 

 
Every element of ℒ is an arrow term. 

Let 𝑎1 , … , 𝑎𝑚, 𝑏 be arrow terms.  

Then {𝑎1 ,… , 𝑎𝑚} → 𝑏 is also an arrow term. 
(7) 

The left-hand side of an arrow term is a finite set of arrow 
terms, and the right-hand side is a single arrow term. This 
definition is recursive. Elements of ℒ are also arrow terms. 
The arrow, where present, should suggest the ordering in a 
graph, not logical imply.  

B. Einstein-Notation for Arrow Terms 

To avoid the many set-theoretical parenthesis, the 
following notation, called Arrow Schemes, is applied, in 
analogy to the Einstein notation [22, p. 6]: 

• 𝑎𝑖  for a finite set of arrow terms,  𝑖  denoting some 

Choice Function selecting finitely many specific 

terms out of a set of arrow terms 𝑎. 

• 𝑎1 for a singleton set of arrow terms; i.e., 𝑎1 = {𝑎} 
where 𝑎 is an arrow term. 

• ∅ for the empty set, such as in the arrow term ∅ → 𝑎. 

(8) 

• 𝑎𝑖 + 𝑏𝑗 for the union of two observation sets 𝑎𝑖 ,𝑏𝑗. 

The application rule for 𝑀 and 𝑁 now reads: 

 𝑀 • 𝑁 = (𝑎𝑖 → 𝑏) • 𝑁 = {𝑏|∃𝑎𝑖 → 𝑏 ∈ 𝑀; 𝑎𝑖 ⊂ 𝑁} (9) 

(𝑎𝑖 → 𝑏) ⊂ 𝑀 is the subset of level 1 arrow terms in 𝑀. 
With these conventions, (𝑎𝑖 → 𝑏)𝑗  denotes a Concept, i.e., a 

non-empty finite set of arrow terms with level 1 or higher, 
together with two choice functions 𝑖, 𝑗. Each set element has 
at least one arrow. 

The choice function 𝑖 chooses specific observations 𝑎𝑖 out 
of a (larger) set of observations 𝑎 . This is what Zhong 
describes as Grounding when linking observations to real-
world objects [23]. In AI, grounding is crucial for linking AI 
engines to the real world. If 𝑎  denotes knowledge, i.e., an 
infinite set of arrow terms of any level, 𝑎𝑖 can become part of 
a concept consisting of specific arrow terms referring to some 
specific object, specified by the choice function 𝑖 . Choice 
functions therefore have the power of focusing knowledge on 
specific objects in specific areas. That makes choice functions 
interesting for intelligent systems and AI. 

There is a conjunction of choice functions, thus  𝑎𝑖,𝑗 
denotes the union of a finite number of grounded arrow 
schemes: 

 𝑎𝑖,𝑗 = 𝑎𝑖,1 ∪ 𝑎𝑖,2 ∪ …∪ 𝑎𝑖,𝑚 =⋃𝑎𝑖,𝑘

𝑚

𝑘=1

 (10) 

There is also cascading of choice functions. Assume 𝑁 =
(𝑎𝑗 → 𝑏)

𝑘
, then: 

 
𝑀 = (((𝑎𝑗 → 𝑏)

𝑘
→ 𝑏𝑖)

𝑙
→ 𝑐) and 

𝑀 • 𝑁 = (𝑏𝑖𝑙 → 𝑐) 
(11) 

The choice function might be used for grounding an arrow 
scheme to observations.  

An arrow scheme without outer indices represents a 
potentially infinite set of arrow terms. Thus, writing 𝑎, we 
mean knowledge about an observed object. Adding an index, 
𝑎𝑗 , indicates such a grounded object together with a choice 

function 𝑗 that chooses finitely many specific observations or 
knowledge. 

While on the first glimpse, the Einstein notation seems just 
another way of denoting arrow terms, for representing such 
data in computers it means that the simple enumeration of 
finite data sets is replaced by an intelligent choice function 
providing grounding that must be computed and can be either 
programmed or guessed by an intelligent system. 

For practical applications, the choice function is an 
important part of deep learning. It means learning by 
generalization. The more choices you get on the left-hand 
side, the more knowledge you acquire. The ARC price 
competition for instance is easily solvable if we can generalize 
our choice functions good enough, to draw conclusions from 
the samples into general rules. However, generalization is not 
easily available with current AI technology. Controlling 
Combinators, see section IV.B, are a workaround. 
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C. The Graph Model of Combinatory Logic 

The algebra of observations represented as arrow terms is 
a combinatory algebra and thus a model of combinatory logic. 
The following definitions demonstrate how the graph model 
implements Curry’s combinators 𝐒 and 𝐊 fulfilling equations 
(1) and (2), following [5]. 

• 𝐈 = 𝑎1 → 𝑎 is the Identification, i.e., (𝑎1 → 𝑎) • 𝑏 = 𝑏 

• 𝐊 = 𝑎1 → ∅ → 𝑎 selects the 1st argument: 

𝐊 •  𝑏 • c = (𝑏1 → ∅ → 𝑏) • 𝑏 • c = (∅ → 𝑏) • c = b 

• 𝐊𝐈 = ∅ → 𝑎1 → 𝑎 selects the 2nd argument: 

𝐊𝐈 • 𝑏 • c = (∅ → 𝑐1 → 𝑐) • 𝑏 • c = (𝑐1 → 𝑐) • 𝑐 = c 

• 𝐒 = (𝑎𝑖 → (𝑏𝑗 → 𝑐))
1
→ (𝑑𝑘 → 𝑏)𝑖 → (𝑎𝑖 + 𝑏𝑗,𝑖 → 𝑐) 

(12) 

Therefore, the algebra of observations is a model of 
combinatory logic. The interested reader can find complete 
proofs in Engeler [1, p. 389].  

The Lambda Theorem from Barendregt [20] says that 
with 𝐒 and 𝐊, an abstraction operator can be constructed that 
adds algorithmic skills to knowledge represented as arrow 
schemes, following equation (4).  

As the name “graph model” suggests, arrow terms are an 
algebraic way of describing neural networks. Thus, something 
that nature uses to acquire and work with knowledge. 

Figure 1 illustrates the effect of the combination according 
to equation (9). It becomes apparent that the graph model 
describes graphs indeed, with loops. Repeatedly applying 
equation (9) leads to what we perceive as the “response of a 
neural network”. Combination of knowledge and combinators 
thus play a significant role in AI. 

𝑥1
𝑥2

𝑥 

 

𝑎1

𝑎2

𝑎𝑚

𝑎1

𝑎2

𝑎𝑚

 =   →  
 
→  

 
 =   →  

 

  •  =    

Figure 1: Neural Network become a Combinatorial Algebra  

However, Figure 1 is not only a picture of an abstract 
graph. It can also be understood as a part of an ANN – or of 
an NNN. Engeler associated neuroscience with the graph 
model in 2019, by explaining how a brain works [24]. He used 
the graph model of combinatory logic as an algebraic 
representation of NNN. 

IV. TOWARDS INTELLIGENT SYSTEMS 

Barceló et. al. has shown in 2019 that modern neural 
network architectures are Turing-complete [25]. This is also a 
property of the graph model but not of every ANN. We 
propose an architecture for intelligent systems that 
incorporates conventional algorithmic programming. 

A. How Arrow Schemes describe ANNs  

While it is obvious how an NNN is represented by arrow 
schemes, this is not equally clear for ANNs. The reason is that 
directed graphs contain loops while looping in ANNs is very 
restricted. There exist certain architectures for ANNs that 
allow for loops, within narrow limits, a typical Multi-Layered 
Perceptron (MLP) as used for LLMs does not [12].  

Consequently, an ANN has only a limited ability to 
emulate an NNN.  

Input D
ata

O
utput D

ata

Input Layer

Output Layer

Hidden Layers  

Figure 2: Multi-Layered Perceptron as an ANN 

In principle, every arrow scheme 𝑎𝑖 → 𝑏  describes one 
node in a directed but not loop-free graph. Some arrow 
schemes describe algorithmic concepts such as in equation 
(12) or as explained in equation (5). Other arrow schemes 
simply connect observations 𝑎𝑖 to some response 𝑏. General 
knowledge has many facets.  

It would be wonderful if we had the ability to look at an 
LLM and identify arrow schemes for each node. This would 
add full explainability to AI, but unfortunately, this is not the 
case. Theoretically, this is because neither combinatory terms 
nor arrow schemes have normal forms. Very often there is a 
wide variety of solutions that are equivalent but widely 
different in effectiveness. 

This makes explainability of AI difficult. The lack of 
normal forms blocks all attempts to find the one sequence of 
arrow schemes that explains what AI is doing. AI engineers 
have no other choice than trying to train their ANNs such that 
the response meets expectations but without exactly knowing 
what happens. It is comforting, however, that they share the 
same sad fate with neuroscientists. It is astonishing how long-
forgotten theoretical results such as the lack of a normal form 
in combinatory logic yield economically highly relevant 
results, nowadays, in the evolving AI ecosystem. Consult 
Lachowski [25] for a survey of the performance challenges 
that occur around combinatory logic. 

However, there is a famous saying that nothing is too 
difficult for the engineer (“Inventor of Anything”). Recent 
findings suggest that AI is capable of recognizing chains of 
thought that lead to the observation of a specific response [26]. 
This complements earlier findings that describe CoT as a 
prompting technique [27]. Thus, there exist AI architectures 
that allow to identify at least some arrow schemes that 
describe what AI does. It is not necessarily the full truth, as is 
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also not the case when humans explain their thoughts to 
colleagues. But it should be enough to persuade them. 

Having a complete sequence of arrow schemes describing 
some ANN would lead to explainable AI that even is able to 
get certified for safety-critical applications. However, there is 
a problem with hidden layers. While the Quality Function 
Deployment (QFD) method uses identifiable topics for each 
layer [28], an ANN has none; they are hidden indeed. Thus, 
much of the intermediate reasoning also remains hidden. RQ 
2 remains at least partially unanswered. If the input data and 
response only can be captured by arrow schemes, the 
intermediate steps must be guessed based on domain 
knowledge, but it is not known what exactly the AI engine 
actually did consider. AI might change behavior and create 
hazardous changes to the hidden layers; low-rank adaptation 
(LoRA) of large language models is an attempt to limit such 
change [29]. In QFD, on the contrary, intermediate stages are 
identifiable based on their topic; for example, when deploying 
customer needs, we first go to user stories and then to testable 
features. 

Another approach to better explainable AI is already well 
established: Retrieval-Augmented Generation (RAG) might 
avoid hallucinations for LLMs [30] by referencing knowledge 
databases and including them into the generation of responses. 
RAG impacts the architecture of intelligent systems by 
connecting neural networks to knowledge databases [31]. 
RAG corresponds to grounding arrow schemes using the 
choice function; RAG is indispensable for explainable AI. 

This is the motivation for looking at AI architectures. In 
some way, it must be complemented by functionality that 
controls the behavior of AI. Only with such control an AI-
engine can perform safety-critical tasks. When certifying an 
AI-engine for safety, it is no longer necessary to convert all 
nodes of an ANN into arrow schemes, but we can focus on the 
overall result. If an AI fails on such tasks, we do not have a 
white-box trace of all nodes, or arrow schemes, that have 
contributed to this failure, but we are at least as good as with 
traditional safety-preserving methods and techniques. 

B. The Architecture of Intelligent Systems 

Intelligent systems using AI are based upon Controlling 
Combinators. Controlling combinators are derived from the 
idea behind fixpoint combinators, see equation (5). A 
Controlling Operator 𝐂 acts on a controlled object 𝑋 by its 
application 𝐂 • 𝑋. Control means that knowledge represented 
by arrow schemes in 𝑋 is completely known and described.  

Accomplishing control can be formulated by (13): 

 𝐂 • 𝑋 = 𝑋 (13) 

The equation (13) is a theoretical statement, referring to a 
potentially infinite loop. For solving practical problems, 𝑋 
must be approximated by finite subterms. 

Thus, the control problem is solved by a Control Sequence 
𝑋0 ⊆ 𝑋1 ⊆ 𝑋2 ⊆ ⋯ , a series of finite subterms and the 
controlling operator 𝐂 , starting with an initial 𝑋0 and 
determined by (14): 

 𝑋𝑖+1 = 𝐂 • 𝑋𝑖 , 𝑖 ∈ ℕ (14) 

This is called Focusing. The details can be found in 
Engeler [24, p. 299]. The controlling operator 𝐂 gathers all 
faculties that may help in the solution. The inclusion operator 
in equation (14) is explained by the graph model. The control 
problem is a repeated process involving substitution, like 
finding the fixpoint of a combinator, and thus increasing the 
number of arrow schemes, and especially of choice functions, 
in the resulting focusing process.  

Controlling combinators both collect and use empirical 
data for continuous training. Such an intelligent system 
incorporates the necessary functional processes for fine-
tuning based on feedback received. 

For more details, we refer to the authors’ paper about 
solving the control problem [32]. 
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Figure 3: Self-learning Intelligent Systems based on an ANN 

The program scheme we use in Figure 3 for the controlling 
combinator depends on the Convergence Gap; the measurable 
variation between actual behavior and expectations and 
requirements regarding an AI-enabled intelligent system. 
Both come as (large) vectors and thus the Euclidean distance 
is easily computable. Expectations and correct answers might 
also come from an external knowledge database, allowing the 
intelligent system to learn autonomously. 
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Figure 4: An Intelligent System that selects the most reliable AI response. 

The architecture for RAG now extends. Instead of 
embedding the reference into response generation [31], and 
hoping it works, we set up functional processes for comparing 
LLM results with evidence from the knowledge database and 
calculate the convergence gap.  
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The convergence gap of such a system fully explains its 
behavior. Under well-defined conditions, such a system can 
be certified, even for safety critical tasks. 

It is also possible to add more than one AI engine to an 
intelligent system, compare results and go forward with the 
most reliable one. Insufficient training, biases, and 
hallucinations therefore would become detectable.  

Figure 4 shows an example of an intelligent system design 
that relies on two separate visual recognition engines 
analyzing the same scenario, one through a camera and the 
other through a Lidar. Such an architecture requires that the 
reliability of each artificial intelligence engine be known, 
under certain conditions, such as weather. In this way, the 
intelligent system can explain why it selected one or the other 
response. 

Obviously, if both AI-engines produce an identical 
response, this increases overall reliability of the response of 
the intelligent system quite a bit. 

The graph model delivers the metrics for defining 
controlling combinators by inclusion, and it also allows to 
combine knowledge and thus reliability correctly, by equation 
(9). This is discussed in another paper of the authors [33]. This 
remark should also explain why we do not use the term “Loss 
Function” that originates from Signal Theory and originally 
described the loss of fidelity in analog sound transmission. 
Since the discovery of the Fast-Fourier Transform (FFT) 
[34], one understands that A/D-convergence is not a loss, but 
an acquisition of enough knowledge to reach some threshold. 
Deep learning uses the same principles. 

V. CONCLUSIONS AND FUTURE WORK  

We therefore have shown that 
 

RQ 1: ANNs can be represented in the graph model 
of combinatory logic; 

RQ 2: CoT do not exactly relate to a sequence of 
arrow schemes, as they do not cover hidden 
layers in ANNs; 

RQ 3: Arrow schemes do not explain AI but explain 
how AI can be controlled. 

 
The graph model of combinatorial logic does not provide 

an alternative for implementing AI, but it is an excellent guide 
and theoretical foundation for what can be done with AI, for 
explaining AI, but also for learning where AI meets its limits. 

The current step forward is collecting several designs of 
intelligent systems, finding methods for measuring reliability 
and defining suitable convergence gaps. This work in progress 
of the authors will be shared with interested parties [35]; the 
authors have no institution or sponsor to help with this. 

It remains the idea that AI could be explained by searching 
for arrow schemes that provide the same responses. Since 
combinatory logic does not have normal forms, this seems 
feasible. It could be used as a validation process for AI. 
However, for now, this is a future research project. 
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