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Abstract— Automated Infrastructure Management (AIM) 
systems are enterprise systems that provision a large number 
and variety of network infrastructure resources, including 
premises, organizational entities, and most importantly, all the 
telecommunication and connectivity assets that enable network 
infrastructure to operate locally and across vast geographical 
areas. The representation of infrastructure elements managed 
by such systems has never been normalized before, making 
integration – a challenging undertaking on its own – an even 
more difficult task, requiring specialized knowledge about the 
systems and the infrastructure data they provision. Such 
details are most relevant given the complexity and variety of 
telecommunication infrastructure systems and the widespread 
need for external or custom applications to gain access to the 
data and features built in to these AIM systems. This year 
however, the international standards organization is scheduled 
to release new standard ISO/IEC 18598 that will provide 
standardization and sensible guidelines for exposing data and 
features of AIM systems and thus to facilitate the integration 
with custom clients for these systems. CommScope, an active 
contributor in defining these standards, has implemented to a 
large extent these specifications for their imVision system and 
in doing so, decided to capture some relevant details that 
would bring more clarity, add context, and provide further 
guidelines to the information described by the standards 
document. In order to achieve these goals and in an attempt to 
lead the way towards a robust AIM system design that aligns 
with these standards, this paper elaborates on the 
recommended models. It also intends to share architectural 
and technology-specific considerations, challenges, and 
solutions adopted for the CommScope’s imVision standards-
based API, so that they may be translated and implemented by 
other organizations that intend to build - or integrate with - an 
AIM system in general. 

Keywords-automated infrastructure management (AIM); 
system modeling; ISO/IEC 18598. 

I.  INTRODUCTION 

ISO/IEC have recently put forth a set of requirements and 
guidelines for modeling and provisioning Automated 
Infrastructure Management (AIM) systems [1] that will help 
consolidate how such systems represent the assets and 
entities they provision, as well as enable custom integration 
solutions with these systems. Identifying and organizing 
AIM system’s assets in a logical and structured fashion 

allows for an efficient access and management of all the 
resources administered by the system. 

As with every software system and more so with 
enterprise-level applications, domain modeling is of crucial 
importance as it helps define, refine, and understand the 
business domain, facilitating the translation of requirements 
into a suitable design [5]. However, special-purpose models 
can and should be designed for various layers of a system’s 
architecture [11]. When a system exposes integration points 
to outside agents or clients, it is imperative to define clean 
boundaries between the system’s domain and the integration 
models [6] [4]. Stability of integration models is just as 
important as versioning for extensible systems, while 
allowing the domain models, structural or behavioral, to 
evolve independently of all other models that the system 
relies on [2] [3]. 

The first half of this paper (Section II) will present the 
relevant resource models from the perspective of a RESTful 
services design [2] [10] [13], with focus on the underpinning 
structures and the telecommunication assets, as proposed and 
used by CommScope’s imVision API. This section also 
presents a solution for handling a large variety of hardware 
devices while avoiding a large number of URIs for accessing 
these resources. Section III discusses system architecture, 
patterns and design-specific details. Section IV presents 
some of the challenges encountered during the realization of 
the system design, solutions employed, and finally joining all 
the discussion points to a conclusion in Section V. 

II. AIM SYSTEM DOMAIN ANALYSIS AND RESOURCE 

MODELING 

The resource model presented in this paper employs 
various design and implementation paradigms. However, the 
only types exposed by the system, i.e., all concrete resource 
types, can be viewed and modeled as simple POCOs (Plain 
Old CLR Objects for the .NET platform) or POJOs (Plain 
Old Java Objects for the Java EE platform). These models 
represent merely data containers that do not include any 
behavior whatsoever. Such features are specific to the 
physical entities being modeled and are highly customized 
for a given system. The model proposed here serves the 
purpose of defining a common understanding of the data that 
can be exchanged with an AIM system while any specific 
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behavior around these data elements is left to the 
implementation details of the particular AIM system itself. 

As opposed to stateful services design principles (such as 
SOAP and XM -RPC-based web services) - where functional 
features and processes take center stage while data contracts 
are just means to help model those processes [4] [11], in 
RESTful services the spotlight is distinctly set on the 
transport protocol and entities that characterize the business 
domain. These two elements follow the specifications of 
Level 0 and 1, respectively, of the RESTful maturity model 
[7] [13]. The resources modeled by a given system also 
define the service endpoints (or URIs), while the operations 
exposed by these services are simple, few, and standardized 
(i.e. the HTTP verbs required by Level 2: GET, POST, PUT, 
DELETE, etc.) [10] [13]. Nonetheless, in both cases, a sound 
design principle (as with any software design activity in 
general) is to remain technology-agnostic [5] [6] [11].  

A. Resource Categories Overview and Classification 

The entities proposed in the Standards document [1] are 
categorized by the sub-domain that they are describing as 
well as their composability features. At the high-granularity 
end of the spectrum we will find entities that deal with the 
location of networking centers (sites, cities, buildings, 
rooms, etc.) while at the other end of the spectrum we have 
the smallest assets that the system manages (modules and 
ports, outlets and cables). This classification helps define a 
model that aligns well with the concept of separation of 
concerns (SoC), allowing common features among similar 
entities to be shared effectively, with increased testability 
and reliability.  

The Standards document proposes the following 
categories of resources to be provisioned by an AIM System, 
as shown in Table 1. 

TABLE I.  RESOURCE CATEGORIES AND EXAMPLES OF CONCRETE 

TYPES 

PREMISES Geographic Area, Zone, Campus, Building, 
Floor, Room 

CONTAINERS Cabinets, Racks, Frames 
TELECOM ASSETS Closures, Network Devices, Patch Panels, 

Modules, Ports, Cables, Cords 
CONNECTIVITY ASSETS Circuits, Connections 
ORGANIZATIONAL Organization, Cost Center, Department, Team, 

Person 
NOTIFICATIONS Event, Alarm 
ACTIVITIES Work Order, Work Order Task 

 
Some elements listed above may not be relevant to all 

AIM systems. The Standards document intends to capture 
and categorize all elements that could be modeled by such a 
system. It also suggests a common terminology for these 
categories so that from an integration perspective there is no 
ambiguity in terms of what these assets or entities represent 
and what their purpose is. Otherwise stated, it defines at 
high-level the ubiquitous integration language by providing a 
clear description and classification of the main elements of 
an AIM system. This paper takes these recommendations, 
materializes them into actual design artifacts, and proposes a 
general-purpose layered architecture for the RESTful AIM 
API system. 

B. Common Abstraction Models 

Since all resources share some basic properties, such as 
name, identifier, description, category, actual type (that 
identifies the physical hardware components associated with 
this resource instance), and parent ID, it is a natural choice to 
model these common details via basic inheritance, as shown 
in Figure 1. In order to support a variety of resource 
identifiers (i.e., Globally Unique Identifier, integer, string, 
etc.) the ResourceBase  class is modeled as a generic type, 
with the resource and parent identifier values of generic TId . 

Of particular interest are telecommunication assets – the 
core entities in AIM systems – a class of resource types, 
which all realize the IAsset  interface, an abstraction used as 
a marker on the type. These entities will be presented in the 
next sub-section. 

Figure 1.  Resource Base Models 
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C. Resource Model Design 

1) Premise Elements 
Company’s network infrastructure can be geographically 

distributed across multiple cities, campuses, and/or 
buildings, while being grouped under one or more sites – 
logical containers for everything that could host any type of 
infrastructure element. At the top of the infrastructure-
modeling hierarchy, there are the premises, which model 
location at various degrees of detail: from geographic areas 
and campuses to floors and rooms. Composition rules or 
restrictions for these elements may be modeled via generic 
type constraints, unless these rules are not enforced by a 
given system. Figure 2 shows the standards-defined premise 
entities, their primary properties, and the relationships 
between them. 

2) Telecom Connectivity Elements 
The main assets of a network infrastructure are its 

telecommunication resources, from container elements, such 
as racks and cabinets, to switches and servers, network 
devices (e.g. computers, phones, printers, cameras, etc.), 
patch panels, modules, ports, and circuits that connect ports 
via cables and cords. The diagram included in Figure 3 
shows these asset categories modeled via inheritance, with 
all assets realizing the IAsset  marker interface. As is the 
case for CommScope’s imVision system, the type of the 
unique identifier for all resources is an integer; hence, all 
resource data types will be closing the generic type TId  of 
the base class to int : ResourceBase<int> . This way, the 
RESTful API will expose these AIM Standards-compliant 
data types in a technology- and implementation-agnostic way 
that reflects the actual structure of the elements, while 

generics and inheritance remain transparent to integrators, 
regardless of the serialization format used (JSON, XML, 
SOAP). This fact is illustrated in Figure 5, which shows a 
sample rack object serialized using JSON. 

In addition to the elements shown in Figure 3 that 
support a persistent representation of the data center’s 
telecom assets, there are those that enable circuits to be 
specified: cables, connectors, and cords. They play a role in 
defining the connectivity dynamics of the system. Figure 4 
shows the primary resources for modeling this aspect of an 
AIM system. 

3) Organizational Elements 
Some AIM systems may desire to provision entities that 

describe the organization responsible for maintaining and 
administering the networking infrastructure. For example, 
tasks around the management of connectivity between panels 
and modules is usually represented by work orders that 
comprise one or more work order tasks. Such tasks are then 
assigned to technicians, which report to a manager, which in 
turn belongs to a department, and so on. The model for these 
elements is not included here as it is straightforward but is 
available upon request. 

4) System Notifications and Human Activity Elements 
Hardware components of AIM systems, e.g., controllers, 

discoverable/intelligent patch panels and in some instances 
intelligent cords (e.g. CommScope’s Quareo system) allow 
continuous synchronization of the hardware state with the 
logical representation of the hardware components.  

This synchronization is facilitated by the concept of 
events and alarms that are first generated by controllers 
(alarms) and then sent for processing by the management 
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Floor

Location

«property»

+ PostalCode(): string

+ LineAddress1(): string

+ LineAddress2(): string

+ City(): string

+ State(): string

+ County(): string

+ Country(): string

NamedResourceBase

TParentPremise > PremiseBase

PremiseBase

«property»

+ Parent(): TParentPremise
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«bind»

< TParentPremise->GeographicArea >

< TParentPremise->Building >

< TParentPremise->Floor >
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< TParentPremise->Campus >
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Figure 2.   Premise Resource Models 
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software (events). These notification resource types are 
supported by the AIM Standards and are modeled as shown 
in Figure 6. The figure also includes activities that 
technicians must carry out, such as establishing connections 

between assets, activities that in turn trigger alarms and 
events, or are created as a reaction to system-generated 
events. 
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+ PerformanceLevel(): int
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+ Service(): string
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TResourceId
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+ FrontPorts(): List<Port>
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+ PortMapping(): List<OrderedPair<Port, Port>>

Container

0..*

FrontPorts / BackPorts

< TResourceId->int >
< TResourceId->int >

< TResourceId->int >

< TResourceId->int >
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< TResourceId->int >

< TResourceId->int >

Figure 3.  Telecommunication Assets Resource Models 
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Figure 4.  Connectivity Models Figure 5. A JSON Representation of a Rack Resource 
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D. Modeling Large Varieties of Hardware Devices 

The telecom asset model presented in Figure 3 depicted 
the categories that define all or most physical devices seen in 
network infrastructure. However, actual hardware 
components have specialized features that are vendor-
specific or that describe some essential functionality that the 
components provide. Such specialized attributes must be 
incorporated in the model for supporting the Add (POST) 
and Update (PUT) functionality of the RESTful services that 
expose these objects to the integrators. The main challenge is 
how to support such a large variety of hardware devices 
without having to expose too many different service 
endpoints for each of these specialized types. 

According to the Richardson Maturity Model for REST 
APIs [7], which breaks down the principal ingredients of a 
REST approach into three steps, Level 1 requires that the 
API be able to distinguish between different resources via 
URIs; i.e., for a given resource type there exists a distinct 
service endpoint to where HTTP requests are directed. For 
querying data using HTTP GET, we can easily envision a 
service endpoint for a given resource category – as per the 
models described above. For example, there will be one URI 
for modules, one for closures, one for patch panels, etc. 
However, when creating new assets, we have to be very clear 
about which concrete entity or device type we want to create, 
and for this, we must provide the device-specific data. Since 
these features are not inherent to all objects that belong to 
that category, specialized models must be created – e.g., as 
derived types from the category models that encapsulate all 
relevant device-specific features.  

For example, one of CommScope connectivity products 
that falls under the category of Closures is the SYSTIMAX 
360™ Ultra High Density Port Replication Fiber Shelf, 1U, 
with three InstaPATCH® 360 Ultra High Density Port 
Replication Modules [15] – a connectivity solution for high-

density data centers that provides greater capacity in a 
smaller, more compact footprint. These closures come in a 
variety of configurations and aside from the common closure 
attributes (position, elements, capacity, etc.) other properties 
are relevant from a provisioning, connectivity, and circuit 
tracing perspective. Such properties include Orientation of 
the sub-modules, Location in Rack, Maximum Ports, and 
Port Type, as shown in the class diagram in Figure 7.  

An alternative to using an inheritance model would be to 
create distinct types for each individual physical component 
that could be provisioned by the AIM system, but given the 
significant overlap of common features they can be 
consolidated and encapsulated in such a way that derived 
specialized models can be employed in order to increase 
code reusability, testability, and maintainability. The 
differentiation between the various hardware components 
that map to the same specialized type can be managed, for 
example, via metadata associated with that data type (e.g., 
the Al lowedObjectTypeAttr ibute  in Figure 7). 

This approach saves us from having to define one data 
type per physical device type and furthermore, allows 
accessing a variety of devices that fall under the same 
category, using the same URI – as described in the next sub-
section. 

E. Benefits of the Proposed Model 

The models proposed in this paper are closely following 
the categories and entities outlined by the ISO/IEC 
standards. However, given the structural models presented 
here and taking advantage of available technology-specific 
constructs and frameworks, select design features exist that 
confer certain advantages to these models, to their usage, and 
the integration capabilities for the services that expose them, 
with direct impact on performance, maintainability, 
testability, and extensibility. 

 

NamedResourceBase

Alarm

«property»

+ EventId(): int

+ AlarmType(): AlarmType

+ Noti ficationDetails(): List<string>

NamedResourceBase

Event

«property»

+ EventType(): EventType

+ RelatedElements(): List<IAsset>

+ Timestamp(): DateTime

NamedResourceBase

WorkOrder

«property»

+ WorkOrderState(): WorkOrderState

+ WorkOrderType(): WorkOrderType

+ StartDate(): DateTime

+ EndDate(): DateTime

+ Technician(): Person

+ Tasks(): List<WorkOrderTask>

NamedResourceBase

WorkOrderTask

«property»

+ WorkOrderTaskStatus(): WorkOrderTaskStatus

+ WorkOrderTaskType(): WorkOrderTaskType

+ ModifiedAssets(): List<IAsset>

«interface»

Common::IAsset
EventId

1..*

Tasks

ModifiedAssets

RelatedElements

 
Figure 6. Notification and Activity Models 
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 Simplified URI scheme based on resource 
categories rather than specialized resource types. 
This allows clients to access classes or categories 
of resources rather than having to be aware of - and 
invoke - a large number of URIs dictated by the 
large variety of hardware devices modeled. This 
also confers the API a high degree of stability and 
consistency even when the system is enhanced to 
provision new hardware devices. 

 Reduced chattiness between client application and 
services when querying resources (GET). This 
benefit is directly related to the URI scheme 
mentioned above, since a single HTTP request can 
retrieve all resources of that type (applying the 
Liskov substitution principle [8]), even when 
multiple sub-types exist. 

 Reduced chattiness between client application and 
services when creating complex entities (POST) by 
supporting composite resources. In some cases, the 
hardware device construction itself requires the 
API to support creating a resource along with its 
children in a single step (see Section IV.B for 
details). Child elements can be specified as part of 

the main resource to be created, or they can be 
omitted altogether, while – in the case of the 
imVision API - the Validation and Composition 
frameworks would take care of filling in the 
missing sub-resources based on predefined 
composition and default initialization rules.  
Table 2 captures just a few but noteworthy metrics 
regarding the request counts and sizes for creating 
a complete resource of a specialized PatchPanel  
type. 

 Opportunity for automation when creating and 
validating composite resources. Aside from 
considerably reducing the size of the request body 
given the option to omit child elements when 
adding new entities - as is the case for the imVision 
API – by employing frameworks that support 
metadata-driven automation, the API will ensure 
that the generated resource object reflects a valid 
hardware entity – with all required sub-elements. 
For the API consumers, this reduces the burden of 
knowing all the fine details about how these 
entities are composed and constructed. In some 
cases, the number of child elements to be created in 

TABLE II.  POST REQUEST METRICS FOR QUATTRO PANEL (A PATCHPANEL RESOURCE) 

Metric Scenario Value 

Number of 
POST 
Requests 

Without Support for Composite Resources 31: 1 for the Panel, 6 for the child Modules, and 6x4 for the 
ports 

With Support for Composite Resources 1: a single request for the Panel with its Modules (under 
Eleme nt s ), with each Module being itself a composite 
resource containing 4 ports each, specified under the 
Fro ntPo r ts  property of each Module 

POST Request 
Body Size 

With Explicit Children Included 21,449 bytes 
With No Children Specified (i.e. relying on the 
Framework to populate default elements) 

572 bytes 

Metadata used for filtering concrete asset types 
that can be modeled using the specialized data 
type which this attribute decorates.
ObjectType is an enumeration specifying over 
120 concrete entities.

The main resource type 
category used to model 
closure devices. The model is 
used as a data container for 
the common features across 
all closure-type resources.

A specialized/derived resource type that encapsulates 
additional features that only some closure devices share.
These closure devices are identified via the metadata 
that decorates the specialized type.

A Marker interface for 
derived asset types.

ConnectivityAsset

TelecomEquipment::

Closure

«interface»

Common::

ISpecializedAsset

SpecializedResources::

ClosureInstaPATCHPlusFiberShelf

«property»

+ LocationInRack(): LocationInRack

+ Orientation(): AssetOrientation

+ PortType(): PortType

+ MaximumPorts(): int

Attribute

Ext::AllowedObjectTypeAttribute

+ AllowedObjectTypeAttribute()

+ AllowedObjectTypeAttribute(ObjectType)

«property»

+ ObjectType(): ObjectType

decorates

 
Figure 7. A Sample Specialized Closure with Additional Properties 
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the process depends on properties that the main 
resource may expose (e.g. Tota lPorts) – which 
client applications will have to specify if the 
property is marked as [Required], but the 
composing port sub-elements may be omitted from 
the request body, as they will be automatically 
created and added. 

 Extensible model as new hardware devices are 
introduced. New models can easily be added to the 
existing specialized resources or as a new subtype. 
The interface for querying the data (GET) will not 
change. The design for adding and updating 
resources follows the Open/Closed principle [8], so 
that new types, properties, and rules will be added 
or extended but existing ones will not change, 
ensuring contract stability. 

III. A PROPOSED LAYERED ARCHITECTURE FOR AIM API 

INTEGRATION SERVICES 

A. Adding Integration Capabilities to an AIM System 

As per the Standards document guidelines, the AIM 
Systems should follow either an HTTP SOAP or a RESTful 
service design. Regardless of the service interface choice, 
there are several options for designing the overall AIM 
system. A common yet robust architectural style for software 
systems is the layered architecture [6] [11], which advocates 
a logical grouping of components into layers and ensuring 
that the communication between components is allowed only 
between adjacent or neighboring layers. Moreover, following 
SOLID design principles [8], this interaction takes place via 
interfaces, allowing for a loosely coupled system [9], easy to 
maintain, test, and extend. This will also enable the use of 
dependency injection technologies such as Unity, MEF, 
AutoFac, etc., to create a modular, testable, and coherent 
design [12]. 

CommScope’s imVision system was built as a standalone 
web-based application, to be deployed at the customer’s site, 
along with its own database and various middleware services 
that enable the communication between the hardware and the 
application. Relying on the current system’s database, the 
RESTful Services were added as an integration point to the 
existing system. The layered design of this new service 
component is shown in Figure 8 with the core component – 
the resource model discussed earlier, shown as part of the 
domain layer. The system also utilizes - to a very limited 
extent - a few components from the existing imVision 
system that encapsulate reusable logic. 

Several framework components were used, most notably 
the Validation component, which contains the domain rules 
that specify the logic for creating and composing the various 
entities exposed by the API. These rules constitute the core 
component upon which the POST functionality relies. Along 
with the resource composition and validation engine, they 
constitute in fact a highly specialized rule-based system that 
makes extensive use of several design and enterprise 
integration patterns that will be discussed next. 

B. Patterns and Design Principles 

The various patterns and principles [6] [8] [9] employed 
throughout the design and implementation of the imVision 
API system are summarized in Table 3. The automation 
capabilities baked into the imVision API mentioned earlier, 
that support creating composite resources, are a direct 
realization of the Content Enricher integration pattern used in 
conjunction with the Builder, Composite, and Specification 
software design patterns. From a messaging perspective, all 
requests are synchronous and only authorized users (Claim 
Check pattern) are allowed to access the API. 
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Figure 8. The Layered Architecture of the imVision AIM API 
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TABLE III.  DESIGN PATTERNS AND PRINCIPLES EMPLOYED 

Des ig n  Pa t ter ns  

Type Category Pattern Name 
Design 
Patterns 

Creational Abstract Factory, 
Builder, Singleton, 
Lazy Initialization 

Structural Front Controller, 
Composite, Adapter 

Behavioral Template Method, 
Specification 

Enterprise 
Application 
Patterns 

Domain Logic Domain Model, Service 
Layer 

Data Source 
Architectural 

Data Mapper 

Object-Relational 
Behavioral 

Unit of Work 

Object-Relational 
Metadata Mapping 

Repository 

Web Presentation Front Controller 
Distribution Patterns Data Transfer Object 

(DTO) 
Base Patterns Layer Supertype, 

Separated Interface 
Enterprise 
Integration 
Patterns 

Messaging Channels Point-to-Point 
Channel Adapter 

Message Construction Request-Reply 
Message 
Transformation 

Content Enricher 
Content Filter 
Claim Check 
Canonical Data Model 

Composed Messaging Synchronous (Web 
Services) 

Des ig n  Pr inc ip l e s  

SOLID 
Design 
Principles 

Single Responsibility Principle (SRP) 
Open/Closed 
Interface Segregation 
Liskov Substitution (in conjunction with co- and 
contra-variance of generic types in .NET) 
Dependency Inversion (Data Access and 
Repositories are injected using MEF and Unity) 

IV. A FEW CHALLENGES AND SOLUTIONS 

A. Handling POST Requests for Large Numbers of 
Specialized Resource Types with Few URIs 

Simplified URI schemes have the benefit of providing a 
clean interface to consumers, without having to introduce a 
myriad of URIs, one per actual hardware device supported 
by the AIM system.  

As shown in Section II, the different representation of 
these resources are grouped by category, while specific 
details are handled using custom JSON deserialization 
behavior injected in the HTTP transport pipeline [2] [13]. 
Since all resources must specify the concrete entity type they 
represent (under the ConcreteAssetTypeId  property), the 
custom deserialization framework can easily create instances 
of the specialized resource types based on this property, and 
pass them to the appropriate controller (one per URI/resource 
category).  

The impact on performance is negligible given the use of 
a lookup dictionary of asset type ID to resource type, which 
is created only once (per app pool lifecycle) based on 
metadata defined on the model. Even if new specialized 
resource types are added, the lookup table will automatically 
be updated at the time the application pool is instantiated 
(restarted), ensuring the inherent extensibility of the custom 
deserialization framework. 

This way, whether a user would like to create a “360 
iPatch Ultra High Density Fiber Shelf (2U)” or a “360 iPatch 
Modular Evolve Angled (24-Port)” [15], even though these 
two hardware devices map to two different specialized types 
in the imVision API resource model, they are both resources 
of type PatchPanel .  Therefore, a POST request to create 
either of these will be sent to the same URI: 
http: //[host :port /app/]Pa tchPanels  

This means that the same service components (controller 
and repository) will be able to handle either request but the 
API would also be aware of the distinction between these 
two different object instances, as created by the custom 
deserialization component. 

B. Adding Support for Composite Resources 

Hardware components are built as composite devices, 
containing child elements, which in turn contain sub-child 
entities. For example, the Quattro Panel contains six Copper 
Modules with each module containing exactly four Quattro 
Panel Ports. To realize these hardware-driven requirements 
and avoiding multiple POST requests, while preserving the 
integrity of the device representation, a rule-based 
composition representation model was used in conjunction 
with the Builder design pattern applied recursively.  

The composition rules for the Quattro Panel and its 
module sub-elements are shown in Figure 9 (The strings 
represent optional name prefixes for the child elements.). 

Figure 9. Composition Rules for Quattro Panel and Its Child Elements of Type Copper Module 

//…
{ ObjectType.QuattroPanel24Port, new CompositionDetail<ModuleCopperModule, int, ModuleValidator>(ObjectType.CopperModule, "Module", 6) },

//…
{ ObjectType.CopperModule, new CompositionDetail<PortBasicPort, int, PortValidator>(ObjectType.QuattroPanelPort, "Port", 4) },
//…
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C. A Functional, Rule-Based Approach for Default 
Initializations and Validations of Resources 

Given the large number of specialized resources to be 
supported by CommScope’s imVision API and the even 
larger number of business rules regarding the initialization 
and validation of these entities, a functional approach was 
adopted. This rendered the validation engine into a rule-
based system: there are composition rules (above), default 
initialization rules, and validation rules (below) – which 
refer to both simple as well as complex properties that define 
a resource. Following the same example of Quattro Panel 
used earlier, an important requirement for creating such 
resources is the labeling of ports and their positions, which 
must be continuous across all six modules that the panel 
contains. 

Figure 10 shows a snapshot of the rules defined for this 
type of asset: Figure 10 (a) shows the initialization rules 
whereas Figure 10 (b) shows some of the validation rules. In 
both cases, the programming constructs like the ones shown 
make heavy use of lambda expressions as supported by the 
functional capabilities built into the C#.NET programming 
language [14], demonstrating the functional implementation 
approach adopted for the imVision API. 

Among some of the reasons worth mentioning for taking 
the functional route are a more robust, concise, reusable, and 
testable code, and minimizing side effects from object state 
management and concurrency. Explicit goal specification, 
central to the functional programming paradigm, confers 
clarity and brevity to the rule definitions, both evident in the 
code samples provided hereby. 

Figure 10. (a) Default Initialization Rules Sample 

Figure 10. (b) Validation Rules Sample 
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V. CONCLUSION 

Modeling large varieties of telecommunication assets can 
be a challenging task, even more so if other applications 
intend to integrate with one or more systems that automate 
the management of such complex telecommunication 
enterprise infrastructure. The benefits entailed by the 
standardization of modeling entities managed by such 
systems are significant, as they facilitate a common 
understanding of the AIM system in general and the 
elements it exposes, their functional features, and their 
internal makeup. ISO/IEC proposed such standardization for 
a more systematic and unified modeling of AIM systems. 
This paper took further steps to present detailed models and 
the relationships between them using design artifacts 
modeled via UML (Unified Modeling Language). Using 
inheritance, composition/aggregation, and generic typing, a 
hierarchical resource model was designed and shown to be 
extensible and fit for representing telecom assets, 
connectivity, premises, organizational elements, and system 
notifications – as they relate to any AIM-centric domain.  

Although the focus of the 18598/DIS draft ISO/IEC 
Standards document is to unify the representation of network 
connectivity assets, the motivation behind this specification 
is to facilitate custom integration solutions with AIM 
systems. Given the challenging nature of integration in 
general, building AIM systems with integration in mind is 
essential. Extensibility, scalability, rigorous and stable 
interface and model design, and performance through 
adequate technology adoption are important goals to 
consider. For this reason, the present paper also introduced 
the layered architecture adopted by CommScope’s imVision 
API, targeting the management of telecommunications 
infrastructure.  

Emphasis was placed on the Standards-recommended 
RESTful architectural style, while technology specifics were 
succinctly described to show how they helped align the 
system’s design and functionality with the AIM standards 
requirements. Various design and implementation aspects 
were elaborated along with a selection of key benefits, such 
as dynamic resource composition, custom serialization to 
support consistent handling of similar resources, efficient 
POST request construction and network traffic, and a simple 
URI scheme despite large varieties of specialized resources.  

Finally, a very brief overview of a rule-based engine for 
resource initialization and validation was described, along 
with some implementation details that highlight aspects of 
the functional programming paradigm employed by key 
components of CommScope’s imVision API. 
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