
Prototyping for a Parallel Programming Tool

Kyoko Iwasawa
Department of Computer Science

Takushoku University
Hachioji Tokyo, Japan

e-mail: kiwasawa@cs.takushoku-u.ac.jp

Abstract—We propose a tool to enable even beginners in
parallel processing to develop a parallelization program using
Open Multi-Processing (OpenMP) directives. Our proposed
tool is characterized by its analysis of source programs for C
and OpenMP directives written by users and its display of
parallel structure diagrams. Further, the discovery of source
program bugs is facilitated by the static analysis of interactive
data access regions and decisions on the feasibility of
parallelization using these parallel structure diagrams. While
our proposed tool currently handles only basic OpenMP
directives, our aim is to improve the analysis of parallel
structure diagrams by including more complex simultaneous
processing and more precise data access.

Keywords-parallel programming; OpenMP directive; data
flow analysis.

I. INTRODUCTION

While the recent years have seen a proliferation in
systems capable of parallel execution, including multicore
and General Purpose computing on Graphics Processing
Units (GPGPU), in general, the development of programs for
parallel execution is difficult. While this is also the case with
algorithm development, writing parallel processing code in
an editing environment for the coding of sequential
processing easily produces errors. Further, it is difficult to
identify the errors, because in parallel programs the
execution results are not reproducible.

Therefore, we propose a programming environment
particularly for beginners in parallel processing, using a
parallel structure that is easily understood visually and also
statically analyses the feasibility of parallel execution from
the execution statement data access regions during program
editing. We are developing the prototype of this tool.

Open Multi-Processing (OpenMP) is an application
programming interface that supports multi-platform shared
memory multiprocessing programming by the OpenMP
Architecture Review Boards [1]. The details of OpenMP
spec are written in [2] and [3]. There are several tools for
OpenMP programming. [4] and [5] are integrated tools for
OpenMP programming, which include compiler and parallel
execution environments. They have various functions and
can be somewhat difficult for beginners of parallel
programming. We simplify the analyzing method in [6] and
[7] because our proposed tool does not generate parallel
object code, but suggests user appropriate directives for
parallelization.

The rest of paper is structured as follows. Section II
presents the overview of the proposed tool; Section III

describes the parallel structure diagrammatic display; Section
IV explains the access region analytical method; Section V
explains the parallelization feasibility decision method.
Finally, we conclude and present the future issues in Section
VI.

II. PROPOSED TOOL OVERVIEW

Our proposed tool is an environment for the C
programming language used in creating and editing
programs that give parallelization directions using OpenMP
directives. It has the following three main functions.

(1) OpenMP directive analysis
(2) Parallel structure graph display
(3) Interactive, static data flow analysis, and

parallelization feasibility decisions.
In addition, it display the structure written in OpenMP in

an easy understood manner for users not accustomed to
parallel processing, as well as for beginners to perform
debugging by displaying static analytical results
interactively.

Figure 1 shows the overall proposed tool structure.

Figure 1. Overall tool structure

A source program with an OpenMP directive parallel
execution direction is entered into a C program to analyze
the C programming language execution directions and
OpenMP directives. Subsequently, they are joined in an
intermediate representation. This is formed and displayed as
the parallel structure diagram in Figure 3. In this diagram,
the user selects the quadrangle in the execution direction and
the elliptical shape in the parallel execution direction to
decide the data access region and parallel execution
feasibility.

1Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration



Figure 2. Display screen

Figure 2 shows the display screen and an analytical
example. In the editing window on the left, the user performs
the parallelization program coding using the C programming
language script and OpenMP directives. The command
“draw” is selected for the tool to display a parallel structure
diagram on the left. The details of this parallel structure
diagram are presented in Section III. The command ‘analyze’
is selected to enable the selection of the diagram quadrangle
and elliptical shape (line number and OpenMP directive).
Selecting one of these displays the parallel block access
regions for that OpenMP directive and the parallelization
decision.

III. GRAPH DRAWING OF OPENMP DIRECTIVE

ANALYTICAL RESULTS

The tool analyzes syntax and context of OpenMP
directives in the C source program, and these directives are
reflected in the intermediate representation. This displays the
diagram expressing the parallel structure in a graph from this
intermediate representation. This is a graph structure with
quadrangles expressing the parallel execution unit and
ellipses expressing parallel execution direction as nodes.

Quadrangles do not display the execution directions
merely by inserting the first and last direction numbers.
Ellipses have line numbers and OpenMP directives as labels.

Although there are many OpenMP directives, the current
parallel structure diagrams are expressing only for the
following three basic types thought necessary for beginners
as subjects of analysis.

(1)#pragma omp parallel
(2)#pragma omp parallel for
(3)#pragma omp parallel sections and #pragma omp

section

The “parallel for” for the do-all-type parallel processing
is expressed in double ellipses, and their loops are expressed
by overlapping quadrangles. The “parallel sections” that

express parallel-case type parallel processing are single
ellipses. The nested parallel execution is expressed by
drawing ellipses and quadrangles in other quadrangles.

The requirements of parallel structure graph to express
directives are the following:
· To distinguish between the execution of same statements
in parallel for the number of threads (#pragma omp parallel)
and the execution of different statements in parallel (
#pragma omp parallel for, #pragma omp parallel sections).
· To arrange statements to be executed simultaneously, side
by side.
· To arrange sequential statements vertically and clarify the
order of execution by using connected line.
· To show the synchronization point.
· To disclose parallel nesting structure.

Figure 3. Source program and parallel structure diagrams

Figure 3 shows an example of source program and
parallel structure graph. Since the eighth line is a “parallel”
directive, it directs to execute the entire following for-loop
parallel by the thread number. On the other hand, the 14th
line is a “parallel for” directive that divides the loop

2Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration



repetition and directs to execute by dividing them in a
parallel manner. This is expressed with a double ellipse
directive and overlapping quadrangles such that the
difference can be intuitively understood. The 12th line is a
“parallel section” directive, and the quadrangles are able to
execute parallel and the synchronizing point for the “}” in
the 23rd line to clarify its scope. While internal statements of
each quadrangle and the overlapping quadrangle execute
sequentially, when there is any parallel directive graph
shows nested parallel execution.

IV. STATIC ANALYSIS OF DATA ACCESS REGION

When the user selects the quadrangle in a generated
parallel structure graph from an OpenMP directive analysis,
the tool finds and displays the data access region by its
execution. Additionally, when user selects the ellipse that
expresses parallel directive, the tools decides the parallel
execution feasibility. An example is shown in Figure 2.

Access region analysis to decide parallelization
feasibility analyses what regions are accessed in what order
according to a control flow.

A. Access Types

Four data access types are available:
 Possible use (USE)

Data that might be used within a certain scope (flow
graph pass)

 Possible exposed use (EUSE：Exposed USE)
Data that might be used within a certain scope before
definition (flow graph pass)

 Possible definitions (MOD：MODified)
Data that might be updated within a certain scope
before definition (flow graph pass)

 Definitely defined（DDEF：Definitely Defined）
Data that is definitely updated within a certain scope
(flow graph pass)

The ‘flow graph pass’ above widens the scope of
analysis to the parallelization block through the process of

one statement → basic block → loop i-th iteration → all

repetitions loop → outer loop.
While the ‘possible use’ and ‘possible definitions’ are

control flow insensitive, ‘possible exposed use’ and
‘definitely defined’ are control flow sensitive. These regions
are related as follows:

Possible use ⊆ Possible exposed use
Possible definitions ⊆ Definitely defined

As understood from the analytical methods in Section V, the
‘possible use’ and ‘possible definitions’ are required to
guarantee safety.

B. Method 1: [fusing]

In the if-then-else structure, when node 1 is ‘then’ and
node 2 is ‘else’, the tool integrates the access regions as in
Figure 4 (+ is union and * is intersection).

Figure 4. Access region integration (conditional branches)

C. Method 2: [join]

After fusing the if-then-else structure, the nodes
sometimes line up in a row. Node 1 is the priority node and
node 2 is the next node. The tool integrates the access
region as in Figure 5 (- is the difference set excluding the
intersection set from the first operand).

Figure 5 . Access region integration (connection)

D. Method 3: [expansion of loops]

Concerning loops, the access region of the i-th iteration
is analysed by Method 1 and Method 2 and the access region
of the entire loop is analysed, as shown in Figure 6. The
information of data access in a loop is expanded.

Figure 6. Access region expansion

The balloons indicating the quadrangles in Figure 2
contains an example of the analysis results.

3Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration



V. PARALLEL EXECUTION FEASIBILITY DECISION

By using the parallel structure graph, the user knows
feasibility of parallel execution. The tool decides whether
each iteration of a loop can be executed independently for
the do-all type, and for the parallel-case type the tool decides
whether the parallel blocks surrounded by the section
directives can be executed independently. When dependency
that impedes parallel execution occurs, the tool displays it as
the reason of impossible of parallelization. In some cases, the
usage of the reduction instructions and the privatization of
variables are confirmed.

Decisions of parallel execution are conducted using
access regions as follows.

A. do-all Type

The entire loop-accessed region is checked for reliance
upon the following three types of loop-carried data
dependence.

∀�(0 ≤ � ≤ �,�: ���� ��������� ������) ����� ∩ �����

���

���

≠ ∅       (1)

→ loop carried flow dependence 

∀�(0 ≤ � ≤ �,�: ���� ��������� ������)

���� ∩ �(���� − �����) ≠ ∅             (2)

���

���

→ loop carried anti dependence 

∀�(0 ≤ � ≤ �,�: ���� ��������� ������)���� ∩ �����

���

���

≠ ∅          (3)

→ loop carried output dependence 

When condition (1) is satisfied, confirming data that is
detected causes loop carried data dependence. It becomes
parallelization impeding factor. When conditions (2) and (3)
are satisfied, confirming data that is detected causes loop
carried anti and output data dependence. In this case,
parallelization might be possible by privatisation of these
confirming data. The tool recommends users to add private
clause to parallel for directive.

The balloon indicating the ellipse with the parallelization
direction in Figure 2 contains an example of the analysis
results.

B. parallel-case Type

In a parallel-case-type parallel processing, whether all
quadrangles that are connecting the parallel section ellipses
can be independently executed is decided as follows. They
are similar to do-all case. If defined area of a given section
is not overlapping with defined and used regions of any
other sections, these sections can be executed
independently. The overlapping of regions causes memory
hazard.

∀�(0 ≤ � ≤ �,�: ������� ������) ����� ∩ �������

�

���

≠ ∅       (4)

→ flow dependence 

∀�(0 ≤ � ≤ �,�: ������� ������)

���� ∩ �(������ − �������) ≠ ∅            (5)

�

���

→ anti dependence 

∀�(0 ≤ � ≤ �,�: ������� ������) ���� ∩ �������

�

���

≠ ∅           (6)

→ output dependence 

The case of condition (4) is satisfied and there is flow
dependence, which inhibit parallel execution without any
synchronization. When condition (5) or condition (6) is
satisfied, the tool recommend user to privatize confirming
data that is detected.

VI. CONCLUSION

In a structure as presented herein, providing a parallel
program development environment allows the meaning of
the written OpenMP directives to be easily understood and
mistakes in directives to be easily recognized by beginners
not accustomed to parallel processing. Further, this enables
the detection and correction of errors peculiar to parallel
processing at an early development stage for an accurate
static analysis. Inserting OpenMP directives into C
programs, such as parallel structures graph enables the easy
understanding of parallel structure mistakes and missing
synchronous processes because when necessary OpenMP
directive is missed out the graph does not have parallel
structure. Then the tool makes comments reason why the
tool cannot make parallel structure.

Currently, the prototype of the proposed tool is under
developing. The GUI specifications have developed as they
are considered. We are going to connect the result of static
analysis to parallel structure graph. In the future, we would
like to increase the types of OpenMP directives for analysis,
display complex synchronous processes in an easily
understood manner, and provide appropriate advice from the
analytical results. Once the parallel structure specifications
are established, we would like for users to draw parallel
structure graph, input execution statements in them, and for
the tool to generate C and OpenMP source programs.

REFERENCES

[1] http://www.openmp.org/, “HOME OpenMP”, 2018.03.19

[2] B. Chapman, G. Jost, and R. Van Def Pas, “Using OpenMP:
Portable Shared Memory Parallel Programming”, MIT Press,
2008

[3] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, J.
McDonald, “Parallel Programming in OpenMP”, Morgan
Kaufmann, 2000

[4] O. Harnandez, C. Liao, and B.Chapman, “Dragon: A Static
and Dynamic Tool for OpenMP”, Internationa Workshop on
OpenMP Applocation and Tools, pp.54-66, 2004

4Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration



[5] https://pm.bsc.es/ompss, “Programming Models@BSC”,
2018.03.20

[6] http://coins-compiler.osdn.jp/international/index.html,

“COINS project”, 2018.03.19

[7] K. Iwasawa, Automatic Parallelizing “Method of Loops by
Conditional Region Analysis”, Proceedings of the 16th
IASTED International Conference Applied Informatics,
pp.310-313, 1998

[8] T., Watanabe, T. Fujise, K. Mori, K. Iwasawa, and I. Nakata,
“Design assists for embedded systems in the COINS
Compiler Infrastructure”, Proceedings of the 10th
International Workshop on Innovative Architecture for Future
Generation High-Performance Processors and Systems,
pp.60-09, 2007

5Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-666-8

FASSI 2018 : The Fourth International Conference on Fundamentals and Advances in Software Systems Integration


