
Enterprise Integration Modeling

A Practical Enterprise Data Integration and Synchronization Solution

Mihaela Iridon

Cândea LLC

Dallas, TX, USA

e-mail: iridon.mihaela@gmail.com

Abstract— As line-of-business software systems take shape and

evolve over time within an organization, so does the need for

such systems to interact with each other and exchange data,

making it imperative to design flexible, scalable integration

architectures and frameworks to support a robust and well-

performing enterprise system. System integration is a multi-

faceted undertaking, ranging from low-level data sharing

(Shared Repository or File Sharing), to point-to-point

communications (Remote Procedure Invocation via Service

Orientation), to decoupled data exchange architectures

(Messaging). It is common to build entire integration sub-

systems responsible not only for exchanging information

between systems (commands and notifications) but also for

potentially more complex business logic orchestration across

the entire enterprise (Message Broker). This paper is

contemplating a practical data notification and

synchronization integration solution that allows multiple

enterprise domains to share data that is critical for business

operations. The article presents a real-world integration

architecture achieving this business objective, together with the

corresponding system models and design artifacts, and shows

how the data integration is realized using a broker-based

messaging approach employing various enterprise integration

patterns.

Keywords-Enterprise integration; system modeling; data

integration; canonical model; integration patterns.

I. INTRODUCTION

Within an enterprise, system integration solutions are
almost always designed and implemented as an afterthought,
as an attempt to build or to expand a new or existing
enterprise architecture comprised of heterogeneous legacy
system. It may be safe to say that most companies do not
start off with an integrated enterprise architecture but rather a
core domain (also referred to as a vertical), which will
eventually grow and become part of a larger enterprise
system. In many cases, such integration is achieved by
employing various off-the-shelf integration products, such as
Microsoft’s BizTalk [7] or TIBCO.

Software system integration comes in different flavors,
depending on the business objectives, the overall enterprise
architecture, and ultimately the realization approach chosen.
In Section II we will investigate these driving factors and
then present a concrete implementation approach and its
models in Section III, as it has been proposed and adopted by
a provider of the nation’s largest portfolio of benefit and

payroll products and services designed to help more than
200,000 small and medium-sized businesses.

This paper presents a data integration and
synchronization blueprint aimed at implementing the
“Maintain Data Copies” data integration pattern [8] by
means of a decoupled integration mechanism realized on a
custom broker-based messaging architecture [10] [12]. The
data payloads exchanged between the loosely coupled sub-
systems abide to a ubiquitous integration language, referred
to as the canonical model [7] as described in Section IV.
This model is the unified abstraction of the data structures
that must be shared and synchronized between these systems.

II. COMPARING AND CONTRASTING FUNCTIONAL AND

DATA INTEGRATION

When building a large enterprise software system by
bringing together multiple domain applications, the first
question that must be answered involves the level of
abstraction at which the integration specifications are being
defined: Do the sub-systems only need the data that allows
them to carry out their own functions, or do they also require
access to cross-domain exposed functional features? In other
words, should a system expose data only or features as well?

The answers to these questions will determine the type of
integration that must be realized: data or functional
integration, and, perhaps even further, it will help discern
between the need of a flexible, lightweight, loosely-coupled
integration architecture and one that adds enterprise features
and interactions, transcending domain system boundaries. It
is also possible that, in some cases, a hybrid approach may
be pertinent, either to realize a quick and simple integration
with a narrower scope (e.g. a test product implementation),
or to overcome deep architectural and data model
discrepancies between the existing systems. In this case, the
solution must fulfill some imperative enterprise needs -
whether they are related to exposing new system features in a
short amount of time or at a lower cost until further market
research proves the worthiness of additional funding for a
comprehensive, scalable, extensible, and suitable solution.

A. Functional Integration

This type of integration involves exposing data and
behavior [9] to systems that participate in the integration in
order to trigger or invoke business features exposed by these
systems. Usually, a pure Service Oriented Architecture
(SOA) [3] [4] would be the simplest architectural approach

23Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

that could realize this requirement, but it would introduce
system coupling and would not be easily scalable [5]. Web
Services implement in effect the Remote Procedure
Invocation integration pattern paradigm [7] and this implies
mutual awareness of the presence of – and the functionality
provided by - each of the integrating systems.

Complexity becomes apparent when more than two
systems must interact at a logical and/or functional level of
abstraction by invoking these exposed features and
generating chattiness across the network, or when systems
evolve, possibly threatening the stability of the integration
contracts and hence of the solution. Several options are
available to alleviate these problems, from architectural ones
to following best practices and proper functional
decomposition and service encapsulation, and eventually to
making the proper technology choices [4].

B. Data Integration

This type of integration assumes that the various
integrating systems were not designed to work together [1],
and that they do not have direct access to the entire
enterprise data but only to that which they provision directly.
These systems were built in order to fulfill certain functional
and business requirements, rather than architectural ones. It
is also possible that some systems were acquired at a later
time (e.g., corporate mergers, third-party software
acquisitions, etc.)

Given that the systems evolved independently, enabling
them to interoperate using multiple copies of the enterprise
data (i.e., multiple data sources) while providing enterprise-
level business features in a unified fashion is problematic,
since there is no single source of truth and, potentially, no
single source of data entry. Multiple applications may allow
users to enter the same type of data from different user
interfaces that sit atop of different business/logic layers and,
consequently, different data sources.

Achieving this type of data integration can rely on either
custom solutions (for example, involving an enterprise
service bus), or commercial tools (such as implementations
of a Master Data Management system), which may expedite
the time-to-market of such an integration, sometimes at
lower costs than custom solutions [2] [7]

III. A PRACTICAL DATA INTEGRATION AND

SYNCHRONZATION SOLUTION

Consider three major business domains, Human
Resources (HR), Payroll, and Benefits. The common ground
for all three is the demographic data that defines the
companies (or clients) that these systems are servicing and
their employees. As is quite often the case, neither domain
was built with a true enterprise vision in mind, neither
architecturally, nor functionally. Yet the main enterprise data
on employees and clients served must be shared across all
domains when multiple data copies exist, one per domain.
These data sources were designed for a very specific
purpose, making it prohibitively expensive to refactor the
systems’ layers and the business applications so that they
rely on a single source of truth – a unified data source across
the enterprise. A solution employing Master Data

Management (MDM) tools has been evaluated but the
business requirements did not warrant such elaborate
implementations for this particular case. The proposed and
agreed upon solution was to implement the “Maintain data
copies” data integration pattern [8] by means of a custom
scalable and extensible middleware architecture (or
integrating layer [10]), reusable frameworks and models, and
carefully-chosen technologies, to fulfill the business need of
providing multiple services (HR, payroll, and benefits) to an
array of small to large size clients.

The following subsection presents the main models of the
proposed integration solution, where data notifications are
being exchanged between the various domains via a broker-
based messaging architecture, using various enterprise
integration patterns, as depicted in the EAI pattern mapping
diagram in Figure 4. The data payload for these messages is
wrapped inside a context-based notification model, allowing
participating systems to take the appropriate action – based
on their own domain rules – using the data received from the
message broker. The individual domain systems are not
aware of each other, only of the message broker through
which they communicate.

A. The Integration Models

All models, structural and behavioral, included in this
paper are excerpts from the technical design specifications
document created on behalf of the client’s Enterprise
Integration Solution [12] and they are being used hereby
with permission from this client.

1) Structural Models: High-Level Enterprise Integration

Architecture and Components
The integration middleware was designed as an

extensible, highly-responsive, and scalable broker-based
topology through which the integrating domain systems will
exchange data notifications in near real-time and in a
loosely-coupled fashion. The middleware is built on durable
messaging frameworks, such as an enterprise service bus
(ESB), queues, an entity mapping/correlation infrastructure,
and various service endpoints (SOA).

The high-level component diagram (Figure 1) shows the
three business verticals as clients to the enterprise services
that provide access to features that implement cross-cutting
concerns (logging, SSO, audit) while indirectly exchanging
data notification messages among each other, without
awareness of each other or the features they provide, using
the integration middleware exposed via a service endpoint
(i.e., the Data Notification Receiver Service). This design
ensures system scalability and plasticity of the integration
scope (data or functional), while hiding the actual technology
specifics from the systems that participate in the integration.

2) Object/Data Models: The Canonical Model
The data notifications exchanged between the systems

via the service-broker integration middleware is a two-
layered object model, with (a) the actual data payload
represented by the integration ubiquitous model, also
referred to as the Canonical Model [7], and (b) the
notification model which is wrapping (or encapsulating) the
canonical model payload, adding context, source, and target
details to the communication messages.

24Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

Figure 1. Overall enterprise integration topology: business verticals and integration middleware

This allows for a reusable notification model, where - by
employing generic data types for the payload wrapped within
the notification together with the appropriate inheritance
(generic type inheriting from the non-generic type) – we can
design any number of notification schemata that could
encapsulate any business entity models inside a generic
payload. The payload is domain-specific (or enterprise
integration-specific in this case), whereas the notification
model is domain-agnostic. This is depicted in the object
model in Figure 2. The generic type T of the payload can be
anything that one would define for a given domain:
employee, client, address, benefit, participant, dependent,
etc. In fact, a separate object model for the enterprise
integration has been defined and is used in the
implementation of this solution (see the Section IV for
further details).

3) Behavioral Models: The Communication Model

Describing the Enterprise Data Synchronization Process
For the implemented solution, the data notification

exchange follows a very simple path through the hub-and-
spoke (or star) integration middleware topology (Figure 3).
However, the main challenge that had to be overcome is
associating the business entities from one system to business

entities in other systems, without introducing direct
dependencies between these systems or awareness of other
domains or domain-specific identifiers that – semantically –
tie these enterprise entities together. For this purpose, an
entity correlation service was introduced, using a separate
repository of entity IDs that represent logically - or
semantically - identical entities across the enterprise. Such
correlations will be specified during an initial data setup
process by administrative users or via custom automation
tools and import/export facilities.

B. Noteworthy Features of the Integration Architecture

Some of the rather interesting features of this real-world
integration solution are compiled below, grouped into
functional and non-functional characteristics. Several design
details are included to impart to the reader some level of
context and comprehension of the architectural and technical
approaches chosen.

1) Key Functional Attributes

a) Enterprise Data Coherence

Maintaining multiple data copies synchronized, all
integrators become symmetrical systems of record for the
core/common enterprise data.

 cmp System Components

Dispatcher Queues and Services

Data Integration Middleware

«service»

Common Enterprise Serv ices

«service»

Data Notification

Receiv er Serv ice

«service»

Notification Queue

Listener

«service»

Entity Correlation

Serv ice

«subsystem»

Payroll Applications and

Serv ices

«subsystem»

Benefits Applications

and Serv ices

«subsystem»

HR Applications and

Serv ices

Benefits DB Payroll DB HR DB

Integration

(Correlation

Mapping) DB

Notification

Queue (ESB)

ESB

Repository

(Durable

Messages)

Dispatcher

Queues

(ESB)

«service»

Dispatcher Serv ices

Domain Applications

«flow»

«listen»

DataNotification

«flow»

«flow»

DataNotification

«flow»

25Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

All systems participating in the integration are able to
notify the enterprise about relevant data updates in a
particular line of business system without being aware of the
other systems that might need this information or of the way
in which this data will be consumed.

All systems participating in the integration will be
notified of relevant data updates occurring across the
enterprise via notifications that encapsulate data payloads
following a normalized model. This in turn allows them to
keep their own data copy synchronized with the data across
the enterprise, while continuing to provision it
independently, according to the domain’s business rules.

b) Enterprise Functional Coherence

Specialized domain services offered to clients will
continue to be managed and augmented within each
individual vertical, without the need to cross domain
boundaries, since all necessary data is available at the
domain level, nearly real-time consistent with the enterprise
data.

Decoupled and asynchronous notifications exchanged via
the messaging broker keep systems unaware and independent
of each other, while allowing the enterprise to grow as
needed. Additional applications may be added; if these
applications require their own data copy, they will start
listening to notifications, and if they also support or require
data updates that must be synced with other applications’
data sources, then the new applications will also start sending
notifications to the broker, to be dispatched and consumed
throughout the enterprise, as needed.

Figure 3. High-level integration communication model mapped to the service broker (star) topology

 sd Routing-Only Communication Model

«System»

Components::Benefits

«System»

Components::

Payroll

«Router/Dispatcher»

Broker

SB Queue
Mapping/

Correlation

Repository

«System»

Components::HR

Source of data notification

1: ProcessBenefitsEvent()

1.1: Translate()

1.2: HandleNotification()

1.3: PutMessage()

1.4: OK()

2: GetNextMessage()

2.1: LookupIDs()

2.2: HandleEvent()

2.2.1: Translate()

2.2.2: InvokePayrollFeature()

2.2.3: Response(IDs)

2.3: HandleEvent()

2.3.1: Translate()

2.3.2: InvokeHRFeature()

2.3.3: Response(IDs)

2.4: DeleteMessage()

2.5: Update(IDs)

 cmp CanonicalModel - Simplified

DataNotification

- KnownTypes :Type ([]) {readOnly}

- DataNotification()

+ DataNotification()

+ ToString() :string

- LoadKnownTypes() :Type[]

«property»

+ PayloadType() :Type

+ Id() :Guid

+ Source() :string

+ SerializedPayload() :string

+ Context() :NotificationContext

+ Target() :string

+ CreatedDate() :DateTime

+ CreatedBy() :string

Notification

«property»

+ Domain() :string

T > class, new()

Notification

- _payload :T

- LoadKnownTypes() :Type[]

«property»

+ PayloadTypeName() :string

+ Payload() :T

NotificationContext

+ ToString() :string

«property»

+ Operation() :Operation

«enumeration»

Operation

 Insert

 Update

 Delete

 Unknown

Agnostic of the payload type.

There is no explicit dependency

between the Notification Model

and the Canonical Model.

Figure 2. Data notification object model

26Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

2) Key Quality Attributes

a) Scalability

Without any architectural changes to the integration
framework or the domain systems, new systems can be
added to this topology and can be enabled to participate in
the integration (assuming they also use their own data
source(s) that require continuous or occasional
synchronization with the enterprise data). The only two-fold
requirement is for these systems to expose a data notification
service endpoint to handle enterprise notifications and to be
able to raise and react to such data notifications
appropriately, while being aware of the canonical model as
the lingua franca of the enterprise integration.

b) Testability

Although additional testing frameworks for the
integration components must be designed and built,
individual systems will continue to be tested independently
of each other or the integration middleware.

Components that simulate/generate notification traffic
through the integration framework can be built to allow for
independent testing of the service broker and the integration
infrastructure.

c) Maintainability

The basic SOLID design principles employed, and most
importantly the “separation of concerns” (or SoC) principle,
ensure a highly maintainable architecture and codebase due
to overall high cohesion and low coupling [5] [10].

Domain rules do not escape the boundaries of the system
to which they belong, and similarly integration logic is
isolated to the broker components and services.

d) High Availability

By employing load balancing and clustering around the
integration services and the choice of technology (e.g.,
Service Bus Farm), the deployment topology was designed
so as to ensure high availability as far as the integration
components are concerned.

e) Performance

Assuming appropriate technology choices, the integration
framework ensures a high throughput of notifications with
minimal integration logic (i.e., entity correlation map
lookup) required between the moment of receiving a
notification and that of dispatching one.

For example, Microsoft’s Windows Server Service Bus
1.1 (on premise) can process 20k messages/second (based on
1K message size) with an average latency of 20-25ms [11].

C. Enterprise Integration Patterns Mapping

The integration patterns [7] that were employed in
designing and realizing the integration architecture are
presented below. They can easily be mapped to the business
verticals and integration middleware components as an
overlay atop the simplified enterprise system block diagram,
as seen in Figure 4.

Figure 4. Mapping of enterprise integration patterns to domain systems and to integration middleware components

27Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

IV. SUMPPLEMENTARY INTEGRATION MODELS

A. The Canonical Model’s Base Class Details

The Canonical Model integration pattern [7] has been the
central theme of the solution implemented and is the only
integration element that was allowed to permeate the
enterprise (at each system’s integration endpoints). This
model can be envisioned as the ubiquitous integration
language, which describes entities that are shared across the
various domains of the enterprise. However, these entities in
turn share data elements that are best modeled separately, as
properties on base classes, using elemental inheritance,
aggregation, and composition modeling concepts. For the
domains in the presented case study, the need to support
entity identifiers of different types, active timeframes, and
traceability/audit features, led to the design of the model in
Figure 5 where all domain entities inherit from the abstract
class EntityBase shown in the center of the class diagram.

B. The Canonical Model and the Main Integration Entities

The main (aggregate root) entities in the integration’s
lingua franca are Group and Employee. They reflect the
primary integration objective: keep Employee and Group
demographics data in sync among all enterprise systems, by
allowing each system to maintain and operate on their
individual copy of the data. The model shown in Figure 6 is
specific to the integration solution proposed for the client,
aiming at integrating Benefits, Payroll, and Human
Resources domains, more specifically for achieving the
business goal of cross-selling services to various clients.

Noteworthy here is the fact that if we consider the
canonical model as the domain of the integration, then it is
following the anemic domain model design anti-pattern [6].
This is because these are simple data containers and do not
encapsulate functionality as the integration framework’s
domain itself is behavior-less. The model’s only purpose is
to capture and transport data notifications across systems –
so, from this (proper) perspective the model is abiding to the
Data Transport Object (DTO) pattern of enterprise
application architecture [5].

Generic functionality is exposed in the form of service
operation contracts for handling notifications (whether a
domain system raises a notification or must handle one), but
no enterprise features are being implemented here, hence
data representation and modeling is of essence and
imperatively impacts the success of the proposed system
integration solution.

C. The Enterprise Integration Activity Model

The overall system integration flow is modeled in the
activity diagram in Figure 7, where the various integrating
systems and the broker components are bounded by the
vertical swim lanes, to indicate where activities and actions
cross system boundaries. The diagram also shows how the
correlation service is being employed to allow the integration
framework to associate the same (logical) clients across
domains by looking up and populating the appropriate
domain identifiers, as part of the context that wraps the
notification data payload passing through the broker.

Figure 5. Base class and common elements for the canonical model types

 cmp CanonicalModel - Simplified

EntityBase

- LoadKnownTypes() :Type[]

«property»

+ Id() :Identifier

+ CreateUpdateDetail() :CreateUpdateDetail

+ Lifespan() :EffectivePeriod

Identifier

«Property»

+ Id :Guid

+ LogicalKey :string

+ AlternativeId :string

T

Identifier

+ Identifier()

+ ToString() :string

«property»

+ Id() :T

«interface»

IEntityBase Marker I/F (used for

Reflection)

CreateUpdateDetail

«property»

+ CreatedBy() :string

+ CreatedDate() :DateTime?

+ UpdatedBy() :string

+ UpdatedDate() :DateTime?

Effectiv ePeriod

«property»

+ EffectiveEndpoint() :PeriodEndpoint

+ TerminateEndpoint() :PeriodEndpoint

PeriodEndpoint

«property»

+ Date() :DateTime

+ Reason() :string

Base class for all the main entities

in the enterprise-integration-

specific canonical model

Generic identifier - to support entity

IDs of any (primitive) type

2

28Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

Figure 6. Canonical model’s main entities: the payload of the data notifications

Behind the broker services, multiple queues were used as
a durable and priority-based messaging mechanism, in order
to decouple the various processes that take place at the
integration framework level: receiving notifications,
processing notifications and their context, and finally
dispatching notifications to targeted systems.

V. CONCLUSION

Data integration and synchronization in medium to large
multi-domain enterprise systems can be achieved via custom
integration frameworks using various enterprise integration
patterns and making appropriate technology choices.

This paper presented an actual, real-world integration
solution, explained via several structural and behavioral
system models, and provided details on how the “maintain
data copies” data integration pattern would be realized via a
broker-based messaging system. The data exchanged
between the various domains is encapsulated inside a
canonical model, which is the common data abstraction
across the enterprise. This in turn is wrapped inside a
context-based, generic, and reusable notification model,
allowing systems to react to these notifications based on their
own business rules.

The resulting architecture presented here features
scalability, extensibility, and high-availability – to mention
just a few quality attributes, while supporting near-real-time
data synchronization between systems and allowing them to
operate without awareness of each other, while using their
individual data formats, features, and domain rules.

REFERENCES

[1] T. Erl, “Service-Oriented Architecture: A field Guid to
Integrating XML and Web Services,” Prentice Hall, 2004.

[2] T. Erl, “Service-Oriented Architecture (SOA): Concepts,
Technology, and Design,” s.l.:Prentice Hall, 2005.

[3] T. Erl., “SOA Design Patterns,” Prentice Hill, 2009.

[4] T. Erl, et al., “Next Generation SOA: A Concise Introduction
to Service Technology & Service-Orientation,” Prentice Hall,
2014.

[5] M. Fowler, “Patterns of Enterprise Application Architecture,”
Addison-Wesley Professional, 2002.

[6] M. Fowler, Martin Fowler. [Online]. Available from:
http://www.martinfowler.com/bliki/AnemicDomainModel.ht
ml [retrieved: June, 2015]

[7] G. Hohpe, and B. Woolf, “Enterprise Integration Patterns;
Designing, Building, and Deploying Messaging Solutions,”
Addison-Wesley, 2012.

 class CanonicalModel Alt - Simplified

EntityBase

Models::Address

EntityBase

Models::Benefit

EntityBase

Models::Contact

EntityBase

Models::Employee

EntityBase

Models::Group

EntityBase

Models::Participant

EntityBase

Models::Person

Models::PersonInfo

ParentEntityDetail

Models::AddressCollection

ParentEntityDetail

Models::Div isionCollection

Models::GroupInfo

Models::ContactDetail

ParentEntityDetail

Models::EmployeeCollection

ParentEntityDetail

Models::ContactCollection

ParentEntityDetail

Models::

RelatedPersonCollection

ParentEntityDetail

Models::BenefitCollection

Models::EmployeeInfo

«required»

Benefits

1..*

Benefits

RelatedPersons

RelatedPersons

1..*

Divisions
1..*

«required»

Phones

0..*

Addresses

«required»

Employees

1..*

Contacts

Emails

0..*

Contacts

1..*

Addresses

1..*

29Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

[8] Microsoft, Data Integration. [Online]. Available from:
https://msdn.microsoft.com/en-us/library/ff647273.aspx
[retrieved: June, 2015]

[9] Microsoft, Functional Integration. [Online]. Available from:
https://msdn.microsoft.com/en-us/library/ff649730.aspx
[retrieved: June, 2015]

[10] Microsoft, Integration Patterns. [Online]. Available from:
https://msdn.microsoft.com/en-us/library/ff647309.aspx
[retrieved: June, 2015]

[11] Microsoft, Service Bus for Windows Server Quotas. [Online].
Available from: https://msdn.microsoft.com/en-us/library/
dn441429.aspx [retrieved: June, 2015]

[12] M. Iridon, Cândea LLC. “Technical Design Specifications for
Enterprise Integration Solution,” , 2015, unpublished/internal
document.

 act Integration with Correlation Activ ity Model

Applications

Notification Receiv er

Broker Serv ices

Notification Processing Serv ice Correlation Serv ice

Enterprise Serv ices

Group Mgmt Serv ices

Raise Data

Notification
Notification

Handle

Notification

Notification

Notification

Send to

Queue

Notification

FlowFinal

Start

Listening to

Queue

ListenerInitial

Get

Notification

from Queue

Update

Targets

Get Serv ices

Prov ided for

Group

Update Entity

IDs

Get Entity

IDs

Dispatch to

Targets
Notification

Handle

Notification Notification

Notification

The Receiver of the Notification is

NOT the same as the Sender of the

Notification. (Target <> Source)

Routing is based on what

services a given group has

signed up for.

Dispatcher Serv ice(s)

Get

Notification

from Queue

Send to All

Dispatch

Queues

FlowFinal

DispatcherInitial

Start

Listening to

Queue

Validate/Populate

IDs

Integration Services call this

action ONLY if smart routing is

supported at the Broker

Services level.

Update IDs

Update Entity

IDs
FlowFinal

The received notification

object will be populate with

the domain's specific IDs

Notification Receiv er

Notification Flow

Notification Flow

Figure 7. Enterprise integration activity model

30Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

