
A Research Roadmap for Test Design in Automated Integration
Testing of Vehicular Systems

Daniel Flemström

SICS Swedish ICT AB
Västerås, Sweden

danielf@sics.se

Thomas Gustafsson

Scania CV AB
Södertälje, Sweden

thomas.gustafsson@scania.com

Avenir Kobetski

SICS Swedish ICT AB
Kista, Sweden

avenir@sics.se

Daniel Sundmark

Mälardalen University
Västerås, Sweden

daniel.sundmark@mdh.se

Abstract—An increasing share of the innovations emerging
in the vehicular industry are implemented in software. Conse-
quently, vehicular electrical systems are becoming more and more
complex with an increasing number of functions, computational
nodes and complex sensors, e.g., cameras and radars. The intro-
duction of autonomous functional components, such as advanced
driver assistance systems, highlight the foreseeable complexity of
different parts of the system interacting with each other and with
the human driver. It is of utmost importance that the testing effort
can scale with this increasing complexity. In this paper, we review
the challenges that we are facing in integration testing of complex
embedded vehicular systems. Further, based on these challenges
we outline a set of research directions for semi-automated or
automated test design and execution in integration testing of
vehicular systems. While the discussion is exemplified with our
hands-on experience of the automotive industry, much of the
concepts can be generalised to a broader setting of complex
embedded systems.

Index Terms—Software Testing; Automotive Systems; Embedded
Systems; Integration Testing

I. INTRODUCTION

Electrical systems in modern vehicles grow increasingly
complex and software intensive. With additional concerns, like
increasing requirements on autonomy and safety, integration-
and system-level testing becomes more and more challenging.
At full-vehicle integration level, in addition to the testing
performed in actual vehicles, different types of electrical
system lab testing is undertaken. Typically, in lab testing, use-
case based functional (and to some extent non-functional) test
cases are executed by means of hardware-in-the-loop (HIL) or
software-in-the-loop (SIL) based integration testing platforms.

This current practice of test design and execution comes
with a number of drawbacks. Test execution is costly and time-
consuming, particularly if done manually. However, when test
cases are scripted and automatically executed, testing tends
to be repetitive and static. Moreover, the fact that test cases
typically focus on one functional part at a time (without
considering the potential interactions or interference between
functions) may not account for realistic operating conditions.

In this paper, we address the question of whether it is
possible to use automated test design, execution and analysis to
test complex systems in general, and automotive and vehicular
systems in particular, more effectively without exhausting the

test resources. First, based on our experience with integration-
level testing at a number of different vehicular Original Equip-
ment Manufacturers (OEMs), we list a number of challenges
that need to be addressed. Next, partially based on recent
results in software and system testing, we outline a research
roadmap for integration- and system-level testing of vehicular
systems. In particular, we identify and describe five research
directions for test design, automated test sequence generation
and verdict analysis, that directly address the listed challenges.

II. BACKGROUND

Over the last decades, embedded systems have been sub-
jected to a rapid increase in complex functionality, and there
are no indications suggesting that this trend will change in
a foreseeable future. This is especially true for automotive
systems, where emission regulations and advanced driver
assistance systems (ADAS) energize the development. The
functionality of ADAS depend on an increasing amount of
sensor data. This leads to an increasing number of situations
where human operators will no longer be in control. Based
on input from various sensory sources, different functional
components will interact and sometimes compete with each
other and the operator. This adds flavour to the already non-
trivial challenge of testing a product in its entirety.

The remainder of this section discusses state of the practice
based on the collective experience from complex system
integration testing in general, and integration-level testing of
a number of vehicular OEMs (Volvo Construction Equipment
(VCE), Bombardier Transportation (BT) and Scania) in par-
ticular. Although there are differences in particular details, the
principles and challenges remain common.

A. State of the Practice

Today, testing is the primary means of assessing the quality
of embedded systems. Testing is typically done at several
stages throughout system development, ranging from unit-
level testing of functions in isolation, to integration testing
of fully interconnected systems. Ordered by the rising level of
integration, testing is normally conducted in model-in-the-loop
(MIL), SIL, HIL test environments, and full scale product tests.
Typically, this is done through use-case based test sequences,
partly derived from system requirements and partly reflecting

18Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration



the test engineers’ domain knowledge. This type of testing is
commonly referred to as scenario-based testing [1].

In scenario-based testing, test cases are designed using a
divide-and-conquer-based approach following the breakdown
of system requirements into smaller functional entities (which
is in accordance with recent textbook guidelines for functional
test design [2], [3]). Test cases are typically constructed by
means of sequences of (a) input or stimuli to the system
under test (SUT), (b) delays allowing the SUT to reach
some desired state, and (c) assertions that compare expected
behavior with the actual SUT behavior. Based on the outcome
of its assertions, a test case, when exercised, can render three
different verdicts: a passed test case is a test case with no
violated assertions, a failed test case is a test case where the
expected behavior does not match the behavior of the system
under test (ideally indicating a fault in the target system),
and an aborted test case is a test case where some test case
action cannot be performed (ideally indicating a fault in the
test case or the test environment). Once having been designed,
implemented, and incorporated in the test suite, test cases are
typically repetitively executed without much variation.

While manual testing is invaluable for quality assurance,
especially when new functionality is introduced, it is expensive
and not suitable for regression testing (i.e., following up on
how software progresses over time whenever a new part of the
system has been added to the SUT or an existing system has
changed due to a bug fix or requirement update). For the latter
purpose, test cases are—to an increasing extent—scripted to
allow for automated batched execution. Analyzing which of
the existing test cases should be executed in each regression
test session is often a manual and time consuming process.

III. CURRENT PRACTICE: LIMITATIONS AND CHALLENGES

Although scripted scenario-based testing does ensure that
requirements are exercised and covered during testing, it
comes with a number of limitations. Below, we identify a set
of challenges not addressed satisfactorily by current practice. It
should be noted here that some manual testing practices (e.g.,
exploratory testing [4]) do address some of these challenges.
However, the focus of this paper is on systematic automated
techniques, primarily due to the fact that such techniques are
more likely to scale with increasing complexity.

A. Ch1 - Lack of functional interference

The procedure of decomposing requirements into smaller
functional units, and using these units in isolation as the basis
for test case design is fundamental in managing an other-
wise overwhelming complexity. However, this procedure for
requirement decomposition, and subsequent test design also
prevents the assessment of undesirable interference between
functional entities. Such assessment is particularly important
as the functions grow increasingly complex and dependent
on several interacting subsystems. Small disturbances in one
system component may propagate into fault conditions in
another, not to mention the case when different functional
entities are in conflict or competing over the same resource.

B. Ch2 - Inefficient resource usage

In order to make sure that each test has the right precon-
ditions for making a correct verdict, test scripts are generally
executed one by one, while the SUT’s state is reset between the
test scripts. In addition to the time overhead that is needed to
set up and shut down each test case, delays are often encoded
explicitly in test scripts to represent correct timing behavior
(e.g., response times) of the SUT. Sequential test execution
means that delay times can never run in parallel. Not only
does this poorly represent real operating conditions, where
several independent functions (e.g., cruise control, radio, and
turn indicator lights) can be active at the same time, but it also
leads to inefficient use of testing resources.

C. Ch3 - Inflexible and tedious test case encoding

Integration level test cases are often coded manually into a
scripting language. One reason for this is the wish to keep a
tight control over the order and timing of stimuli to the SUT
to avoid incorrect test verdicts, i.e., verdicts (typically pass
or abort) caused by incorrect test case implementation rather
than the actual behavior of the SUT. In practice, this means
that a test engineer needs to consider in detail not only what
is the expected behavior for a certain function, but also how
to put the SUT in a state where such behavior is supposed
to be manifested. This mixes up two different views of the
system, namely the design (and subsequent implementation)
of test stimuli sequences and test oracles, making the task of
a test engineer even more challenging. As a consequence, the
development of integration test cases is a rather complex and
time-consuming process, which severely limits the number of
test cases that can be implemented and maintained.

D. Ch4 - Unnecessarily limited coverage

Any given functional requirement could in theory be tested
by a large (if not infinite) set of concrete test cases. However,
the current practice of hard-coding of scenarios into scripted
test cases limits the potentials of variability in testing to only
the hard-coded cases. Once designed and scripted, a scenario-
based test case is typically kept and repetitively executed
without much or any variation. While this has the advantage
of detecting differences between software versions (e.g., for
regression testing), it limits the testing to a very small portion
of the vast set of imaginable real-life situations that the
system could be subjected to, while the rest is left entirely
unexplored. For example, the functionality of a hazard light
could potentially benefit from being tested not only when
cruising at low speed, but also in situations like: i) when the
vehicle is idling, ii) while driving on a highway in winter
conditions, iii) while applying brakes, etc. In practice though,
most situations fall outside of the chosen set of test scenarios
being considered important enough to encode and maintain.

E. Ch5 - Inadequate requirements

Previous work suggests that test cases are often based on
positively stated requirements defining how the system should

19Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration



behave during normal operation [5]. While this provides valu-
able confirmation with respect to the system’s fitness for use
in the normal case, there are results indicating that focusing
on normal requirement-based cases might not be the best
strategy when trying to maximize fault-detection [6], [7]. In
fact, there exist many examples of accidents caused not by a
software bug in the classical sense, but rather by incorrect
or missing requirements, caused by a failure to consider
important operational states or environmental conditions [8].

Also, a common problem in testing in general is that
although some non-functional robustness testing is done, a
disproportionally large part of testing is concerned mainly with
functional requirements [9]. Related, there is a gap between
requirements engineering (RE) and testing activities. In some
cases, requirement documents are followed, but more often
such documents must be complemented with the domain
knowledge and understanding of what needs to be tested
that the test engineer possesses. This is quite common in
the industrial practice, also noted in, e.g., [9]. Another issue,
which also depends on the above mentioned gap between RE
and testing, is the practice of developing test cases for the same
functionality independently, on different integration levels. As
the development rate of new functionality is steadily increas-
ing, such approach to system level testing seems insufficient.

F. Ch6 - The ”smart product” challenge

In general, embedded products become increasingly in-
telligent, while testing methods are lagging behind. In the
vehicular world, this is best highlighted by ADAS function-
ality, which introduces additional challenges to the software
development process and to testing in particular. Advanced al-
gorithms are to an increasing extent replacing human decision
making. While human drivers might and do make mistakes,
there is close to zero-tolerance when it comes to autonomous
functions doing so. Thus, ADAS-type functions must be tested
even more extensively. Also, their interactions with other
functionality in the vehicle, as well as with the driver, must be
taken into consideration. Most ADAS functionality is triggered
by the surrounding environment and the different situations
that a vehicle may be subjected to. This is a challenge in a
laboratory setting (e.g., HIL), where the environment must be
represented in some way.

IV. RESEARCH DIRECTIONS

Considering the above stated challenges, we believe that
much can be gained from moving beyond the prevailing script-
based integration test design and execution practice, which is
primarily focused on one single function or even a part of
a function (use case) in isolation. In general, we envision a
situation where automatically executable test sequences are
generated or derived in a semi-automated or fully automated
fashion. These test sequences are derived based on high-level
test design rationales that address the above challenges. The
sequences can be automatically executed and their verdict
can be automatically analysed and reported. Below, we list a

number of research directions that serve to push the integration
testing of vehicular systems towards this vision.

First, considering the inflexible and tedious test case en-
coding challenge (Ch3), we suggest to draw a clear line
between generation of test stimuli sequences (i.e., timed and
ordered sequences of input data to be fed to the SUT),
and encoding of expected test responses (i.e., how the SUT
should respond given a certain sequence of events or stimuli).
This research direction is elaborated in the subsection on
Separation of Concerns. Second, concerning test sequence
generation (TSG), we identify three distinct rationales that
directly address challenges Ch1, Ch2, Ch4, and Ch6. These
rationales are Functional Interference, focusing on the extent
to which the interaction between features is covered during
testing, Environmental Coverage, focusing on the extent to
which aspects of the intended environment of the vehicle are
covered during testing, and Diversity, focusing on the extent to
which test cases and test suites are different from one another.
Each of the above listed research directions are discussed in
detail below. Third, modeling of expected responses has as its
goal to robustly assess whether the response of the SUT to a
variety of (automatically generated) test sequences is adequate
(i.e., should yield a pass verdict) or not (i.e., should yield a
fail verdict). In software testing, this problem is known as
the Oracle Problem [10], and we address it in a separate
subsection below. Referring to Ch5, note that any requirements
that should be testable need to be reflected in test oracle
models in an adequate way.

A. Separation of Concerns

As mentioned in challenge Ch3, the traditional way of
encoding stimuli and verdicts into one executable unit makes
the resulting test cases both less flexible and more difficult to
analyze. Consequently, we believe that it is important to clearly
separate: a) the question of how to combine test stimuli into
effective and feasible test sequences, and b) the question of
which test assertions to make in order to produce a test verdict,
and when to evaluate these assertions.

With such separation in place, test stimuli modeling can be
seen as a special case of model-based testing (MBT), where the
modeling scope, according to Utting et al.’s taxonomy [11], is
limited to input-only. In other words, when reasoning about
TSG, there is no explicit need to consider the test output, i.e.,
the actual verdict analysis. Instead, one can focus on questions
such as what kind of input should be considered for guiding
SUT through its possible states, and how this input should be
modeled and selected into the actual test sequences to achieve
effective and efficient testing.

Considering the other side of the problem, i.e., how to reach
a test verdict given an automatically generated test sequence,
with this approach test engineers can focus more explicitly
on exactly which preconditions are needed to trigger a test
oracle function, and which results it should produce under
different conditions. While appropriate models need to include
both input and output aspects, the input part does not actually
drive the state progression. Rather, it describes the state(s) in

20Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration



which the SUT needs to be in order to perform meaningful
test evaluations. Ideally, such models should clearly reflect the
requirements on functionality.

While separation of concerns contains relatively few re-
search questions in itself, it is central not only for reducing
test case generation complexity, but also for research on each
of the separated parts. An important research direction here
is to find appropriate interfaces between the separated parts,
which in turn influences the choice of modeling formalisms in
the two distinct cases. Some preliminary results have already
been pointed to in this direction [12], but much work remains.

B. Functional interference

In real operating conditions, functional interference is the
norm rather than an exception [13]. Different parts of a
complex product’s functionality are typically being engaged
simultaneously and independently from each other. Taking
an automotive application as an example, a lane shift may
involve both turn indicator and acceleration functions. At
the same time, the climate control system may be trying to
keep temperature at some set point. Including ADAS into
consideration, e.g. blind spot assist or adaptive cruise control
functionality may also be active during the lane shift.

One goal of integration testing is to test how different func-
tions work together. However, use-case based testing typically
focuses on one function at a time, and the concurrent activation
of other functions is only a side-effect of reaching a testable
system state. Clearly, if interactions between functions are not
systematically tested, there is a risk of missing important er-
rors. In fact, function or subsystem interactions are responsible
for a growing portion of accidents in complex systems [8].
Also, it is important to carefully consider possible interactions
between autonomous functionality and human actions. In fact,
in fields where automation was adopted early, such as aviation,
such interactions are known to contain a certain risk [14].

Consequently, it is desirable to allow for testing of several
functions run in parallel. In the ideal case that any combination
of functions that in some way affect one another or a common
functional or non-functional resource was tested together, Ch1
could be removed from the above list of challenges. Con-
versely, the usage of testing resources (Ch2) would be much
more efficient if all fully independent function combinations
could be batched together into a single run. However, there are
a number of questions to solve before reaching that situation.
For example, what is an adequate runtime environment for par-
allel testing of potentially dependent functions? Possibly, ideas
could be drawn from the field of parallel computing. However,
they should be adapted to the specifics of integration testing
of embedded systems, e.g. complex functional dependencies,
hard real-time constraints, wide range of different users and
operational contexts, safety criticality, etc., see also [13].

Since testing resources are normally limited, the right mix
between interacting and independent functionality will likely
be an important design trade-off that should be considered by
TSG algorithms. Also, infeasible combinations of functions,
i.e., those leading to test abortion, must somehow be avoided.

Different types of functionality need to be modeled in a suit-
able way, such as actuator-triggered (driver controls), sensor-
triggered (autonomous responses), and failure-triggered.

C. Environmental coverage

An important factor that affects the operation of embed-
ded systems, often neglected in scenario-based testing, is
the impact of the surrounding environment on a system’s
performance and operation. This aspect is important not only
by extending the notion of test coverage with a new dimension
(thus addressing Ch4), but it increases in significance with
the growing ”smartness” of embedded products (Ch6). The
more autonomous functionality a system contains, the more
important it is to anticipate and test possible situations that
the system can be subjected to. This need has recently been
formulated by Alexander et al. [15], as a situation coverage
metric for autonomous systems.

The idea is to describe real-life situations by partitioning
them into a number of constituent components, or environ-
mental aspects, each of which consists of a number of discrete
(and typically mutually exclusive) elements, or possible values.
Returning to the automotive world for an example, such
components could be the topography of the road (uphill,
downhill, or negligible inclination), road surface conditions
(snow, ice, rain, dry), surrounding traffic (pedestrians, queues,
highway, platooning, etc.), intersection types (3-road, right-
turn, left-turn, straight driving, etc.), driver condition (alert,
tired, using phone, etc.), and so on.

Once the environmental components have been identified,
they can be combined into more or less complex situations
and tested together with several active functional elements.
For example, a vehicle can be driving uphill on a snowy
highway, conducted by a sleepy driver that makes a lane shift
and presses down the acceleration pedal, while blind spot assist
and adaptive cruise control functionalities are activated.

Evidently, situation coverage poses similar research ques-
tions as the ones discussed in the previous subsection, perhaps
the most obvious being the choice of appropriate environmen-
tal models, with respect to, e.g., abstraction level, modeling
formalism, TSG tools, etc. Further, since the number of
possible combinations of situational components and functions
seems to suffer from combinatorial explosion, it is not realistic
to believe that every possible aspect will be tested in each
test run. Thus, combinatorial strategies on selecting relevant
situations with respect to the testing objectives are needed [16].

D. Diversity

A recent research direction in software testing investigates
the effects on fault detection and coverage of the extent to
which test cases are different from each other. In particular,
diversity metrics based on information theory have been used
for this purpose [17]. Diversity is typically defined as a metric
between 0 and 1 indicating the distance between two test cases,
or sets of test cases. Several studies indicate that increased test
case diversity has a positive effect on the ability to discover
faults. For instance, Mondal et al. [18] used diversity as a

21Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration



complement to traditional test adequacy criteria and found
that combining diversity with other criteria yields better fault
detection rates. Feldt et al. [17] define a diversity metric for
sets of test cases, which allows for search-based selection
methods to work on entire sets of test cases. There are however
several different definitions of diversity, and thus, ways of
measuring it. Examples of such metrics are based on the
normalised compression distance (NCD) between the textual
representation of a variability model of the test cases [17],
[19], the euclidian distance between input/output vectors [20]
or features thereof [21], and weighted combinations of metrics
for different properties of the measured items [22].

Extending the concepts of e.g test input/output diversity,
we may address the first challenge, Ch1, by using diversity
as a criterion to ensure that a generated set of test cases
involves as different functions as possible. Further, using
diversity measures to guide the selection of test cases between
regression testing sessions would also address Ch4 to avoid
that the same, or too similar, tests are being executed from
time to time, thus yielding a better coverage over time.

Given the promising results in the mentioned studies (al-
though largely focused on unit testing), diversity stands out as
an attractive optimization criteria for a test stimuli generator
as discussed in Section IV-A. There are however numerous
challenges with this approach, including the level of detail of
the available information and to what extent such information
can be efficiently retrieved. Further challenges include how
to apply diversity in an event-based testing environment (e.g.,
considering timing and parallelism), and how to best combine
diversity with other metrics (e.g. requirements, environmen-
tal coverage, or functional interference). Research applicable
definitions of diversity that are effective on integration level
with respect to the different challenges listed in Section III
is therefore needed. Finally, the computational effort when
calculating the diversity measures needs to be addressed in
order to be suitable for a test sequence generator.

E. Test oracle modeling

A test oracle is a mechanism that, given a certain input and
the SUT’s response to that input, can state whether this actual
response is in accordance with the expected response (i.e., if
the test passes or not). In software testing, the construction
of such a mechanism is known as the oracle problem. The
oracle problem is relatively unexplored and inherently difficult
to address [10]. In practice, since complete oracles would re-
quire an exhaustive and correct representation of the expected
behaviour of the SUT, only partial oracles are possible to
construct, typically encoded as assertions in test cases.

As mentioned above, we believe that test oracles should
be modeled as passive analysis mechanisms, expressing how
a SUT should behave given a certain sequence of stimuli.
Condition models [23] and guarded assertions [24] are two
examples of initial attempts to address this problem. However,
further development is needed to reach practical applicability.

Ideally, oracle models should be formal enough to allow for
automatic translation into test code. Further, they should have

clear and human-readable links to the functional requirements
they represent. This would promote requirement traceability
and ability to reason about logical relations between tests
and requirements, reducing the gap between these disciplines
(Ch5). Also, automation of the logic behind oracles should
then be possible, supporting oracle analysis either online,
e.g., by testing in a HIL environment, or offline, e.g., by a
verification algorithm. Balancing between informal and formal
requirement models is thus an intriguing research topic.

Also, human-readable models should be developed early
on, allowing their reuse through different stages of the testing
process. Modeling patterns on different abstraction levels, and
unambiguous conversion between the different models and
the test code will likely be needed for any such approach to
be applicable. Related, structured English grammars, together
with patterns to facilitate writing requirements, suitable for
automated checking of system and requirements conformance,
have been proposed in several papers [25], [26], [27].

Finally, addressing the remaining parts of Ch5, oracle
models reflecting non-positive or non-functional requirements
will be needed. The challenge is further complicated by the
immaturity of the RE field in this respect. There is a clear
need for research both on basic RE in this direction, and next
on enriching the results of such basic research into the more
applied question of oracle modeling.

F. Summary

Above, five research directions are outlined for test design in
integration testing of vehicular systems. Considering all these
research directions combined, one could envision the following
integration test design, execution and analysis process: First,
requirements are (manually) encoded as abstract and passive
test oracles using human readable and intuitive patterns. Sec-
ond, based on these oracles, but also considering other test
design rationales like functional interference, diversity and/or
environmental coverage, test stimuli sequences are automati-
cally generated. Third, the test sequences are executed on the
system under test, and the oracles automatically analyze the
system response in order to produce an aggregated test verdict.

Naturally, the outlined process is only one possible way of
moving forward and should be revised as testing research and
practice progress. Further, it is important to relate the industrial
experience, to recent academic advances, drawing inspiration
from the broader test research field, e.g. [28], [29].

V. CONCLUSIONS

In this paper, a number of challenges facing the discipline
of integration testing is outlined, based on the authors’ ex-
periences from industrial vehicular systems. The increasing
autonomy and complexity of modern vehicles, which leads to
a high level of functionality interaction, and in consequence
complex emergent behavior, need to be accounted for in
integration testing. This poses an additional burden on the
already restrained testing resources. In addition, it becomes
more difficult to reason about system behavior, which makes
coverage an even more important aspect to consider.

22Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration



The challenges are considered in a discussion on interesting
research directions. Firstly, as in other areas of software
engineering, concerns should be separated where possible. It
is our claim that generation of test stimuli sequences can
and should be separated from the actual oracle function. This
will allow a focus on the different parts separately, generating
appropriate models for each. On the oracle side, it is important
to capture requirements at the right level of abstraction, ideally
transforming them into more formal models that can be
verified by a test run. When it comes to test stimuli, there
is a need for appropriate models that capture actual situations
to which a vehicle can be subjected, with several interacting
functions being active simultaneously.

An important topic for research is how to increase the vari-
ability of what is tested. One answer to this question is to make
the test input space as diverse as possible. However, vehicles
are complex creatures operating in complex environments, and
so the modelling of possible inputs becomes challenging, not
to mention the question of what is meant by diversity and
how to select appropriate test stimuli in order to produce a
diverse test suite. Taking functional interaction and coverage
of environmental conditions into consideration may provide
some answers to the above questions.

ACKNOWLEDGMENT

This work was supported by The Swedish Innovation
Agency (Vinnova) through grant 2015-04816, and the Swedish
Knowledge Foundation through grant 20130258.

REFERENCES

[1] A. Bertolino, E. Marchetti, and H. Muccini, “Introducing a reasonably
complete and coherent approach for model-based testing,” Electr. Notes
Theor. Comput. Sci., vol. 116, pp. 85–97, 2005.

[2] M. Young and M. Pezze, Software Testing and Analysis: Process,
Principles and Techniques. John Wiley & Sons, 2005.

[3] P. Ammann and J. Offutt, Introduction to Software Testing, 1st ed. New
York, NY, USA: Cambridge University Press, 2008.

[4] J. Itkonen, M. V. Mäntylä, and C. Lassenius, “The role of the tester’s
knowledge in exploratory software testing,” IEEE Transactions on
Software Engineering, vol. 39, no. 5, pp. 707–724, May 2013.

[5] L. M. Leventhal, B. Teasley, D. S. Rohlman, and K. Instone,
“Positive test bias in software testing among professionals: A review,”
in Selected papers from the Third International Conference on
Human-Computer Interaction, ser. EWHCI ’93. London, UK,
UK: Springer-Verlag, 1993, pp. 210–218. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646181.682601

[6] L. M. Leventhal, B. E. Teasley, and D. S. Rohlman, “Analyses
of factors related to positive test bias in software testing,” Int. J.
Hum.-Comput. Stud., vol. 41, no. 5, pp. 717–749, Nov. 1994. [Online].
Available: http://dx.doi.org/10.1006/ijhc.1994.1079

[7] A. Causevic, R. Shukla, S. Punnekkat, and D. Sundmark, “Effects of
negative testing on tdd: An industrial experiment,” in International
Conference on Agile Software Development, XP2013, H.Baumeister
and B. Weber, Eds. Springer, June 2013, Date accessed: 2016-06-09.
[Online]. Available: http://www.es.mdh.se/publications/2771-

[8] N. G. Leveson, “System safety in computer-controlled automotive sys-
tems,” SAE transactions, vol. 109, no. 7, pp. 287–294, 2000.

[9] Z. A. Barmi, A. H. Ebrahimi, and R. Feldt, “Alignment of requirements
specification and testing: A systematic mapping study,” in Software
Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE
Fourth International Conference on. IEEE, 2011, pp. 476–485.

[10] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Transactions on
Software Engineering, vol. 41, no. 5, pp. 507–525, May 2015.

[11] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-
based testing approaches,” Software Testing, Verification and Reliability,
vol. 22, no. 5, pp. 297–312, 2012.

[12] T. Gustafsson, M. Skoglund, A. Kobetski, and D. Sundmark, “Auto-
motive system testing by independent guarded assertions,” in Software
Testing, Verification and Validation Workshops (ICSTW), 2015 IEEE
Eighth International Conference on, April 2015, pp. 1–7.

[13] M. Broy, “Challenges in automotive software engineering,” in Pro-
ceedings of the 28th international conference on Software engineering.
ACM, 2006, pp. 33–42.

[14] T. B. Sheridan and R. Parasuraman, “Human-automation interaction,”
Reviews of human factors and ergonomics, vol. 1, no. 1, pp. 89–129,
2005.

[15] R. Alexander, H. Hawkins, and A. Rae, Situation coverage – a coverage
criterion for testing autonomous robots. Department of Computer
Science, University of York, 2 2015, vol. Report number YCS-2015-
496.

[16] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput. Surv., vol. 43, no. 2, pp. 11:1–11:29, Feb. 2011. [Online].
Available: http://doi.acm.org/10.1145/1883612.1883618

[17] R. Feldt, S. Poulding, D. Clark, and S. Yoo, “Test set diameter: Quantify-
ing the diversity of sets of test cases,” arXiv preprint arXiv:1506.03482,
2015.

[18] D. Mondal, H. Hemmati, and S. Durocher, “Exploring test suite di-
versification and code coverage in multi-objective test case selection,”
in Software Testing, Verification and Validation (ICST), 2015 IEEE 8th
International Conference on. IEEE, 2015, pp. 1–10.

[19] R. Feldt, R. Torkar, T. Gorschek, and W. Afzal, “Searching for cogni-
tively diverse tests: Towards universal test diversity metrics,” in Software
Testing Verification and Validation Workshop, 2008. ICSTW’08. IEEE
International Conference on. IEEE, 2008, pp. 178–186.

[20] P. Bueno, W. E. Wong, and M. Jino, “Improving random test sets
using the diversity oriented test data generation,” in Proceedings of
the 2nd international workshop on Random testing: co-located with
the 22nd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2007). ACM, 2007, pp. 10–17.

[21] R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann, “Simcotest:
a test suite generation tool for simulink/stateflow controllers,” in
Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016 -
Companion Volume, 2016, pp. 585–588, Date accessed: 2016-06-09.
[Online]. Available: http://doi.acm.org/10.1145/2889160.2889162

[22] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “Object distance and
its application to adaptive random testing of object-oriented programs,”
in Proceedings of the 1st international workshop on Random testing.
ACM, 2006, pp. 55–63.

[23] A. Ray, I. Morschhaeuser, C. Ackermann, R. Cleaveland, C. Shel-
ton, and C. Martin, “Validating automotive control software using
instrumentation-based verification,” in Automated Software Engineering,
2009. ASE’09. 24th IEEE/ACM International Conference on. IEEE,
2009, pp. 15–25.

[24] G. Rodriguez-Navas, A. Kobetski, D. Sundmark, and T. Gustafsson,
“Offline analysis of independent guarded assertions in automotive inte-
gration testing,” in High Performance Computing and Communications
(HPCC), 2015 IEEE 7th International Symposium on Cyberspace Safety
and Security (CSS), 2015 IEEE 12th International Conferen on Em-
bedded Software and Systems (ICESS), 2015 IEEE 17th International
Conference on, Aug 2015, pp. 1066–1073.

[25] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, “Easy approach to
requirements syntax (ears),” in Requirements Engineering Conference,
2009. RE’09. 17th IEEE International. IEEE, 2009, pp. 317–322.

[26] M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang, “Aligning
qualitative, real-time, and probabilistic property specification patterns
using a structured english grammar,” Software Engineering, IEEE Trans-
actions on, vol. 41, no. 7, pp. 620–638, July 2015.

[27] P. Filipovikj, M. Nyberg, and G. Rodriguez-Navas, “Reassessing the
pattern-based approach for formalizing requirements in the automotive
domain,” in Requirements Engineering Conference (RE), 2014 IEEE
22nd International. IEEE, 2014, pp. 444–450.

[28] M. J. Harrold, “Testing: a roadmap,” in Proceedings of the conference
on the future of software engineering. ACM, 2000, pp. 61–72.

[29] A. Orso and G. Rothermel, “Software testing: a research travelogue
(2000–2014),” in Proceedings of the on Future of Software Engineering.
ACM, 2014, pp. 117–132.

23Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration


