
Automated Infrastructure Management Systems

A Resource Model and RESTful Service Design Proposal
to Support and Augment the Specifications of the ISO/IEC 18598/DIS Draft

Mihaela Iridon
Cândea LLC for CommScope, Inc.

Dallas, TX, USA
e-mail: iridon.mihaela@gmail.com

Abstract— Automated Infrastructure Management (AIM)
systems are enterprise systems that provision a large number
and variety of network infrastructure resources, including
premises, organizational entities, and most importantly, all the
telecommunication and connectivity assets that enable network
infrastructure to operate locally and across vast geographical
areas. The representation of infrastructure elements managed
by such systems has never been normalized before, making
integration – a challenging undertaking on its own – an even
more difficult task, requiring specialized knowledge about the
systems and the infrastructure data they provision. Such
details are most relevant given the complexity and variety of
telecommunication infrastructure systems and the widespread
need for external or custom applications to gain access to the
data and features built in to these AIM systems. This year
however, the international standards organization is scheduled
to release new standard ISO/IEC 18598 that will provide
standardization and sensible guidelines for exposing data and
features of AIM systems and thus to facilitate the integration
with custom clients for these systems. CommScope, an active
contributor in defining these standards, has implemented to a
large extent these specifications for their imVision system and
in doing so, decided to capture some relevant details that
would bring more clarity, add context, and provide further
guidelines to the information described by the standards
document. In order to achieve these goals and in an attempt to
lead the way towards a robust AIM system design that aligns
with these standards, this paper elaborates on the
recommended models. It also intends to share architectural
and technology-specific considerations, challenges, and
solutions adopted for the CommScope’s imVision standards-
based API, so that they may be translated and implemented by
other organizations that intend to build - or integrate with - an
AIM system in general.

Keywords-automated infrastructure management (AIM);
system modeling; ISO/IEC 18598.

I. INTRODUCTION

ISO/IEC have recently put forth a set of requirements and
guidelines for modeling and provisioning Automated
Infrastructure Management (AIM) systems [1] that will help
consolidate how such systems represent the assets and
entities they provision, as well as enable custom integration
solutions with these systems. Identifying and organizing
AIM system’s assets in a logical and structured fashion

allows for an efficient access and management of all the
resources administered by the system.

As with every software system and more so with
enterprise-level applications, domain modeling is of crucial
importance as it helps define, refine, and understand the
business domain, facilitating the translation of requirements
into a suitable design [5]. However, special-purpose models
can and should be designed for various layers of a system’s
architecture [11]. When a system exposes integration points
to outside agents or clients, it is imperative to define clean
boundaries between the system’s domain and the integration
models [6] [4]. Stability of integration models is just as
important as versioning for extensible systems, while
allowing the domain models, structural or behavioral, to
evolve independently of all other models that the system
relies on [2] [3].

The first half of this paper (Section II) will present the
relevant resource models from the perspective of a RESTful
services design [2] [10] [13], with focus on the underpinning
structures and the telecommunication assets, as proposed and
used by CommScope’s imVision API. This section also
presents a solution for handling a large variety of hardware
devices while avoiding a large number of URIs for accessing
these resources. Section III discusses system architecture,
patterns and design-specific details. Section IV presents
some of the challenges encountered during the realization of
the system design, solutions employed, and finally joining all
the discussion points to a conclusion in Section V.

II. AIM SYSTEM DOMAIN ANALYSIS AND RESOURCE

MODELING

The resource model presented in this paper employs
various design and implementation paradigms. However, the
only types exposed by the system, i.e., all concrete resource
types, can be viewed and modeled as simple POCOs (Plain
Old CLR Objects for the .NET platform) or POJOs (Plain
Old Java Objects for the Java EE platform). These models
represent merely data containers that do not include any
behavior whatsoever. Such features are specific to the
physical entities being modeled and are highly customized
for a given system. The model proposed here serves the
purpose of defining a common understanding of the data that
can be exchanged with an AIM system while any specific

8Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

behavior around these data elements is left to the
implementation details of the particular AIM system itself.

As opposed to stateful services design principles (such as
SOAP and XM -RPC-based web services) - where functional
features and processes take center stage while data contracts
are just means to help model those processes [4] [11], in
RESTful services the spotlight is distinctly set on the
transport protocol and entities that characterize the business
domain. These two elements follow the specifications of
Level 0 and 1, respectively, of the RESTful maturity model
[7] [13]. The resources modeled by a given system also
define the service endpoints (or URIs), while the operations
exposed by these services are simple, few, and standardized
(i.e. the HTTP verbs required by Level 2: GET, POST, PUT,
DELETE, etc.) [10] [13]. Nonetheless, in both cases, a sound
design principle (as with any software design activity in
general) is to remain technology-agnostic [5] [6] [11].

A. Resource Categories Overview and Classification

The entities proposed in the Standards document [1] are
categorized by the sub-domain that they are describing as
well as their composability features. At the high-granularity
end of the spectrum we will find entities that deal with the
location of networking centers (sites, cities, buildings,
rooms, etc.) while at the other end of the spectrum we have
the smallest assets that the system manages (modules and
ports, outlets and cables). This classification helps define a
model that aligns well with the concept of separation of
concerns (SoC), allowing common features among similar
entities to be shared effectively, with increased testability
and reliability.

The Standards document proposes the following
categories of resources to be provisioned by an AIM System,
as shown in Table 1.

TABLE I. RESOURCE CATEGORIES AND EXAMPLES OF CONCRETE

TYPES

PREMISES Geographic Area, Zone, Campus, Building,
Floor, Room

CONTAINERS Cabinets, Racks, Frames
TELECOM ASSETS Closures, Network Devices, Patch Panels,

Modules, Ports, Cables, Cords
CONNECTIVITY ASSETS Circuits, Connections
ORGANIZATIONAL Organization, Cost Center, Department, Team,

Person
NOTIFICATIONS Event, Alarm
ACTIVITIES Work Order, Work Order Task

Some elements listed above may not be relevant to all

AIM systems. The Standards document intends to capture
and categorize all elements that could be modeled by such a
system. It also suggests a common terminology for these
categories so that from an integration perspective there is no
ambiguity in terms of what these assets or entities represent
and what their purpose is. Otherwise stated, it defines at
high-level the ubiquitous integration language by providing a
clear description and classification of the main elements of
an AIM system. This paper takes these recommendations,
materializes them into actual design artifacts, and proposes a
general-purpose layered architecture for the RESTful AIM
API system.

B. Common Abstraction Models

Since all resources share some basic properties, such as
name, identifier, description, category, actual type (that
identifies the physical hardware components associated with
this resource instance), and parent ID, it is a natural choice to
model these common details via basic inheritance, as shown
in Figure 1. In order to support a variety of resource
identifiers (i.e., Globally Unique Identifier, integer, string,
etc.) the ResourceBase class is modeled as a generic type,
with the resource and parent identifier values of generic TId .

Of particular interest are telecommunication assets – the
core entities in AIM systems – a class of resource types,
which all realize the IAsset interface, an abstraction used as
a marker on the type. These entities will be presented in the
next sub-section.

Figure 1. Resource Base Models

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

C. Resource Model Design

1) Premise Elements
Company’s network infrastructure can be geographically

distributed across multiple cities, campuses, and/or
buildings, while being grouped under one or more sites –
logical containers for everything that could host any type of
infrastructure element. At the top of the infrastructure-
modeling hierarchy, there are the premises, which model
location at various degrees of detail: from geographic areas
and campuses to floors and rooms. Composition rules or
restrictions for these elements may be modeled via generic
type constraints, unless these rules are not enforced by a
given system. Figure 2 shows the standards-defined premise
entities, their primary properties, and the relationships
between them.

2) Telecom Connectivity Elements
The main assets of a network infrastructure are its

telecommunication resources, from container elements, such
as racks and cabinets, to switches and servers, network
devices (e.g. computers, phones, printers, cameras, etc.),
patch panels, modules, ports, and circuits that connect ports
via cables and cords. The diagram included in Figure 3
shows these asset categories modeled via inheritance, with
all assets realizing the IAsset marker interface. As is the
case for CommScope’s imVision system, the type of the
unique identifier for all resources is an integer; hence, all
resource data types will be closing the generic type TId of
the base class to int : ResourceBase<int> . This way, the
RESTful API will expose these AIM Standards-compliant
data types in a technology- and implementation-agnostic way
that reflects the actual structure of the elements, while

generics and inheritance remain transparent to integrators,
regardless of the serialization format used (JSON, XML,
SOAP). This fact is illustrated in Figure 5, which shows a
sample rack object serialized using JSON.

In addition to the elements shown in Figure 3 that
support a persistent representation of the data center’s
telecom assets, there are those that enable circuits to be
specified: cables, connectors, and cords. They play a role in
defining the connectivity dynamics of the system. Figure 4
shows the primary resources for modeling this aspect of an
AIM system.

3) Organizational Elements
Some AIM systems may desire to provision entities that

describe the organization responsible for maintaining and
administering the networking infrastructure. For example,
tasks around the management of connectivity between panels
and modules is usually represented by work orders that
comprise one or more work order tasks. Such tasks are then
assigned to technicians, which report to a manager, which in
turn belongs to a department, and so on. The model for these
elements is not included here as it is straightforward but is
available upon request.

4) System Notifications and Human Activity Elements
Hardware components of AIM systems, e.g., controllers,

discoverable/intelligent patch panels and in some instances
intelligent cords (e.g. CommScope’s Quareo system) allow
continuous synchronization of the hardware state with the
logical representation of the hardware components.

This synchronization is facilitated by the concept of
events and alarms that are first generated by controllers
(alarms) and then sent for processing by the management

GeographicArea

Building

Campus

Floor

Location

«property»

+ PostalCode(): string

+ LineAddress1(): string

+ LineAddress2(): string

+ City(): string

+ State(): string

+ County(): string

+ Country(): string

NamedResourceBase

TParentPremise > PremiseBase

PremiseBase

«property»

+ Parent(): TParentPremise

NamedResourceBase

PremiseBase

«property»

+ Location(): Location

Room

Zone

«bind»

< TParentPremise->GeographicArea >

< TParentPremise->Building >

< TParentPremise->Floor >

«bind»

< TParentPremise->Campus >

«bind»

«bind»

«bind»

< TParentPremise->PremiseBase >

Figure 2. Premise Resource Models

10Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

software (events). These notification resource types are
supported by the AIM Standards and are modeled as shown
in Figure 6. The figure also includes activities that
technicians must carry out, such as establishing connections

between assets, activities that in turn trigger alarms and
events, or are created as a reaction to system-generated
events.

Asset

TResourceId

ConnectivityAsset

«property»

+ Template(): string

+ UHeight(): int

+ Elements(): List<IAsset>

+ Container(): IAsset

Closure

NetworkDev ice

«property»

+ MacAddress(): string

+ NetworkAddress(): string

PatchPanel

«property»

+ PortType(): PortType

+ TotalPorts(): int

Asset

TResourceId

ContainerAsset

«property»

+ UCapacity(): int

+ Zone(): int

Cabinet

«property»

+ RackUnitNumbering(): NumberingScheme

Rack

«property»

+ RackUnitNumbering(): NumberingScheme

Frame

IAsset

«interface»

IEquipmentAsset

Module

«property»

+ PortType(): PortType

Asset

Port

«property»

+ PortType(): PortType

+ PerformanceLevel(): int

+ PortStatus(): PortStatus

+ IsPending(): bool

+ Service(): string

+ ParentEquipmentId(): int

TResourceId

TwoSidedConnectivityAsset

«property»

+ FrontPorts(): List<Port>

+ BackPorts(): List<Port>

+ PortMapping(): List<OrderedPair<Port, Port>>

Container

0..*

FrontPorts / BackPorts

< TResourceId->int >
< TResourceId->int >

< TResourceId->int >

< TResourceId->int >

< TResourceId->TResourceId >

< TResourceId->int >

< TResourceId->int >

< TResourceId->int >

Figure 3. Telecommunication Assets Resource Models

ResourceBase

Circuit

«property»

+ Segments(): List<CircuitSegment>

NamedResourceBase

CircuitSegment

«property»

+ Connection(): Connection

+ CommonElement(): IAsset

ResourceBase

Connection

«property»

+ ElementA(): IAsset

+ ElementB(): IAsset

«interface»

Common::IAsset
e.g., cable or module

e.g., port or connector

Connection

1..*

Segments

ElementA/BCommonElement

Figure 4. Connectivity Models Figure 5. A JSON Representation of a Rack Resource

11Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

D. Modeling Large Varieties of Hardware Devices

The telecom asset model presented in Figure 3 depicted
the categories that define all or most physical devices seen in
network infrastructure. However, actual hardware
components have specialized features that are vendor-
specific or that describe some essential functionality that the
components provide. Such specialized attributes must be
incorporated in the model for supporting the Add (POST)
and Update (PUT) functionality of the RESTful services that
expose these objects to the integrators. The main challenge is
how to support such a large variety of hardware devices
without having to expose too many different service
endpoints for each of these specialized types.

According to the Richardson Maturity Model for REST
APIs [7], which breaks down the principal ingredients of a
REST approach into three steps, Level 1 requires that the
API be able to distinguish between different resources via
URIs; i.e., for a given resource type there exists a distinct
service endpoint to where HTTP requests are directed. For
querying data using HTTP GET, we can easily envision a
service endpoint for a given resource category – as per the
models described above. For example, there will be one URI
for modules, one for closures, one for patch panels, etc.
However, when creating new assets, we have to be very clear
about which concrete entity or device type we want to create,
and for this, we must provide the device-specific data. Since
these features are not inherent to all objects that belong to
that category, specialized models must be created – e.g., as
derived types from the category models that encapsulate all
relevant device-specific features.

For example, one of CommScope connectivity products
that falls under the category of Closures is the SYSTIMAX
360™ Ultra High Density Port Replication Fiber Shelf, 1U,
with three InstaPATCH® 360 Ultra High Density Port
Replication Modules [15] – a connectivity solution for high-

density data centers that provides greater capacity in a
smaller, more compact footprint. These closures come in a
variety of configurations and aside from the common closure
attributes (position, elements, capacity, etc.) other properties
are relevant from a provisioning, connectivity, and circuit
tracing perspective. Such properties include Orientation of
the sub-modules, Location in Rack, Maximum Ports, and
Port Type, as shown in the class diagram in Figure 7.

An alternative to using an inheritance model would be to
create distinct types for each individual physical component
that could be provisioned by the AIM system, but given the
significant overlap of common features they can be
consolidated and encapsulated in such a way that derived
specialized models can be employed in order to increase
code reusability, testability, and maintainability. The
differentiation between the various hardware components
that map to the same specialized type can be managed, for
example, via metadata associated with that data type (e.g.,
the Al lowedObjectTypeAttr ibute in Figure 7).

This approach saves us from having to define one data
type per physical device type and furthermore, allows
accessing a variety of devices that fall under the same
category, using the same URI – as described in the next sub-
section.

E. Benefits of the Proposed Model

The models proposed in this paper are closely following
the categories and entities outlined by the ISO/IEC
standards. However, given the structural models presented
here and taking advantage of available technology-specific
constructs and frameworks, select design features exist that
confer certain advantages to these models, to their usage, and
the integration capabilities for the services that expose them,
with direct impact on performance, maintainability,
testability, and extensibility.

NamedResourceBase

Alarm

«property»

+ EventId(): int

+ AlarmType(): AlarmType

+ Noti ficationDetails(): List<string>

NamedResourceBase

Event

«property»

+ EventType(): EventType

+ RelatedElements(): List<IAsset>

+ Timestamp(): DateTime

NamedResourceBase

WorkOrder

«property»

+ WorkOrderState(): WorkOrderState

+ WorkOrderType(): WorkOrderType

+ StartDate(): DateTime

+ EndDate(): DateTime

+ Technician(): Person

+ Tasks(): List<WorkOrderTask>

NamedResourceBase

WorkOrderTask

«property»

+ WorkOrderTaskStatus(): WorkOrderTaskStatus

+ WorkOrderTaskType(): WorkOrderTaskType

+ ModifiedAssets(): List<IAsset>

«interface»

Common::IAsset
EventId

1..*

Tasks

ModifiedAssets

RelatedElements

Figure 6. Notification and Activity Models

12Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

 Simplified URI scheme based on resource
categories rather than specialized resource types.
This allows clients to access classes or categories
of resources rather than having to be aware of - and
invoke - a large number of URIs dictated by the
large variety of hardware devices modeled. This
also confers the API a high degree of stability and
consistency even when the system is enhanced to
provision new hardware devices.

 Reduced chattiness between client application and
services when querying resources (GET). This
benefit is directly related to the URI scheme
mentioned above, since a single HTTP request can
retrieve all resources of that type (applying the
Liskov substitution principle [8]), even when
multiple sub-types exist.

 Reduced chattiness between client application and
services when creating complex entities (POST) by
supporting composite resources. In some cases, the
hardware device construction itself requires the
API to support creating a resource along with its
children in a single step (see Section IV.B for
details). Child elements can be specified as part of

the main resource to be created, or they can be
omitted altogether, while – in the case of the
imVision API - the Validation and Composition
frameworks would take care of filling in the
missing sub-resources based on predefined
composition and default initialization rules.
Table 2 captures just a few but noteworthy metrics
regarding the request counts and sizes for creating
a complete resource of a specialized PatchPanel
type.

 Opportunity for automation when creating and
validating composite resources. Aside from
considerably reducing the size of the request body
given the option to omit child elements when
adding new entities - as is the case for the imVision
API – by employing frameworks that support
metadata-driven automation, the API will ensure
that the generated resource object reflects a valid
hardware entity – with all required sub-elements.
For the API consumers, this reduces the burden of
knowing all the fine details about how these
entities are composed and constructed. In some
cases, the number of child elements to be created in

TABLE II. POST REQUEST METRICS FOR QUATTRO PANEL (A PATCHPANEL RESOURCE)

Metric Scenario Value

Number of
POST
Requests

Without Support for Composite Resources 31: 1 for the Panel, 6 for the child Modules, and 6x4 for the
ports

With Support for Composite Resources 1: a single request for the Panel with its Modules (under
Eleme nt s), with each Module being itself a composite
resource containing 4 ports each, specified under the
Fro ntPo r ts property of each Module

POST Request
Body Size

With Explicit Children Included 21,449 bytes
With No Children Specified (i.e. relying on the
Framework to populate default elements)

572 bytes

Metadata used for filtering concrete asset types
that can be modeled using the specialized data
type which this attribute decorates.
ObjectType is an enumeration specifying over
120 concrete entities.

The main resource type
category used to model
closure devices. The model is
used as a data container for
the common features across
all closure-type resources.

A specialized/derived resource type that encapsulates
additional features that only some closure devices share.
These closure devices are identified via the metadata
that decorates the specialized type.

A Marker interface for
derived asset types.

ConnectivityAsset

TelecomEquipment::

Closure

«interface»

Common::

ISpecializedAsset

SpecializedResources::

ClosureInstaPATCHPlusFiberShelf

«property»

+ LocationInRack(): LocationInRack

+ Orientation(): AssetOrientation

+ PortType(): PortType

+ MaximumPorts(): int

Attribute

Ext::AllowedObjectTypeAttribute

+ AllowedObjectTypeAttribute()

+ AllowedObjectTypeAttribute(ObjectType)

«property»

+ ObjectType(): ObjectType

decorates

Figure 7. A Sample Specialized Closure with Additional Properties

13Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

the process depends on properties that the main
resource may expose (e.g. Tota lPorts) – which
client applications will have to specify if the
property is marked as [Required], but the
composing port sub-elements may be omitted from
the request body, as they will be automatically
created and added.

 Extensible model as new hardware devices are
introduced. New models can easily be added to the
existing specialized resources or as a new subtype.
The interface for querying the data (GET) will not
change. The design for adding and updating
resources follows the Open/Closed principle [8], so
that new types, properties, and rules will be added
or extended but existing ones will not change,
ensuring contract stability.

III. A PROPOSED LAYERED ARCHITECTURE FOR AIM API

INTEGRATION SERVICES

A. Adding Integration Capabilities to an AIM System

As per the Standards document guidelines, the AIM
Systems should follow either an HTTP SOAP or a RESTful
service design. Regardless of the service interface choice,
there are several options for designing the overall AIM
system. A common yet robust architectural style for software
systems is the layered architecture [6] [11], which advocates
a logical grouping of components into layers and ensuring
that the communication between components is allowed only
between adjacent or neighboring layers. Moreover, following
SOLID design principles [8], this interaction takes place via
interfaces, allowing for a loosely coupled system [9], easy to
maintain, test, and extend. This will also enable the use of
dependency injection technologies such as Unity, MEF,
AutoFac, etc., to create a modular, testable, and coherent
design [12].

CommScope’s imVision system was built as a standalone
web-based application, to be deployed at the customer’s site,
along with its own database and various middleware services
that enable the communication between the hardware and the
application. Relying on the current system’s database, the
RESTful Services were added as an integration point to the
existing system. The layered design of this new service
component is shown in Figure 8 with the core component –
the resource model discussed earlier, shown as part of the
domain layer. The system also utilizes - to a very limited
extent - a few components from the existing imVision
system that encapsulate reusable logic.

Several framework components were used, most notably
the Validation component, which contains the domain rules
that specify the logic for creating and composing the various
entities exposed by the API. These rules constitute the core
component upon which the POST functionality relies. Along
with the resource composition and validation engine, they
constitute in fact a highly specialized rule-based system that
makes extensive use of several design and enterprise
integration patterns that will be discussed next.

B. Patterns and Design Principles

The various patterns and principles [6] [8] [9] employed
throughout the design and implementation of the imVision
API system are summarized in Table 3. The automation
capabilities baked into the imVision API mentioned earlier,
that support creating composite resources, are a direct
realization of the Content Enricher integration pattern used in
conjunction with the Builder, Composite, and Specification
software design patterns. From a messaging perspective, all
requests are synchronous and only authorized users (Claim
Check pattern) are allowed to access the API.

Data

Frameworks
Data Access

Business Logic

Domain

Web Services

«Model»

AIM Resource

Model

Repositories

«service»

RESTful API

«abstraction»

IRepositories

Validation

«service»

Identity/

Authorization

«translation»

Model Adapters

«framework»

Data Access

Adapter

System

Manager

«Model»

Data Model

«abstraction»

IDataAccess

imVision

Business Logic

AIM

Database

Objects

«use»

«abstraction»

«use»

«abstraction»

«deploy»

Figure 8. The Layered Architecture of the imVision AIM API

14Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

TABLE III. DESIGN PATTERNS AND PRINCIPLES EMPLOYED

Des ig n Pa t ter ns

Type Category Pattern Name
Design
Patterns

Creational Abstract Factory,
Builder, Singleton,
Lazy Initialization

Structural Front Controller,
Composite, Adapter

Behavioral Template Method,
Specification

Enterprise
Application
Patterns

Domain Logic Domain Model, Service
Layer

Data Source
Architectural

Data Mapper

Object-Relational
Behavioral

Unit of Work

Object-Relational
Metadata Mapping

Repository

Web Presentation Front Controller
Distribution Patterns Data Transfer Object

(DTO)
Base Patterns Layer Supertype,

Separated Interface
Enterprise
Integration
Patterns

Messaging Channels Point-to-Point
Channel Adapter

Message Construction Request-Reply
Message
Transformation

Content Enricher
Content Filter
Claim Check
Canonical Data Model

Composed Messaging Synchronous (Web
Services)

Des ig n Pr inc ip l e s

SOLID
Design
Principles

Single Responsibility Principle (SRP)
Open/Closed
Interface Segregation
Liskov Substitution (in conjunction with co- and
contra-variance of generic types in .NET)
Dependency Inversion (Data Access and
Repositories are injected using MEF and Unity)

IV. A FEW CHALLENGES AND SOLUTIONS

A. Handling POST Requests for Large Numbers of
Specialized Resource Types with Few URIs

Simplified URI schemes have the benefit of providing a
clean interface to consumers, without having to introduce a
myriad of URIs, one per actual hardware device supported
by the AIM system.

As shown in Section II, the different representation of
these resources are grouped by category, while specific
details are handled using custom JSON deserialization
behavior injected in the HTTP transport pipeline [2] [13].
Since all resources must specify the concrete entity type they
represent (under the ConcreteAssetTypeId property), the
custom deserialization framework can easily create instances
of the specialized resource types based on this property, and
pass them to the appropriate controller (one per URI/resource
category).

The impact on performance is negligible given the use of
a lookup dictionary of asset type ID to resource type, which
is created only once (per app pool lifecycle) based on
metadata defined on the model. Even if new specialized
resource types are added, the lookup table will automatically
be updated at the time the application pool is instantiated
(restarted), ensuring the inherent extensibility of the custom
deserialization framework.

This way, whether a user would like to create a “360
iPatch Ultra High Density Fiber Shelf (2U)” or a “360 iPatch
Modular Evolve Angled (24-Port)” [15], even though these
two hardware devices map to two different specialized types
in the imVision API resource model, they are both resources
of type PatchPanel . Therefore, a POST request to create
either of these will be sent to the same URI:
http: //[host :port /app/]Pa tchPanels

This means that the same service components (controller
and repository) will be able to handle either request but the
API would also be aware of the distinction between these
two different object instances, as created by the custom
deserialization component.

B. Adding Support for Composite Resources

Hardware components are built as composite devices,
containing child elements, which in turn contain sub-child
entities. For example, the Quattro Panel contains six Copper
Modules with each module containing exactly four Quattro
Panel Ports. To realize these hardware-driven requirements
and avoiding multiple POST requests, while preserving the
integrity of the device representation, a rule-based
composition representation model was used in conjunction
with the Builder design pattern applied recursively.

The composition rules for the Quattro Panel and its
module sub-elements are shown in Figure 9 (The strings
represent optional name prefixes for the child elements.).

Figure 9. Composition Rules for Quattro Panel and Its Child Elements of Type Copper Module

//…
{ ObjectType.QuattroPanel24Port, new CompositionDetail<ModuleCopperModule, int, ModuleValidator>(ObjectType.CopperModule, "Module", 6) },

//…
{ ObjectType.CopperModule, new CompositionDetail<PortBasicPort, int, PortValidator>(ObjectType.QuattroPanelPort, "Port", 4) },
//…

15Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

C. A Functional, Rule-Based Approach for Default
Initializations and Validations of Resources

Given the large number of specialized resources to be
supported by CommScope’s imVision API and the even
larger number of business rules regarding the initialization
and validation of these entities, a functional approach was
adopted. This rendered the validation engine into a rule-
based system: there are composition rules (above), default
initialization rules, and validation rules (below) – which
refer to both simple as well as complex properties that define
a resource. Following the same example of Quattro Panel
used earlier, an important requirement for creating such
resources is the labeling of ports and their positions, which
must be continuous across all six modules that the panel
contains.

Figure 10 shows a snapshot of the rules defined for this
type of asset: Figure 10 (a) shows the initialization rules
whereas Figure 10 (b) shows some of the validation rules. In
both cases, the programming constructs like the ones shown
make heavy use of lambda expressions as supported by the
functional capabilities built into the C#.NET programming
language [14], demonstrating the functional implementation
approach adopted for the imVision API.

Among some of the reasons worth mentioning for taking
the functional route are a more robust, concise, reusable, and
testable code, and minimizing side effects from object state
management and concurrency. Explicit goal specification,
central to the functional programming paradigm, confers
clarity and brevity to the rule definitions, both evident in the
code samples provided hereby.

Figure 10. (a) Default Initialization Rules Sample

Figure 10. (b) Validation Rules Sample

16Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

V. CONCLUSION

Modeling large varieties of telecommunication assets can
be a challenging task, even more so if other applications
intend to integrate with one or more systems that automate
the management of such complex telecommunication
enterprise infrastructure. The benefits entailed by the
standardization of modeling entities managed by such
systems are significant, as they facilitate a common
understanding of the AIM system in general and the
elements it exposes, their functional features, and their
internal makeup. ISO/IEC proposed such standardization for
a more systematic and unified modeling of AIM systems.
This paper took further steps to present detailed models and
the relationships between them using design artifacts
modeled via UML (Unified Modeling Language). Using
inheritance, composition/aggregation, and generic typing, a
hierarchical resource model was designed and shown to be
extensible and fit for representing telecom assets,
connectivity, premises, organizational elements, and system
notifications – as they relate to any AIM-centric domain.

Although the focus of the 18598/DIS draft ISO/IEC
Standards document is to unify the representation of network
connectivity assets, the motivation behind this specification
is to facilitate custom integration solutions with AIM
systems. Given the challenging nature of integration in
general, building AIM systems with integration in mind is
essential. Extensibility, scalability, rigorous and stable
interface and model design, and performance through
adequate technology adoption are important goals to
consider. For this reason, the present paper also introduced
the layered architecture adopted by CommScope’s imVision
API, targeting the management of telecommunications
infrastructure.

Emphasis was placed on the Standards-recommended
RESTful architectural style, while technology specifics were
succinctly described to show how they helped align the
system’s design and functionality with the AIM standards
requirements. Various design and implementation aspects
were elaborated along with a selection of key benefits, such
as dynamic resource composition, custom serialization to
support consistent handling of similar resources, efficient
POST request construction and network traffic, and a simple
URI scheme despite large varieties of specialized resources.

Finally, a very brief overview of a rule-based engine for
resource initialization and validation was described, along
with some implementation details that highlight aspects of
the functional programming paradigm employed by key
components of CommScope’s imVision API.

VI. REFERENCES

[1] Automated Infrastructure Management(AIM) Systems–
Requirements, Data Exchange and Applications, 18598/DIS
draft @ ISO/IEC.

[2] G. Block, et. al., “Designing Evolvable Web APIs with
ASP.NET”, ISBN-13: 978-1449337711.

[3] R. Daigneau, “Service Design Patterns: Fundamental Design
Solutions for SOAP/WSDL and RESTful Web Services”,
Addison-Wesley, 1st Edition, 2011, ISBN-13: 078-
5342544206.

[4] T. Erl, “Service-Oriented Architecture (SOA): Concepts,
Technology, and Design,” Prentice Hall, 2005, ISBN-13: 978-
0131858589.

[5] E. Evans, “Domain-Driven Design: Tackling Complexity in
the Heart of Software,”, 1st Edition, Prentice Hall, 2003,
ISBN-13: 978-0321125217.

[6] M. Fowler, “Patterns of Enterprise Application Architecture,”
Addison-Wesley Professional, 2002.

[7] M. Fowler, “The Richardson Maturity Model”. [Online].
Available from http://martinfowler.com/articles/
richardsonMaturityModel.html [retrieved: March 2016].

[8] G. M. Hall, “Adaptive Code via C#: Agile coding with design
patterns and SOLID principles (Developer Reference),”,
Microsoft Press, 1st Edition, 2014, ISBN-13: 978-
0735683204.

[9] G. Hohpe, B. Woolf, “Enterprise Integration Patterns;
Designing, Building, and Deploying Messaging Solutions,”
Addison-Wesley, 2012, ISBN-13: 978-0321200686.

[10] J. Kurtz, B. Wortman, “ASP.NET Web API 2: Building a
REST Service from Start to Finish,” 2nd Edition., 2014,
ISBN-13: 978-1484201107.

[11] Microsoft, “Microsoft Application Architecture Guide
(Patterns and Practices),” Second Edition, Microsoft. ISBN-
13: 978-0735627109. [Online] Available from:
https://msdn.microsoft.com/en-us/library/ff650706.aspx
[retrieved: March 2016].

[12] M. Seemann, “Dependency Injection in .NET,” Manning
Publications, 1st Edition., 2011, ISBN-13: 978-1935182504.

[13] J. Webber, “REST in Practice: Hypermedia and Systems
Architecture,” 1st Edition, 2010, ISBN-13: 978-0596805821.

[14] T. Petricek, J. Skeet, “Real-World Functional Programming:
With Examples in F# and C#”, Manning Publications; 1st
edition, 2010, ISBN-13: 978-1933988924.

[15] CommScope Enterprise Product Catalog. [Online] Available
from: http://www.commscope.com/Product-Catalog/
Enterprise/ [retrieved March 2016].

17Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

	I. Introduction
	II. AIM System Domain Analysis and Resource Modeling
	A. Resource Categories Overview and Classification
	B. Common Abstraction Models
	C. Resource Model Design
	1) Premise Elements
	2) Telecom Connectivity Elements
	3) Organizational Elements
	4) System Notifications and Human Activity Elements

	D. Modeling Large Varieties of Hardware Devices
	E. Benefits of the Proposed Model

	III. A Proposed Layered Architecture for AIM API Integration Services
	A. Adding Integration Capabilities to an AIM System
	B. Patterns and Design Principles

	IV. A Few Challenges and Solutions
	A. Handling POST Requests for Large Numbers of Specialized Resource Types with Few URIs
	B. Adding Support for Composite Resources
	C. A Functional, Rule-Based Approach for Default Initializations and Validations of Resources

	V. Conclusion
	VI. �References

