
Towards a Metrics Model for DevOps,
Results of a Case Study in an Industrial Company

Jos Trienekens
University of Technology,

Faculty of Industrial Engineering and Innovation Sciences
Eindhoven, The Netherlands

email: j.j.m.trienekens@tue.nl

Abstract—Recently in the software industry, a methodology
called DevOps has emerged, which aims at the integration of
software development and deployment (i.e.,
operations/maintenance) to improve the performance of the
overall software process. DevOps contributes to the multi-
dimensional problem of software integration, approaching this
problem from an organizational point of view. DevOps
originates from lean and agile methodologies and stresses the
improvement of the entire process flow, overall product quality
improvement based on customer feedback. This paper
presents a case study at Philips IT The Netherlands on the
implementation of DevOps, in particular on the iterative
identification and specification of a metrics model to monitor
the effectiveness of DevOps.

Keywords-DevOps, agile; organizational integration; metrics;
case study.

I. INTRODUCTION
Philips IT is a centralized IT organization servicing three

business domains, respectively Healthcare, Lighting and
Consumer Lifestyle. Within IT, there exist two large parties:
IT Delivery, where development projects are planned and
executed, and IT Infrastructure & Operations (I&O), which
is responsible for the implementation and the daily
operations. The latter includes maintenance and control of
the IT systems, e.g., providing (helpdesk) support. Delivery
has been adopting SCRUM methods over the last three years
and their software development methods and techniques
become increasingly agile [2], [3]. Currently, there are over
100 SCRUM teams. These teams are multidisciplinary and
collaborate with relevant partners on both a business and a
technical level. Partners are located across the world, thus
collaboration in the SCRUM teams takes place virtually.
While Delivery has adopted agile methodologies, I&O has
been working in accordance with the Information
Technology Infrastructure Library framework, ITIL [4].
Over the years, the two parties have had different objectives
and strategies. On the one hand Delivery is pressing for
faster software releases (e.g., SCRUM cycles are currently
two weeks long), and on the other hand I&O, which
considers system stability of the highest importance and
plans releases monthly. Recently, the management has
decided that Delivery and I&O should integrate and should
align their processes to improve the overall efficiency, e.g.,
to release deliverables in a balanced way and more often

without compromising on the quality of the releases. To
establish this closer collaboration between Delivery and
I&O, DevOps has been introduced. This methodology
originates from lean methodologies and stresses the
improvement of respectively work flow, final product
quality, team communication and customer feedback [1].
The methodology is process flow oriented, which means that
it focuses at deliverables moving through the processes, on
increasing development speed and decreasing waiting times.
The implementation of DevOps has been started with a
limited number of teams within Delivery. Because agile
software development methods are currently in use at
Delivery and also I&O is looking at ways to implement agile
methods, it was decided to make explicit use of agile and
lean principles in the implementation of DevOps [6], [7], [9].
To monitor and control the DevOps implementation, an
initial metrics model had to be developed. In Section II, we
will address the background of agile methods and techniques
and the key principles of DevOps. Section III will present the
methodology used in the research to develop the initial
DevOps metrics model. In Section IV, a case study on the
development of the metrics model will be presented,
following an iterative approach within the company Philips
IT. In this case study, researchers in close collaboration with
Delivery and I&O practitioners have developed in three
cycles an initial metrics model. Section V presents a
discussion and Section VI finalizes the paper with
conclusions.

II. BACKGROUND AND REFERENCE FRAMEWORK
Agile software development originated from the ‘The

Agile Manifesto’ [5] and consists of several values and
principles for faster and better software development. Four
values are respectively: individuals and interactions over
processes and tools, working software over comprehensive
documentation, customer collaboration over contract
negotiation and responding to change over following a plan.
While there is not a single definition of agility, most
approaches incorporate the idea of adaptability to the
environment and quick value creation [6]: “agility means to
strip away as much of the heaviness, commonly associated
with the traditional software-development methodologies, as
possible to promote quick response to changing
environments, changes in user requirements, accelerated
project deadlines and the like.” While this definition is

1Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

focused on software development, similar trends have been
previously seen in other disciplines. In [7] for example,
agility is related to “flexibility” and “leanness”. However,
several differences exist between the terms. According to
[8], agility consists of two components: flexibility and
speed, hereby stating that flexibility alone is not enough to
be agile. In [9], particularly flexibility is addressed, with
respect to decision making, and speed with respect to short
iterations in development. Comparing agility to leanness,
these both complement each other with regard to simplicity
and quality, but the economy perspective of the approaches
is different [10]. While leanness attempts to remove ‘waste’
entirely, agility removes waste only to the extent that it does
not hinder the ability to change [11]. Next to these
definitions on agile a multitude of methods have been
developed. Table I reflects the characteristics of a selected
set of them.

TABLE I. AGILE METHODS.
Agile method Description

Scrum [9] The development is organized in sprints (short
iterations of about 2 to 3 weeks) by self-
organizing teams. Each sprint, i.e., restricted
time, goes through planning, design, testing and
review. Features that need to be developed are
stored in a ‘Backlog’ where the product owner
decides, which work items will be worked on in
the following sprint.

Extreme
Programming

(XP) [5]

Focuses on best practice and consists of twelve
practices: the planning game, small releases,
metaphor, simple design, testing, refactoring,
pair programming, collective ownership,
continuous integration, 40h week, on-site
customer collaboration, and coding standards.

Lean software
development [11]

Based on seven principles: remove waste,
amplify learning and knowledge management,
decide as late as possible, deliver as fast as
possible, empowered teams, build integrity, and
see the whole picture.

Kanban [20] Kanban is based on the theory of constraints and
comes with six core practices; visualize, limit
work in progress (WIP), manage flow, make
policies explicit, implement feedback loops,
improve collaboratively & evolve
experimentally.

The agile methods show quite some similarities regarding
speed (e.g., fast delivery), small releases (e.g., limit work in
progress), remove waste (e.g., manage flow), implement
feedback loops (e.g., customer collaboration) and learning
and experimentation, and knowledge management. Scrum
stresses additionally the self-organization of teams and
other team-work characteristics. Since 2009, DevOps has
been introduced, which focuses on the way development
and deployment (i.e., operations/maintenance) can be
integrated [1]. While development teams and deployment
teams have often different goals or key performance
indicators, DevOps attempts to align the work to be done,
and to satisfy the different goals. For example, as
development teams want to deploy more and more often,
deployment teams strive often towards the exact opposite,

i.e., to keep all systems running and stable. However, and
in accordance with DevOps, an entire organization should
be aligned and/or integrated. To reach this, DevOps
proposes to follow three subapproaches [12], see Table II.

TABLE II. THREE APPROACHES OF DEVOPS.
 Systems
thinking

Stresses that it is more beneficial to
look at the performance of an
entire system, than at the
performance of specific parts of
that system.

 Amplify
feedback loops

Allows understanding of the
customer by the teams and
availability of knowledge where it
is needed.

 Culture of
continuous
experimentation
and learning

Experimentation and learning helps
to more quickly adapt and respond
to changes or problems.

To use these three subapproaches of DevOps as a reference
framework, the three approaches can be elaborated on the
basis of agile principles. Systems thinking refers to looking
at problems in relation to the performance of an entire
system, also addressed as ‘overall quality of work’. This
approach ensures that the performance of a system as a
whole is more important than the performance of separate
parts of the system (e.g., a development and a deployment
part). This approach can make use of agile principles (see
Table I) such as remove waste, decrease incidents and
continuously focus on (process) flow to increase
performance. Amplifying feedback loops leads to early
knowledge of issues and problems, so that a system can
quickly be adjusted where needed. Implementing this
second subapproach should lead to, with reference to agile
issues in Table I, in particular an understanding of, and
responding to customers. To deliver finally value, the
feedback should come from the people (i.e., customers) who
will use the product or service and from those who maintain
it. The third subapproach, i.e., a culture of continuous
experimentation and learning, supports the other two, to
ensure that improvement should be a continuous process
and should lead to, with reference to the agile principles in
Table I, respectively: facilitating knowledge storage and
retrieval, and reflection on deliverables and on the way of
working. Regarding ‘culture of learning and
experimentation’ references can be made to specific
constructs or organizational learning [13], such as the
acquisition of knowledge, either through external sources or
internal development, the distribution of knowledge, and the
interpretation of knowledge (i.e., the way that people within
an organization share and use the knowledge).

To implement DevOps on the basis of the three foregoing
subapproaches, with the references to agile principles, and to
monitor the effectiveness of it, performance indicators or
metrics have to be defined. Regarding the development of
metrics the Goal-Question-Metric (GQM) approach will be

2Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

used [14]. Based on well-defined goals of a particular object
under study, here the DevOps process, asking questions and
getting answers regarding the achievement of the goals, will
lead to a well-founded set of metrics. To support the
definition of goals, the development of questions /answers,
and the derivation of metrics, particular templates will be
used [15].

III. METHODOLOGY OF THE CASE STUDY
The first step in the case study was defining the goals,

making use of structured templates [14]. This has been done
in collaboration with 'those working in the environment
itself' to ensure the understandability and the applicability
of the metrics [16]. In this step, we made use of the
background as explored in Section II, in particular regarding
the three subapproaches of DevOps and the agile pinciples
identified. In step 2, a set of metrics has been derived from
the defined goals. In this step, in meetings with experts from
practice, questions have been developed regarding the
defined goal(s) [17]. Subsequently, metrics have been
derived to measure the performance. The metrics have
formed together an initial metrics model. In step 3, iterations
have been executed to elaborate and validate iteratively the
set of metrics [18]. These iterations have been stopped in
case the set of metrics didn’t change significantly from its
previous iterations. The first iteration has been executed with
respectively the Manager I&O and the Global Demand
Manager (management level above Delivery and I&O).
These representatives were selected because the assignment,
of the case study at hand, originated from them. A second
iteration has been executed with the Delivery Manager. Its
position was close to the teams in that the metrics had to be
applied.

IV. TOWARDS AN INITIAL METRICS MODEL FOR DEVOPS,
THE CASE STUDY

A. Goal definition for the measurement of DevOps
To support the goal definition, the following template has

been applied [15].

TABLE III. GQM GOAL DEFINITION TEMPLATE.
Analyze The object under measurement

For the purpose
of

Understanding, controlling or improving the
object

With respect to The quality focus of the object that the
measurement focuses on

From the
viewpoint of

The people who have a stake in measuring the
object

In the context
of

The environment in which measurement takes
place

The object under measurement, see Table III, is in this

case study the integrated development and deployment
process, i.e., the DevOps process within the company. The
purpose for the measurement is to further understand this
process and if possible to improve it. The focus will be on
the three subapproaches within DevOps, respectively
systems thinking, feedback loops and a culture of learning
and experimentation. The people who have a stake in

measuring the object, i.e., reflecting the three viewpoints are
respectively the Global Demand Manager, the Delivery
manager and the I&O manager. Table IV shows the goals as
defined on the basis of the template.

TABLE IV. THE DEFINED GOALS FOR DEVOPS MEASUREMENT.

Goal
1

Analyze the development and deployment process within
Philips IT to further understand and improve with respect to
systems thinking from the viewpoint of the IT management.

Goal
2

Analyze the development and deployment process within
Philips IT to further understand and improve with respect to
feedback loops from the viewpoint of the IT management.

Goal
3

Analyze the development and deployment process within
Philips IT to further understand and improve with respect to
culture of learning and experimentation from the viewpoint
of the IT management.

B. Formulating questions to derive metrics for DevOps.
Regarding the goal of ‘systems thinking’, it was decided

to look at the performance of the process as a whole (i.e.,
also addressed as the ‘overall quality of work’) opposed to
its separate parts. This has lead to the following two
questions: what is the current performance of the entire
process, and do changes in the process improve the
performance of the entire process? Regarding the goal of
‘feedback loops within the system’, the following questions
are formulated: what is the current state of feedback loops
within the process? Is the customer satisfied with the
feedback that can be given? How well can the process
respond to feedback? Do changes in the process improve the
state of feedback loops within the process? Regarding the
the goal of ‘culture of learning and experimentation’,
questions are formulated about the current state of the
culture, and the improvement of learning and
experimentation [13].

C. Deriving an initial metrics model for DevOps
Deriving initial metrics for DevOps systems thinking
Following GQM, i.e., answering the questions, metrics

have been derived. To describe the performance of the entire
process, the average cycle time of a user story has been
discussed. While this metric only takes into account the
speed of development, it was decided to choose a second
metric regarding the ‘overall quality of the work’. The
rationale is that higher quality leads to less rework, which
should lead to a better lead time [19].

TABLE V. METRICS FOR SYSTEM THINKING.

Questions to goals Metrics
What is the current
performance of the
process?

Average cycle time of a user story
Number of incidents after deployment
Costs of a feature

Do changes in the
process improve the
performance (average
lead time: avglt;
average number of
incidents: avgni) of the
entire process?

Avglt of a user story after change
-- *
100%
Avglt of a user story before change

Avgni after deployment after change
--- *
100%
Avgni after deployment before change

3Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

In the case study company, in particular I&O teams are

already measuring the amount of incidents that occur
following an implementation. Regarding changes in the
process, two metrics have been derived (based on the
foregoing metrics) to reflect the differences between the
performance before and after a change. Table V presents the
derived metrics.

Deriving initial metrics for DevOps feedback loops
Initially, the amount of feedback loops has been defined

as metric. However, this metric appeared to be depended on
the length of the process. To take the length of the process
out of the metric, the average time between feedback
moments (i.e., the contact points with customers) has been
chosen. A problem with this would however be that if the
only feedback moment is located at the end of the process,
the average time would be same as if the feedback moment
would be right in the middle of the process. To cover this, an
additional metric has been defined to keep track of the
maximum time within a process without feedback. When this
time is very close to the average time between feedback
moments, the feedback moments will be evenly spread out
over the process. Regarding customer satisfaction, a
qualitative metric has been defined by asking the customer
whether he would like to have the next feedback moment
quicker than the time since the last feedback moment.
Regarding how well the system can respond to given
feedback, a first suggestion was to look at the amount of
work, which has to be redone within the process. This can be
quantified by the amount of time spent from the moment of
feedback until the process reaches the same point again.
While this could be difficult to measure in practice, also an
easier metric has been defined, i.e., the total time spent on
rework during the process. An overview of the second set of
metrics relating to feedback loops is shown in Table VI.

TABLE VI. METRICS FOR FEEDBACK LOOPS.

Questions to goals Metrics
What is the current state
of feedback loops within
the system?

Average time and mMaximum time
between feedback moments

Is the customer satisfied
with the feedback that
can be given?

Need of the customer to have the next
feedback moment quicker or later than
the time since the last feedback moment

How well can the system
respond to feedback?

Time spent from feedback moment
untill reaching the same point, total time
spent on rework (after feedback)

Deriving initial metrics for DevOps culture of learning

and experimentation.
Regarding the current state of learning, two metrics have

been defined, respectively with respect to the fact whether
new knowledge is actively being stored and whether stored
knowledge can be actively retrieved. To determine if
knowledge is being shared, as well as whether a mechanism
is in place to make sure that knowledge is actually being
stored, a metric has been defined on the reflection of a team
on its work and learnings points being defined after a project
(or a ‘sprint’). Finally, a metric has been on the reflection of

a team on their way of working (and thus takes time to
improve). The metrics are shown in Table VII.

TABLE VII. METRICS FOR LEARNING AND EXPERIMENTATION.

Questions to
goals

Metrics

What is the
current state of
learning and
experimentation
within the
system?

Amount of new knowledge stored during the
process
Extent to that previously acquired knowledge can
be retrieved
Extent to that teams reflect on their work and
learning points after a project or sprint

D. Iterative refinement of the initial metrics model
First iteration.
The designed metrics model has been refined in the first

iteration in two separate sessions. In these two sessions, the
initial metrics model was briefly explained, in particular
regarding the understandability of the logic of the
interrelations between goals, questions and metrics.
Subsequently, the participants were asked to come up with
alternatives or changes to or extensions of the metrics.
Regarding the metrics for ‘systems thinking’, there were
three (summarised from the two sessions) main points of
feedback. First, regarding the ‘user story’, it was decided that
a different unit of measurement had to be used, namely a
‘feature’. The reason was that in the process, a collection of
user stories moves through the process simultaneously,
except for the part of the process where they are developed.
Consequently, measurement of user stories would not
provide information about the entire process. Secondly, it
was decided that the specification of cost within the process
should be further defined. Considering the fact that this
process contains quite some knowledge work, and no
tangible products, the cost of a feature should be calculated
on the basis of the hours spent, the amount of people
working on it, and the number of features being worked on.
Thirdly, it was decided that by using the metric on the first
question periodically or continuously, the second question on
change, see Table V, would be irrelevant, and could be
removed, see Table VIII.

TABLE VIII. METRICS FOR SYSTEM THINKING, BASED ON FIRST

FEEDBACK.
Questions to goals Metrics

What is the current
performance of the
process?

Average cycle time of a feature
Average waiting time of a feature
Number of incidents as a result of the
feature after deployment
The cost of a feature through a process:

Hours spent
Number of people
Number of features being
worked on

Regarding the metrics for ‘feedback loops’, in one

session the participants mainly agreed on the proposed
metrics and suggested some small changes in terminology. In
the second session a different understanding of what should
happen in feedback loops lead to discussions. On the one
hand, it was understood that feedback would internally lead
to more insight in how fast changes in the system were

4Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

executed, while on the other hand the importance of
feedback to customers was stressed. It was also suggested
that feedback moments with customers had to be changed to
so-called ‘touch points’ for a better understanding within the
company. These discussions lead finally to Table IX.

TABLE IX. METRICS FOR FEEDBACK LOOPS, BASED ON FIRST

FEEDBACK
Questions to goals Metrics

What is the current
state of feedback loops
within the system?

Average time between customer touch
points
Maximum time between customer touch
points

How well can the
system respond to
feedback?

Time spent on feedback untill reaching the
same process step
Time spent on rework

How fast can the
system respond to
changes in a process?

The average time a change is seen at the
end of the entire process

Regarding the metrics for ‘culture for learning and

experimentation’, it was initially more difficult to find useful
metrics. Some feedback included the addition of metrics
related to the capabilities of the team members, and to how
well people could perform the activities of other team
members. However, by just measuring the capabilities, it
would mean that you can get a culture of learning by simply
hiring the people with excellent capabilities. Also
suggestions were made that the number of value propositions
should be counted. Here, a value proposition would mean a
member making a suggestion for a change in the process, or
a team, with an estimated value that is estimated by
implementing the change. However, this suggestion was
rejected because of the time that it would require. It was
decided then that the focus for learning should be put on the
time spent on improving the teams that perform their daily
work. Thus measuring their time spent on storing and
retrieving knowledge, and on learning (i.e., reflecting) and
improving. Experimentation was considered as very relevant
and some discussions lead to a metric on the introduction
and subsequent discovery of faults by different teams, see
Table X.

TABLE X. METRICS FOR LEARNING AND EXPERIMENTATION,

BASED ON FIRST FEEDBACK
Questions to goals Metrics

What is the current
state of learning and
experimentation
within the system?

The amount of time spent to store new
knowledge during the process
The amount of time spent to retrieve
previously acquired knowledge
Amount of time spent on reflection of a
team on their work and on learning points
after a project or sprint?
Amount of time spent on reflection of a
team on the way of working after a
project or sprint?
Percentage of discovered faults by a team
with respect to introduced faults by
another team (experimentation).

Second iteration
The second iteration consisted of one session and has

been carried out with only the Delivery Manager. The
feedback in this session mainly consisted of small updates
and clarifications. This feedback was more on the
confirmation (and validation) of the changes in the foregoing
session then in actually changing the metrics. Regarding the
first and the second subgoal, two particular terms had to be
clarified. Firstly, cycle time was changed to lead time and
secondly the cost of a feature was further elaborated by
adding service costs. Although the feedback consisted of
serious doubts regarding the time that the extra work of
experimentation would cost, i.e., introducing and discovering
faults, experimentation was kept in the metrics model.

V. DISCUSSION
Metrics development to measure the performance of

DevOps requires a structured aproach and a clear reference
framework. The implementation of DevOps could be based
on three subapproaches, with an explicit reference to agile
and lean principles. The application of GQM to determine
metrics could profit from this reference framework. The
reference framework facilitated the development of
questions, the interpretation of the answers and the initial
determination of metrics. However, the reference
framework is still qualitative and should be investigated
furter. Although GQM is an approach that has received
positive response in literature, criticism states that the
outcome is rather unpredictable as it is still possible to
derive many different metrics that describe a particular
defined goal. However, our experience in the case study has
shown that by carrying out feedback loops, it is possible to
discuss and (re)define metrics and to reach consensus on
metrics in close collaboration with responsible experts from
practice. Although not all derived metrics have clear
references to literature, interesting similarities could be
found. Regarding the first DevOps subapproach of ‘systems
thinking’, parallels have been found in lean manufacturing
and agile literature with respect to average lead time of ‘user
stories’ and the amount of ‘features being worked’ on
simultaneously [19]. However, we couldn’t find Scrum-
specific similarities, e.g., regarding our metrics addressing
costs and quality (e.g., number of incidents). Regarding the
second DevOps subapproach of ‘amplifying feedback
loops’, the parallels between our metrics model and
literature are more hidden, but are most certainly present.
For instance, the time spent on rework (after feedback) is
mentioned in agile and lean literature as the percentage of
‘units sent for rework’ [19]. The other metrics found, such
as number of approvals, are more closely related to software
development in general and are less present in literature on
Scrum. Regarding the third DevOps subapproach ‘a culture
or learning and experimentation’, the derived metrics turned
out to be quite different than what was previously found in
literature [13]. Metrics (areas) in literature addressed
appeared to be too abstract. Therefore, we have chosen

5Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

simpler and more direct metrics in terms of ‘time spent
on…’.

Reflection on the metrics model from a literature point of
view showed that the agile principles identified in lean
manufacturing literature turned out to be quite helpful in
particular with respect to the first subapproach. However, the
metrics investigated in literature on Scrum could not be used
in our metrics model. The reason for this is most likely the
focus of Scrum metrics. While agile and lean manufacturing
metrics focus on the entire process, similar to the focus of
our initial metrics model, Scrum metrics focus on teams
working within this process. A preliminar conclusion could
be that Scrum metrics are probably too team-specific to
address the goals of an entire DevOps process. But this
should be investigated further, preferably in case studies in
that the initial metrics model has to be validated and
elaborated further.

VI. CONCLUSIONS
This paper shows that regarding the integration of

software development and deployment activities, on the
basis of Devops, an initial metrics model could be
developed. This metrics model has been developed in a
structured way, in a small number of iterations, with
responsible practitioners. The objective of the metrics model
is the measurement of the effectiveness of the DevOps
implementation. The structured GQM-development of the
initial metrics model was facilitated by a reference
framework, i.e., consisting of the three elaborated DevOps
approaches and the agile and lean principles in Section II.
This reference framework will also provide a basis for
further refinement of the metrics model. Although
interesting, and for the company useful, results have been
obtained, the metrics model is still in an initial state. In
future research and case studies, we will continue the
iterative development of the metrics model, towards a well-
founded and transparent measurement of the effectiveness of
DevOps.

ACKNOWLEDGMENT
The author would like to thank Sander Kruis for his

valuable MSc thesis project at TU/e and Philips IT
Eindhoven, The Netherlands.

REFERENCES

[1] G. Kim, K. Behr and G. Spafford, The phoenix project: A
novel about IT, DevOps, and helping your business win. IT
Revolution Press, 2013.

[2] M. Mamun and J. Hansson, “Review and Challenges of
Assumptions in Software Development”, Chalmers University

and University of Gothenburg, Sweden, (2011),
http://publications.lib.chalmers.se/records/fulltext/local_1544
39.pdf

[3] S. Downey and J. Sutherland, “Scrum metrics for
hyperproductive teams: How they fly like fighter aircraft”,
46th Hawaii International Conference on System Sciences
(HICCS), 2013, pp. 4870-4878. Hawaii.

[4] ITIL 2011 - The Big Picture, Retrieved 7,
2015, http://cfnpeople.com/downloads/itil_poster_the_big_pic
ture_cfn_people.pdf.

[5] K. Beck and C. Andres, Extreme programming explained:
Embrace change, Addison-Wesley, 2000.

[6] J. Erickson, K. Lyytinen and K. Siau. “Agile modeling, agile
software development, and extreme programming: The state
of research”, Journal of database management, 16 (4), 2005,
pp. 13-18.

[7] K. Conboy and B. Fitzgerald, “Towards a conceptual
framework of agile methods: A study of agility in different
disciplines”, ACM workshop on Interdisciplinary software
engineering research, 2004, pp. 37-44, Newport Beach.

[8] Z. Zhang and H. Sharifi, “A methodology for achieving
agility in manufacturing organisations”, International journal
of operations & production management, 20 (4), 2000, 496-
512.

[9] K. Schwaber and M. Beedle, Agile development with Scrum,
Prentice Hall, 2001.

[10] K. W. Young, R. Muchlhaeusser, R. Pigging and P.
Rachitrangsan, “Agile control systems”. Journal of
automobile engineering, 2001.

[11] M. Poppendieck and T. Poppendieck, Lean software
development: An agile toolkit for software development
managers, Boston: Addison-Wesley, 2001.

[12] G. Kim, DevOps distilled, Part 1: The three underlying
principles. Retrieved 7, 2015, IBM Developerworks:
http://www.ibm.com/developerworks/library/se-
devops/part1/index.html

[13] S. López, J. Peón and C. Ordás, “Managing knowledge: the
link between culture and organizational learning”, Journal of
knowledge management, 8 (6), 2004, pp. 93-104.

[14] R. Van Solingen and E. Berghout. The goal question metric
method: a practical guide for quality improvement of software
development, McGraw-Hill Inc, 1999.

[15] V. Basili, G. Caldiera and D. Rombach, “Goal Question
Metric Paradigm”, Encyclopedia of Software Engineering, 1,
1994, pp. 528-532.

[16] S. Pfleeger, “Lessons learned in building a corporate metrics
program”, IEEE Software, 1993, pp. 67-74.

[17] J. McNiff, Action research; Principles and practice, London &
New York: Routledge, 2013.

[18] R. K. Yin, Case study research design and methods, Newbury
Park: Sage Publications, 1989.

[19] D. F. Duque and L. R. Cadavid, “Lean manufactoring
measurement: The relationship between lean activities and
lean metrics”, Estudios Gerenciales, 23 (105), 2007, pp. 69-
83.

[20] D. J. Anderson, Kanban: Successful evolutionary change for
your technology business, Blue Hole Press, 2010.

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

http://cfnpeople.com/downloads/itil_poster_the_big_picture_cfn_people.pdf
http://cfnpeople.com/downloads/itil_poster_the_big_picture_cfn_people.pdf

	I. Introduction
	II. Background and reference framework
	III. Methodology of the case study
	IV. towards an initial metrics model for devops, the case study
	A. Goal definition for the measurement of DevOps
	B. Formulating questions to derive metrics for DevOps.
	C. Deriving an initial metrics model for DevOps
	D. Iterative refinement of the initial metrics model

	V. Discussion
	VI. Conclusions
	ACKNOWLEDGMENT
	References

