
A Specific Method for Software Reliability of Digital Controller in NPP

Young Jun Lee, Jong Yong Keum, Jang Soo Lee
I&C/HF Division

Korea Atomic Energy Research Institute
Daejeon, Korea

e-mail: yjlee426@kaeri.re.kr, jykeum@kaeri.re.kr,
jslee@kaeri.re.kr

Young Kuk Kim
Department of Computer Science & Engineering

Chungnam National University
Daejeon, Korea

e-mail: ykim@cnu.ac.kr

Abstract— Most new controllers used in the safety systems of
nuclear power plants have been developed using digital systems,
and conventional analog controllers are also increasingly being
replaced with digital controllers. Therefore, the importance of
software that operates within the digital controller of a nuclear
power plant is further increased. This paper describes a
reliability evaluation method for the software to be used for a
specific operation of a digital nuclear power controller. It is
possible to calculate the software reliability when obtaining the
failure rate and utilizing the existing calculation method. We
attempt to achieve differentiation by creating a new definition
of the fault, imitating the software fault using the hardware, and
giving the consideration and weights for injection faults.

Keywords- software reliability; digital controller in NPP;
software life cycle; fault injection.

I. INTRODUCTION

To ensure the safety of software used in a Nuclear Power
Plant (NPP), the Nuclear Regulatory Commission (NRC), the
nuclear regulatory agency of the United States, has published
its Software Review Plan (SRP) [1] and has required safety
software to be developed according to the IEEE Standard 7-
4.3.2 [2]. To meet these regulatory requirements, the software
used in the nuclear safety field has been ensured through the
development, validation, safety analysis, and quality
assurance activities throughout the entire process life cycle
from the planning phase to the installation phase [3]. However,
this evaluation through the development and validation
process needs a lot of time and money. In addition, a variety
of activities, such as the quality assurance activities are also
required to improve the quality of a software. However, there
are limitations to ensure that the quality is improved enough.
Therefore, the effort to calculate the reliability of the software
continues for a quantitative evaluation instead of a qualitative
evaluation.

In this paper, we propose a reliability evaluation method
for the software to be used for a specific operation of the
digital controller in an NPP. After injecting random faults in
the internal space of a developed controller and calculating the
ability to detect the injected faults using diagnostic software,
we can evaluate the software reliability of a digital controller
in an NPP. In Section 2, we introduce the reliability
evaluation research for a nuclear software. A specific method
for software reliability evaluation of a digital controller in an
NPP is explained in Section 3. In Section 4, an experiment
plan is suggested. Finally, we conclude the paper in Section 5.

II. RELIABILITY EVALUATION RESEARCH FOR A NUCLEAR

SOFTWARE

Active research to assess the reliability of software in the
field of a nuclear power plant has only recently progressed. It
has been claimed that a quantitative calculation regarding the
reliability of the software is impossible owing to the
assumption that the software failure rate does not increase
over time unlike in electronic components. Thus, focus on the
amount of testing needs to be made to ensure the reliability of
the predetermined target level rather than directly calculating
the software reliability. Research methods that have been
tailored for this purpose thus far include the Software
Reliability Growth Model (SRGM) [4] and Bayesian Belief
Net [5]. However, it is premature for these research methods
to be applied directly to a site because of the specificity of an
NPP. The applicability of such a method may be considered
only after the result is stabilized and objectively proven.
Software reliability assessment methods that have been
researched regarding the current status of a nuclear power
plant are as follows.

A. Software Reliability Growth Model

The SRGM is used to establish an assumption regarding
whether the software reliability will be improved when a
software failure by such a defect does not occur again by
removing the defects that are inherent in the event of a
software failure. There are two criteria: the Root Mean Square
Error (RMSE) [4] and Average Error (AE) [4].

The RMSE is a measure commonly used when dealing
with the difference between one of the model predictions
based on observations in the real world. It is suitable to
represent the precision. Each of the difference values is also
referred to as a residual, and the mean square deviation is used
to synthesize the residual as a measure. These criteria may be
used to measure the difference between the actual value and
the predicted value. Two formulas can be expressed as follows
(1)(2):

RMSE = ට
ଵ

∑ ൫ܿሺ݇ሻ െ ܿ̂ሺ݇ሻ൯

ଶ
ୀଵ (1)

AE =

ଵ

∑ ቚ

ሺሻି̂ሺሻ

ሺሻ
ቚ ൈ 100

ୀଵ (2)

where n is the group number of the failure data, c(k) is the
number of actual failures in each group of failure data, and ĉ(k)
is the number of predicted failures. The smaller the RMSE and
AE models, the more their predictive power increases.

30Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

B. Bayesian Belief Net

Bayesian Belief Net (BBN) [15] is a methodology that
leads to quantitative results by calculating and applying the
laws of probability including Bayes probability. It models the
relevant variables in the target system through a causal
relationship, expresses the dependency degree of variables as
a conditional probability, and inputs several observed
evidences into the BBN model generated. The BBN consists
of nodes indicated as circles on the graph, arcs between nodes,
and a node probability table (or conditional probability table)
of each node. Nodes represent variables included in the model,
the arcs indicate a causal relationship between nodes. Each
node has a number of states as random variables (for example,
a state of "Yes" or "No"). The sum of the probability of the
state value is 1. The node probability table associated with
each node determines the connection strength between nodes,
and is expressed as a conditional probability for each state of
the parent node.

III. SPECIFIC METHOD FOR SOFTWARE RELIABILITY

EVALUATION OF A DIGITAL CONTROLLER IN AN NPP

The software reliability methods we have seen thus far
have been studied to apply to the software in an NPP, but there
is actually no applied practice. SRGM can demonstrate that
the reliability grows when failure data and the resolution case
of a compete software exist. However, the adaptation data are
not sufficiently secured and the BBN methodology has
occupied much of the qualitative determination elements, and
thus BBN methodology has a limitation in that it calculates
the quantitative data. In order to overcome these
disadvantages, we propose a specific method to obtain a
quantitative value of the reliability of a software used in an
NPP. Considerations in the proposed method are as follows.

First, the reliability evaluation formula uses the general
reliability calculation method commonly used. This is the
reliability calculation method for the electronic component.
Applying this method to software that is not worn out may
start a debate. However, we assumed that the software can also
be continually exposed to potential bugs over time and that the
software is also aging.

Second, random faults should be injected inside the
software, and the definition for injected faults should be
interpreted differently. The injected fault defined as a fault
may not be recognized as a fault inside the software, and the
failure weight may also be different because the injected fault
has different effects on a software action.

Third, the failure rate to be used for the reliability
evaluation formula should be defined. If any fault is injected
in the location of the software and the fault detection coverage
through the diagnostics software is calculated, the failure rate
of the target software can be determined.

These issues are explained in detail as follows.

A. Reliability calculation method

A reliability is a way to express the probability that
electronic components are continuously operated for a certain
time. This is expressed as follows (3)(4):

ܴሺݐሻ ൌ ሺܶݎܲ ሻݐ ൌ 1 െ ሺܶݎܲ ൏ ሻݐ ൌ 1 െ ሻݐሺܨ ൌ 1 െ ݂ሺݐሻ݀ݐ
௧

 (3)

ܴሺݐሻ ൌ 1 െ ሻݐሺܨ ൌ ݁ିఒ௧ (4)

F(t) is the failure cumulative distribution function and

means the probability of malfunction within time t. It is
expressed as follows (5)(6):

ሻݐሺܨ ൌ ሺܶݎܲ ሻݐ ൌ ݂ሺݐሻ݀ݐ

௧

, ݐ 0 (5)

ሻݐሺܨ ൌ ݐఒ௧݀ି݁ߣ ൌ 1 െ ݁ିఒ௧

௧

 (6)

In addition, the (t) factor used in the failure cumulative

distribution function of the system refers to the number of
faults per unit of time. The most important factor is the failure
rate (t) in the basic method for calculating the reliability. This
is because the reliability calculation value is changed
according to the number of faults in the system per unit of time.
The failure rate calculation is as follows (7)(8)(9):

ሻݐሺߣ ൌ 1 െ (7) ܥ

ܥ ൌ ሻ݁ܿ݊݁ݐݏ݅ݔ݁	ݐ݈ݑ݂ܽ	|	݀݁ݐܿ݁ݐ݁݀	ݐ݈ݑሺ݂ܽ	ݎܲ ൌ ݅ܦ݅ܨ∑
ൗ݅ܨ∑ (8)

ሻݐሺߣ ൌ 1 െ ݅ܦ݅ܨ∑
ൗ݅ܨ∑ (9)

There are various ways to calculate the failure rate

expressed as a constant value. Among them, it is a general
method that estimates the failure rate value using a probability
analysis method using the test data and analysis data and
calculates the reliability using the estimated values. The test
data and the analysis data should be sufficient for the accuracy
of the probability. However, there is a limitation in extracting
the test data from the situation in which the controller is
applied to the safety system and is operated. The samples also
are very small, and thus it is inappropriate for use in statistics.
In addition, determining the test result as a representative
value of the failure rate is not rational because tests performed
in the development process is not guaranteed. Random faults
are injected in the software of the developed completed
controller to escape the weakness, and it can then be possible
to obtain the reliability of the software after calculating a
failure rate using the diagnostic functions of the system.

B. Definition of SW failure in Controller

Because software within the controller in an NPP conducts
the same program repeatedly, the area for the software has
been limited. Thus, the definition for the fault within the
controller is necessary. Because the fault occurs in the
previous step of importing the system failure, even if a fault
occurs, the system is not unconditionally experiencing a
failure. By affecting the program or system task performing
this safety function, the faults may or may not generate a
system failure. For example, if even a specific area of the
memory has been adhered to the value of bit 0, if the
application using the memory uses the specific area as space
for a constant, the integer value for the software does not
change because the most upper bits remain as the value of bit
0. When the decimal value 15 is saved in the 10 bit space of

31Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

integer type memory, the binary value stored in that space will
be "0000001111". At this time, the upper 4 bits will always
be stored as a value of zero. Although the value of the upper
4 bits fixed to a value of zero by external shock, it does not
affect the safety operation of the software. These faults in the
controller in an NPP should not be treated as faults. It is
necessary to distinguish whether the application in the
controller uses the location or not when calculating the failure
of the controller in the NPP. The fault in the position where
the application program is not utilized is excluded from the
faults. If this fault does not affect the safety program, it is
realistically difficult to detect the fault and it is also not easy
to develop a diagnostic program that can detect the faults in
the unused portion. In the case of implementation with a
complex diagnostic algorithm, the real-time detection of the
fault is not guaranteed, and the detection function may not be
properly conducted because much time and a high cost are
needed for its operation. The effectiveness of the fault is given
depending on whether the fault can affect the operation of the
software in an NPP.

C. Fault effect factors

There are some factors to be considered in order to
determine the fault using a fault detection function. The fault
coverage may be computed differently since the location, the
type, and the nature of the faults are different individually. The
fault factors for the software in an NPP are as follows.

Fault ∈ {type, duration, location, weight, recovery}

The type, duration, location, weight, and recovery ability

are the factors for the faults. In particular, the weighting factor
may have the greatest impact on the calculation of the fault
detection coverage of the controller in an NPP. The recovery
ability is not important in the controller in an NPP since a
diversity protection system will be operated when the fault is
detected. We focus on the fault detection coverage capability.

 Fault Type = stuck-0 fault，stuck-1 fault
The fault type is stuck-0 or stuck-1. A software program is
operated in hardware memory and the input and output of
the data are also utilized in the memory space. An action
for injecting a fault occurs in the memory and the memory
bit can then be stuck-0 or stuck-1. A memory fault injected
in the hardware has one of the two corresponding fault
types, and thus, the fault type of the target bit is determined
according to a probability of 1/2.
 Fault Duration
The duration degree of a fault is one of the attributes for
defining the fault. An injection fault may be lasting as a
permanent fault. Another fault may be recovered to a
normal state over time, although it occurs intermittently.
In this study, we only consider a permanent fault and not
an intermittent fault.
 Fault Location
The location of the fault is one of the attributes for
quantifying it. It is important to determine whether a
random fault is injected in any position. A random
injection fault affects the quantification of the failure

depending on whether it is located on the most significant
bit or the least significant bit. The location of the fault can
be defined as the weighting factor．
 Fault Weighting
Operating system software running on the safety controller
in an NPP repeats the same operation, performs a
calculation using the data received from the
communication in repeated operations, and performs
diagnostic operations. The code and data area of the
accessed memory are fixed during one cycle of the
application program. However, the number of accesses are
different from each other. It is reasonable to assign a
weight in accordance with the number of accesses because
a fault in the memory space where can access frequently
increases the probability, which can affect the safety
operation.

IV. EXPERIMENT

An experiment for calculating the failure rate of the
software in consideration of the proposed method is
progressing. Until now, the memory space that a software
application can access was classified according to the access
count. This is shown in Figure 1.

Figure 1. SW execution path and categorization.

To gain the first weighting factor related to the Fault
Location, we addressed the random memory spaces that are
utilized by a software program.

 Fault Injection Memory Address: 0x00C00E64 ~
0x00C01139

 Fault Location: 0~31 bit
 Fault Type: stuck-0

Figure 2 shows the error effect statistics according to bit

position in physical address.

0

100

200

300

400

500

600

700

Category 1

Category 2

Category 3

Category 4

0

100

200

300

400

500

600

700

C
0
0
E
3
D

C
0
1
1
5
3

C
0
1
3
B
B

C
0
1
6
2
3

C
0
1
8
8
B

C
0
1
B
0
5

C
0
1
D
7
C

C
0
1
F
E
7

C
0
2
2
4
F

C
0
2
4
B
7

C
0
2
7
2
5

C
0
2
9
9
0

C
0
2
B
F
E

C
0
2
E
7
2

C
0
3
0
F
B

C
0
3
3
6
3

C
0
3
5
C
B

C
0
3
8
3
3

C
0
3
A
9
B

C
0
3
D
0
3

C
0
3
F
6
B

C
0
4
1
D
3

C
0
4
4
3
B

C
0
4
6
A
3

C
0
4
9
0
E

C
0
4
B
7
6

C
0
4
D
D
E

C
0
5
0
4
6

C
0
5
2
A
E

C
0
5
5
1
6

C
0
5
7
7
E

C
0
5
9
E
6

C
0
5
C
5
7

C
0
5
E
C
6

C
0
6
1
6
2

C
0
6
4
6
8

C
0
6
7
3
4

C
0
6
A
0
2

C
0
6
C
F
F

C
0
6
F
D
5

C
0
7
2
8
A

C
0
7
5
7
3

C
0
7
8
4
5

C
0
7
D
8
3

0

100

200

300

400

500

600

700

C
0
0
E
6
4

C
0
0
E
6
F

C
0
0
E
B
5

C
0
0
E
C
0

C
0
0
E
C

C
0
0
E
D
6

C
0
0
E
E
1

C
0
0
E
E
C

C
0
0
E
F
7

C
0
0
F
0
2

C
0
0
F
0
D

C
0
0
F
1
8

C
0
0
F
2
3

C
0
0
F
3
1

C
0
1
0
C
E

C
0
1
0
F
4

C
0
1
0
F
F

C
0
1
1
0
A

C
0
1
1
1
5

C
0
1
1
2
3

C
0
1
1
2
E

C
0
1
1
3
C

C
0
1
1
4
7

C
0
1
A
C
C

C
0
1
A
D
7

C
0
1
A
F
6

C
0
2
6
F
A

C
0
2
7
0
8

C
0
2
F
D
7

C
0
2
F
E
5

C
0
6
7
D
4

C
0
6
7
E
9

C
0
6
8
0
0

C
0
6
8
0
B

C
0
6
8
1
6

C
0
6
8
2
1

C
0
6
8
2
F

0

100

200

300

400

500

600

700

C
00
E6
4

C
00
E6
6

C
00
E6
8

C
00
E7
1

C
00
E7
3

C
00
E7
5

C
00
E7
7

C
00
E7
9

C
01
0F
5

C
01
0F
7

C
01
10
0

C
01
10
2

C
01
10
4

C
01
10
6

C
01
10
8

C
01
12
2

C
01
12
4

C
01
12
6

C
01
12
8

C
01
12
A

C
01
12
C

C
01
12
E

C
01
13
3

C
01
13
5

C
01
13
7

C
01
13
9

32Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

Figure 2. Error effect according to bit position of address.

Then, we can acquire the normalized weighting value using
experimental sample data. Table 1 shows the normalized
value depending on each bit position in address.

TABLE I. NORMALIZED VALUE OF BIT POSITION

Bit
positi

on

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Norm
alized
value

-0.146 -0.013 0.389 -0.682 -0.682 -1.084 -1.084 -1.084

0.791 0.791 -1.084 0.657 -1.084 -1.084 -0.950 -0.146

0.121 0.255 -0.414 1.193 -0.682 0.523 2.532 -0.816

-0.146 -0.013 0.121 0.791 1.996 -0.280 2.264 -0.950

We will estimate the software reliability using fault

weighting value and the failure rate by the diagnostics
software. The experimental results will be released in a future
work, after the tests are completed.

V. CONCLUSION

We tried to calculate the software reliability of the
controller in an NPP using a new method that differs from a
traditional method. It calculates the fault detection coverage
after injecting the faults into the software memory space rather
than the activity through the life-cycle process. It is possible
to calculate the software reliability when obtaining the failure
rate and utilizing the existing calculation method. We attempt
differentiation by creating a new definition of the fault,
imitating the software fault using the hardware, and giving a
consideration and weights for injection faults.

ACKNOWLEDGMENT

This paper was supported by the Ministry of Science, ICT
(Information and Communication Technology) & Future
Planning, Korea.

REFERENCES
[1] BTP-7-14, Guidance on software reviews for digital computer-

based instrumentation and control system. NUREG-0800,
Standard Review Plan: branch technical position 7-14,
Revision 5, Nuclear Regulatory Commission.

[2] The Institute of Electrical and Electronics Engineers, Inc.,
“Standard Criteria for Digital Computers in Safety Systems of
Nuclear Power Generating Stations,” IEEE 7-4.3.2.

[3] K. C. Kwon and M. S. Lee, “Technical Review on the
Localized Digital Instrumentation and Control Systems,”
Nuclear Engineering and Technology, vol. 41, no. 4, 2009, pp.
447-454.

[4] Gaurav Aggarwal and V. K Gupta, “Software Reliability
Growth Model,” International Journal of Advanced Research
in Computer Science and Software Engineering, vol. 4, 2014,
pp. 475-479.

[5] H. S. Eom, G. Y. Park, H. G. Kang, and S. C. Jang, “Reliability
assessment of a safety–critical software by using generalized
Bayesian nets,” 6th International Topical Meeting on Nuclear
Plant Instrumentation, Control and Human Machine Interface
Technology, Knoxville, Tennessee 2009.

[6] H. G. Kang, “An Overview of Risk quantification Issues of
Digitalized Nuclear Power Plants Using Static Fault Trees,”
Nuclear Engineering and Technology, vol. 41, 2009, pp. 849-
858.

[7] J. Duraes and H. Madeira, “Emulation of software faults, a field
data study and a practical approach,” IEEE Trans. Softw. Eng,.
vol. 32, no. 11, 2006, pp. 849-867.

[8] M. C. Hsueh, T. K. Tsai, and R. KIyer, “Fault Injection
Techniques and Tools,” IEEE Computer, vol. 30, no.4, April
1997, pp. 75-82.

[9] Jean arlat et al., “Fault Injection for Dependability Validation:
A Methodology and Some Applications,” IEEE Trans. On Soft.
Eng., vol 16, no.2, Feb 1990, pp. 166-182.

[10] G. Choi and R. Iyer, “Focus, An Experimental Environment for
Fault Sensitivity Analysis,” IEEE Trans. On Computers, vol.41,
no.12, December 1992, pp. 1515-1526.

[11] Y. Yu, “A perspective on the state of Research on Fault
injection techniques,” Research Report, University of Virginia,
May 2001.

[12] PATENT, “Fault mode apparatus and method using software,”
10-1222349, The Korean Intellectual Property Office, 2013.

[13] H. Madeira, D. Costa, and M. Vieira, “On the emulation of
software faults by software faults by software fault injection,”
Proceedings of International Conference on Dependable
Systems and Networks, 2000, pp. 417-426.

[14] S. Richter and J. Wittig, “Verification and Validation Process
for Safety I&C Systems,” Nuclear Plant Journal, May-June,
2003, pp. 36-40.

[15] B.A. Gran and A. Helminen, “The BBN methodology: progress
report and future work. OECD Halden Reactor Project,” HWR-
693, 2002.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Effect 7 8 11 3 3 0 0 0 14 14 0 13 0 0 1 7 9 10 5 17 3 12 27 2 7 8 9 14 23 6 25 1

No Effect 51 50 47 55 55 58 58 58 44 44 58 45 58 58 57 51 49 48 53 41 55 46 31 56 51 50 49 44 35 52 33 57

0

10

20

30

40

50

60

70

33Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

