
Mixed-Paradigm Framework for Model-Based Systems Engineering

Philipp Helle, Stefan Richter, Gerrit Schramm and Andreas Zindel
Airbus Central R&T
Hamburg, Germany

email: {philipp.helle, gerrit.schramm, stefan.richter, andreas.zindel}@airbus.com

Abstract—In a time when competition and market in aviation
industry drive the need to shorten development cycles especially
in early phases, both automation of processes and integration of
tools become important. While constraints, such as make or buy
decisions or corporate Information Technology (IT) governance
influence the overall tool infrastructure in different directions,
microservices are a fast-rising trend in software architecting. But
that does not mean that the more traditional monolithic soft-
ware architecture is dead. A resulting mixed-paradigm software
applications can also be seen as an opportunity to profit from
the best of both worlds. To support a newly developed complex
system development approach called Smart Component Model-
ing, a supporting application framework prototype is subject to
development with the objective to reduce both time and resources
required during product development cycles. This paper describes
the software architecture styles and deployment approaches that
were used in a research project at Airbus for building a prototype
and discusses challenges and opportunities that were encountered.

Keywords–model-based systems engineering; microservices;
REST.

I. INTRODUCTION

The MicroService Architecture (MSA) is a style that has
been increasingly gaining popularity in the last few years [1]
and has been called ”one of the fastest-rising trends in the de-
velopment of enterprise applications and enterprise application
landscapes” [2]. Many organizations, such as Amazon, Netflix,
and the Guardian, utilize MSA to develop their applications [2].

Pursuing the notion that ”Microservices aren’t, and never
will be, the right solution in all cases” [3], this paper de-
scribes the architecture and development approach that was
used in a research project at Airbus for building a prototype
application framework for Model-Based Systems Engineering
(MBSE). According to The International Council on Systems
Engineering (INCOSE), ”Model-Based Systems Engineering
(MBSE) is the formalized application of modeling to support
system requirements, design, analysis, verification and valida-
tion, beginning in the conceptual design phase and continuing
throughout development and later life cycle phases” [4]. This
framework does not rely on a single paradigm but instead
mixes different paradigms, viz. architecture patterns and de-
ployment approaches, to achieve the overall goals: agility,
flexibility and scalability during development and deployment
of a complex enterprise application landscape.

This paper is structured as follows: Section II describes the
modeling method that the built prototype MBSE framework is
supposed to support. Section III provides background informa-
tion regarding the different enterprise application architecture
paradigms. Section IV explains the IT infrastructure in which
the framework is deployed and Section V describes how
and what features have been implemented in the prototype.

Section VI discusses advantages and disadvantages of the
mixed-paradigm approach. Section VII talks about the ongoing
and future improvement effort before Section VIII wraps
everything up with a conclusion.

II. SCM MODELLING METHOD

In [5], we provide a detailed account of the newly de-
veloped MBSE paradigm, called smart component modeling
(SCM), that is rooted in a proposed change in the aircraft
development process to include an out of cycle component
development phase, in which components of an aircraft are
developed independently of the traditional linear development
process. These components are then adapted to the specific
needs of a program within the more linear cycle. Furthermore,
the paper describes a metamodel for modeling these so-called
smart components based on proven MBSE principles [6]. Since
the models are being defined outside of an aircraft program
when requirements are not yet fixed, the models have to be
parametric. An SCM is a self-contained model that can be
developed out of cycle and enables capturing of all information
relevant to the development of the component. SCMs are
foreseen to be stored in a repository, called the SCM Library.
This enables sharing and reuse. When the in-cycle phase of
an aircraft or aircraft system development starts, the assets
in the SCM Library are pulled and used as pre-defined and
pre-verified components for a new development. The SCM
metamodel defines all objects and their relations that are
required to capture information related to smart components in
models. The development of the SCM metamodel was driven
by internal use cases and inspired by existing modeling lan-
guages such as the Systems Modeling Language (SysML) [7].

The requirements for the methodology supporting this new
out of cycle process were as follows:

• The methodology shall be based on MBSE principles.
• The methodology shall be independent from any spe-

cific application domain.
• The methodology shall enable a product-line oriented

product development, i.e., the metamodel must allow
modeling of different variants of a product and ensure
a consistent configuration and parametrization.

• The methodology shall enable inclusion of already
existing domain models, i.e., models in a domain-
specific modeling language.

• The methodology shall enable automatic verification
of models, i.e., it shall be possible to check if the
built models adhere to the modeling paradigm and to
user-defined constraints.

• The methodology shall enable consistent modeling not
only of the product itself but also of the context,

8Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

such as the industrial system used to built the product
and allow the creation of relationships between the
modeled artifacts.

The requirements for the application framework supporting
this new modeling paradigm are as follows:

• The application framework shall be deployable in the
current corporate IT infrastructure

• The application framework shall allow a heteroge-
neous technology stack to deliver the best solution for
a designated purpose.

• The application framework shall be scalable with
increasing number of models and users.

• The application framework shall be scalable in terms
of model calculation performance.

• The application framework shall support continuous
deployment strategies and agile frameworks to enable
fast delivery and high flexibility.

• The application framework shall be efficient with
regards to computing resources and reduce the com-
panies ecological footprint.

III. ARCHITECTURE PARADIGMS

This section provides background information regarding
the two main architecture paradigms that are used today:
monolithic software and MSA. Service Oriented Architecture
(SOA) and serverless architecture [8] are not described in
detail as SOA, especially from a deployment perspective, still
resembles monolith software [9] and serverless can be seen as
taking MSA one step further [10].

A. Monolithic software

[11] defines a monolith as ”a software application whose
modules cannot be executed independently”. This architecture
is a traditional solution for building applications. A number
of problems associated with monolithic applications can be
identified:

• Due to their inherent complexity, they are hard to
maintain and evolve. Inner dependencies make it hard
to update parts of the application without disrupting
other parts.

• The components are not independently executable and
the application can only be deployed, started and
stopped as a whole [12].

• They enforce a technology lock-in, as the same lan-
guage and framework has to be used for the whole
application.

• They prevent efficient scaling as popular and non-
popular services of the application can only be scaled
together [13].

Nevertheless, monolithic software is still widely used and,
except for green-field new developments, there is hardly a
way around it. [14] notes that a monolithic architecture is
”often a more practical and faster way to start”. Furthermore,
if software from external parties is involved in a tool chain, it
is not possible to change its architecture style.

B. Microservices
There is no single definition of what a MSA actually is.

A commonly used definition by Lewis and Fowler says it is
”an approach for developing a single application as a suite of
small services, each running in its own process and communi-
cating with lightweight mechanisms, often an HTTP resource
API” [15]. Microservices typically consist of stateless, small,
loosely coupled and isolated processes in a ”share-as-little-as-
possible architecture pattern” [16] where data is ”decentralised
and distributed between the constituent microservices” [17].

The term ”microservices” was first introduced in 2011 [15]
and publications on architecting microservices are rapidly in-
creasing since 2015 [18]. In 2016, a systematic mapping study
found that ”no larger-scale empirical evaluations exist” [19]
and concluded that MSA is still an immature concept.

The following main benefits can be attributed to MSA:

• Relatively small components are easier for a devel-
oper to understand and enable designing, developing,
testing and releasing with great agility.

• Infrastructure automation allows to reduce the manual
effort involved in building, deploying and operating
microservices, thus enabling continuous delivery [18].

• It is less likely for an application to have a single point
of failure because functionality is dispersed across
multiple services [9].

• MSA does not require a long-term commitment to any
single technology or stack.

[3] notes the obvious drawback of the current popularity of
microservices that ”they’re more likely to be used in situations
in which the costs far outweigh the benefits” even when
monolithic architecture would be more appropriate.

In a study regarding the challenges of adopting microser-
vices, [2] lists the distributed nature of MSA, which leads to
debugging problems, the unavailability of skilled developers
with intimate knowledge of MSA and finding an appropriate
separation into services.

IV. DEPLOYMENT INFRASTRUCTURE

Corporate information technology (IT) environments imply
very strict regularities when it comes to hard- and software
architectures and deployments. Bringing in innovation in such
an environment requires following a heterogeneous approach.

While it is more challenging to adapt hardware in a
corporate context to cope with the latest innovations, service
and software developments, e.g., ARM (Advanced RISC Ma-
chine) CPU (Central Processing Unit) platform based servers,
GPU (Graphics Processing Unit) assisted computing or wide-
usage of FPGAs (Field Programmable Gate Arrays), the ap-
plication platform layer adaption is typically less demanding
because almost any state-of-the-art deployment form, like
bare-metal, Infrastructure-as-a-Service (IaaS), Platform-as-a-
Service (PaaS) or Function-as-a-Service (FaaS) can be rolled
out on standard server hardware.

The rationale for choosing a specific deployment form is
based on various constraints imposed by corporate policies and
long-term strategy decisions:

• Is the envisaged deployment form available in the
corporate infrastructure?

9Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

• Has the deployment form limitations due to corpo-
rate policies, e.g., restricted internet access, restricted
repository access?

• Are there any license limitations?
• Are there geolocation limitations for certain services,

e.g., in a multinational company with multinational
regulations according to law?

• Is the service available on premise or only on public
cloud?

• Does a deployment form for a particular service fit in
the long-term corporate IT strategy, e.g., make or buy
decisions?

For the Smart Component Modeling prototype, it was nec-
essary to make use of a heterogeneous software and hardware
infrastructure provided by the corporate IT. Therefore, the
deployment took place on IaaS, PaaS and FaaS platforms.
Also, end user devices are involved, for example for running
the SCM workbench (see Figure 2). That variety of platform
types was chosen to provide inside information on how a new
engineering concept could be supported by different software
architecture approaches to be efficient in terms of development
time, continuous integration (CI), resource efficiency and scal-
ability.

A. Infrastructure-as-a-Service
In the context described above, IaaS is used to describe a

hosting platform based on bare-metal and hosted hypervisors.
It provides a variety of virtualized operating systems that are
in compliance with corporate IT regulations.

For the prototype, the services hosted on classical vir-
tual machines are mainly databases used as persistent layers
for distributed Web applications. The main reason for not
hosting the Web applications together with their respective
persistence layer are resource restrictions. Current company
policies prevent external access to the databases if they are part
of the same microservice image as the hosting environment.
This would either limit database management to a Web-based
command line interface or require the implementation of a
Web service deployed in the same container. Also, other
external services could not be used to access the databases.
This limitation is purely based on a decision made by the
company’s IT governance, but reflects day to day reality in
corporate environments.

For any other Web application around the SCM prototype
development, IaaS was avoided as the resource overhead
cannot compete with PaaS or FaaS.

B. Platform-as-a-Service
In the following section, PaaS refers to an on-premise

deployment of the Red Hat Openshift[20] platform. It is a
platform built around Docker[21] containers orchestrated and
managed by Kubernetes on a foundation of Red Hat Enterprise
Linux.

In the prototype, PaaS plays a critical role for the con-
tinuous integration strategy. The image format used for the
deployments follows the Source-to-image (S2I) concept. S2I is
a toolkit and workflow for building reproducible container im-
ages from source code [22]. S2I produces ready-to-run images
by injecting source code into a container image and letting the

container prepare that source code for execution. The source
code itself is hosted on an on-premise Github Enterprise[23]
instance and the dependent resources are provided via an on-
premise Artifactory[24] deployment that reflects the official
sources of the required development environment such as
Maven[25], npm, Python or NuGet.

The whole continuous deployment chain is secured via an
exchange of keys and certificates to prevent disruptions for
example due to company introduced password cycles for the
developer and deployment accounts. The deployment speed is
improved by using system instances for the S2I chain in the
same geolocation of the company to prevent larger inter-site
data transfers and round-trip times.

The microservice concept, together with PaaS, allows a
massive reduction of resource allocations compared to an
IaaS deployment, especially if the services are single and
independent Web applications.

There are still limitations in the corporate environment
that currently prevent larger scale use of the technology.
The current setup allows a limited number pods per node,
which becomes an issue when a service uses the scaling
capability of the OpenShift platform. A second limitation is
linked to the allocated sub-network and the deployment of
the platform. All inter-service communication is routed via a
unique company internal network. The PaaS instance does not
re-use a network range that is already present in the company
for inter-service communications as it would impose other
challenges regarding communication from within the PaaS
instance towards other company services. The rationale for
the chosen PaaS implementation is primarily the reduction of
classical virtual machines for simple hosting jobs and only
secondary the creation of a massively scalable infrastructure
for new service applications.

To cope with these limitations the prototype furthermore
reduces the deployment footprint of single services for certain
applications as described below.

C. Function-as-a-Service
FaaS is used for tiny stateless jobs, e.g., rendering of

images. These services are monitored by an orchestrator that
decommissions containers after idling for a defined time. This
reduces resource usage further and has advantages in a scenario
with a larger number of services.

The deployment architecture of the FaaS instance allows
launching service containers within milliseconds. The applied
software stack is OpenFaaS based on Docker Swarm running
on a Debian[26] virtual machine.

One FaaS instance consumes resources similar to a pod on
the above mentioned PaaS environment and hosts numerous
services without performance limitations. While PaaS exposes
containers under their distinct IP (Internet Protocol) addresses,
FaaS comes with a reverse proxy that hides all containers and
requires less IP addresses. This reduces the effort for routing
name resolution and their documentation.

V. IMPLEMENTATION AND INTEGRATION

The implementation of the prototype framework is split into
different logical bricks as depicted by Figure 1. The Architect
Cockpit allows a system architect to use existing models, to
schedule the execution of simulations and to review results.

10Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

The SCM Workbench enables SCM developers to create and
version SCMs. The Back End provides different services such
as the orchestration of different processors to perform the
execution of simulations.

Figure 1. Prototype tool overview

A. Architect Cockpit
In order to reduce the workload and make the work for the

architects as convenient as possible the interface for the cockpit
is setup as an Angular single-site application. This allows using
this entity without installing custom software and without
bothering the user with update and migration procedures. The
site is built using a Jenkins pipeline and then deployed on
a specific git repository branch. A webhook on this branch
triggers an OpenShift instance to build an Express.js server
serving the previously build site on a PaaS cluster.

From a functional point of view the Architect Cockpit gives
a reduced view on SCMs. Only information, which is necessary
for the work of an architect is available and can be modified.
This results in a nearly full intuitive usage of the interface and
prevents faulty configurations. For example, some parameters
can only be changed within a certain range. Ranges are defined
by the model developer who knows the limitations best. The
architect does not need to have a deep understanding of these
limitations when using the predefined models.

B. SCM Workbench
The SCM Workbench is a full-fledged graphical editor

to work with SCMs implemented as a monolithic rich-client
application. It is implemented in an Eclipse Rich Client
Platform (RCP) and based on the Eclipse Modeling Framework
(EMF) [27]. It is a modeling framework and code generation
facility for building tools and other applications based on a
structured data model. EMF provides tools and run-time sup-
port to produce a set of Java classes from a model specification,
along with a set of adapter classes that enable viewing and
editing of the model, and a basic editor.

EMF is the basis for the Obeo Designer tool[28], which
builds on the Eclipse Sirius project [29] and allows definition
of graphic editors based on a defined EMF metamodel. This
enables rapid prototyping of modeling solutions, which is ideal

for a research/prototyping environment such as Airbus Central
R&T. Changes to the metamodel are almost instantly available
in the SCM Workbench, our prototype SCM modeling tool. On
the other hand, EMF and Obeo Designer are mature and have
been proven in industrial practice, e.g., Capella, the modeling
tool from Thales that implements the Arcadia method is built
with EMF and Obeo Designer as well [30].

Using such a rapid prototyping approach for the SCM
Workbench can be easily misunderstood as just a proof-of-
concept study. The final look and feel of the graphical editor
for the SCMs is only limited by the amount of development
time used for UX polishing. The workflow and information
accessibility as well as the connection to a versioning system
is comparable to other commercially available modeling tools,
which are well known by the developers. It is assumed that a
SCM developer has to take a short on-boarding training before
using the SCM Workbench.

C. Back End
The Back End is build from several different entities that

are based on different paradigms. These entities are described
in the following paragraphs.

1) SCM Library: The SCM Library stores the models that
have been created using the SCM Workbench. It is based on
Connected Data Objects (CDO) a Java model repository for
EMF models and metamodels. The specific implementation
in use is the Obeo Designer Team Server (ODTS) which
enables concurrent engineering of EMF models. A custom
plug-in allows other services and applications to access the
model repository through a REST interface. Due to its com-
plex deployment strategy the SCM Library is deployed in an
IaaS environment which allows more user interaction during
updates.

2) SCM Engine: The SCM Engine can interpret SCMs,
check constraints and run parametric calculations either as
a single simulation run or as a Design of Experiments setup
with multiple samples. It is a Java application executed in an
OpenJDK Virtual Machine. Access to the engine is established
through REST interfaces that are hosted on a Jetty server.
The endpoints are described and documented using the Jersey
framework. The SCM Engine is hosted on a PaaS instance and
allows rolling updates, automated builds and scaling.

3) Model Processors: The Performance Model API serves
as a glue between external domain-specific models with their
own solver or simulation engine and the SCM Engine. A
Model Processor is an application that implements this API
to execute a specific model type. The API enables the SCM
Engine to orchestrate simulations tools in a unified way and
guides developers through the process of integrating additional
simulation tools into this environment. In order to include
a new model type in the SCM application framework, a
model type specific Model Processor has to be implemented
that implements the Performance Model API and connects
to the model type specific solver or simulator. A reference
implementation shows how this works for Excel models. An
Excel model is processed by a Java application running in an
OpenJDK VM using the Apache POI framework. Depending
on the type of model and, e.g., the license and installation
requirements of the model solver or simulator, the Model
Processor can be deployed in any of the available deployment
options IaaS, PaaS and FaaS.

11Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

Figure 2 depicts how the components of the SCM tool
framework prototype are deployed in our infrastructure.

Figure 2. Prototype tool deployment

To make the polyglot approach of the MSA work and
integrate each service all participating entities need to agree
to a commonly understood interface. For the prototype Repre-
sentational State Transfer (REST) over HTTP was chosen as
the default interface combined with JavaScript Object Notation
(JSON) as serialization format. REST over HTTP is a de facto
standard since almost every technology stack provides at least
an HTTP API if not specialized REST frameworks and clients
such as JAX-RS. JSON as a serialization format is accepted
and provides solid tooling on all integrated technologies. In
addition many front-end frameworks natively support JSON
such as JavaScript or Ruby. This eases the integration work
needed to be done for the implementation of our demonstrators
mainly the Architect Cockpit. As an added bonus it is easily
digestible by human user, which helped tremendously with
debugging. To built up process chains utilizing the deployed
microservices we selected Node-RED. It provides all the
tools necessary to handle HTTP based REST APIs and JSON
based message bodies and is integrated well into the existing
environment.

VI. EVALUATION

Evaluating the mixed-paradigm approach, we experienced
that developers where able create a working deployment much
faster compared to the traditional approach using virtual ma-
chines. This also includes the amount of times that a new
version of the service was built from once a week to several
times a day using the automated CI pipeline. This increased the
general development velocity as well as the prototypes feature
set, which helped us to tailor the application to our stakeholder
needs.

The raised deployment speed increased the number of times
we experienced broken client applications. This was due to
a violated interface contract between the services if the new
features where not integrated properly. A well defined and
adhered to interface specification is paramount for the success
of introducing this mixed-paradigm approach.

In general, we noticed a greater sense of ownership of
single developers over their service/code, which lead to a hike

in the overall implementation quality. The mandatory usage
of the git version control system increased the maintainability
of the code base. The combination of git and the Openshift
framework made it easy to recover from failures and faulty
builds, which lead to a constant up-time of all services.
In the future the introduction of additional agile software
development principles like Test Driven Development could
further increase the code quality.

The mixed-paradigm approach that was used to develop
and deploy the prototype discussed in this paper led to reduced
complexity, lower coupling, higher cohesion and a simplified
integration. This in turn enabled agile collaboration for con-
tinuous delivery and integration of the solution.

VII. OUTLOOK AND FUTURE CHALLENGES

In the previous sections, we described how MSA can
support the chosen polyglot approach utilizing a variety of
different technology stacks and storage solutions. This enabled
us to select the most fitting technical solution for the required
functionality. Additionally the network based architecture pro-
vides an environment that is well suited for a multinational
company like Airbus with sites scattered throughout different
sites and IT domains. It also provided a commonly understood
deployment layer for our cross-functional project team.

MSA supports us with the agility and velocity needed to
convince our customers of our approach and implement a
prototype that can handle the complexity of our SCM mod-
eling approach. However, during the development we found
stumbling blocks that need awareness once the scale changes
from a research project prototype to a full scale industrial roll
out.

Corporate IT – The proposed environment builds and
hosts microservices in an agile and automated way. This
requires the setup and maintenance of a CI pipeline (in our
case Openshift/GitHub), which results in additional costs as
well as an IT department that is capable of dealing with
those investments. Additionally setting up certificate chains
and firewalls to allow for secure communication inside the
corporate network need to be accounted for. On the developer
side roadblocks like proxy server hindering communication
and enabling cross-origin resource sharing (CORS), which
allows for communication between different domains need to
be taken care of.

Service discovery – Once we reached a critical mass of
microservices environment we discovered that it is hard to keep
track of what services have already been implemented and
what functionality each service provides. Even in our research
project this point was reached rather quickly. Thus we intro-
duced Swagger[31] as a Web based documentation for all our
services and implemented a simple dashboard where services
could be registered against. This allowed for manual service
discovery across the team. In the future automated service
discovery through bots and processable service descriptions
will bring more value to the MSA approach by handling the
sprawling service environment.

Now that we optimized the CI pipeline in the first half
of the project we experience a rapid increase in deployed
services. This allowed us to swiftly introduce new functionality
as microservices, boosting the capabilities of our proof of
concept prototype. It shows that MSA can initially speed up the

12Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

implementation velocity of a new project. Once we continue
with the project more efforts will go towards managing the
volume of services as well as (network) performance and
reliability.

VIII. CONCLUSION

A direct, specific and measurable comparision between
the described mixed-paradigm and a classical approach is not
possible as it would have required the same infrastructure land-
scape to have been developed and deployed multiple times us-
ing different concepts. Nevertheless implementors were given
the freedom to decide for every distinct artifact to freely choose
the paradigm used for implementation. Furthermore developers
were allowed to spilt artifacts which enables to select the
right paradigm for each problem within. Later the interface
documentation allowed the developers to easily re-implement
an artifact using a different paradigm in case the initial decision
for a specific paradigm reveals to have been not an optimal
choice. Therefore the selection of the right paradigm appears
to be inherent and native. To support a newly developed
MBSE approach called Smart Component Modeling, a sup-
porting application framework prototype had to be developed.
Instead of a single architecture and deployment paradigm, a
mixed-paradigm approach was followed to take the advantages
of the different options and to consider external constraints
coming from the IT governance. The software bricks were
implemented in monolithic, SOA, microservice and serverless
architecture glued together by REST interfaces over HTTP.
The deployment took place on Desktop-PC, IaaS, PaaS and
FaaS platforms. It provided insight into how a new engineering
concept could be supported by different software architecture
approaches to be efficient in terms of development time,
continuous integration, resource efficiency and scalability.

REFERENCES

[1] N. Dragoni et al., “Microservices: yesterday, today, and tomorrow,” in
Present and ulterior software engineering. Springer, 2017, pp. 195–216.

[2] J. Ghofrani and D. Lübke, “Challenges of microservices architecture:
A survey on the state of the practice.” in ZEUS, 2018, pp. 1–8.

[3] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, “Mi-
croservices: The journey so far and challenges ahead,” IEEE Software,
vol. 35, no. 3, 2018, pp. 24–35.

[4] D. D. Walden, G. J. Roedler, K. Forsberg, R. D. Hamelin, and T. M.
Shortell, Eds., Systems Engineering Handbook: A Guide for System
Life Cycle Processes and Activities, 4th ed. Hoboken, NJ: Wiley,
2015.

[5] P. Helle, S. Feo-Arenis, A. Mitschke, and G. Schramm, “Smart compo-
nent modeling for complex system development,” in Proceedings of the
10th Complex Systems Design & Management (CSD&M) conference,
forthcoming.

[6] A. Reichwein and C. Paredis, “Overview of architecture frameworks
and modeling languages for model-based systems engineering,” in Proc.
ASME, 2011, pp. 1–9.

[7] Object Management Group, OMG Systems Modeling Language (OMG
SysML), v1.2. OMG, Needham, MA, 2008.

[8] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “Serverless
programming (function as a service),” in 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2017,
pp. 2658–2659.

[9] A. Karmel, R. Chandramouli, and M. Iorga, “Nist definition of microser-
vices, application containers and system virtual machines,” National
Institute of Standards and Technology, Tech. Rep., 2016.

[10] I. Baldini et al., “Serverless computing: Current trends and open
problems,” in Research Advances in Cloud Computing. Springer, 2017,
pp. 1–20.

[11] N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara, “Mi-
croservices: Migration of a mission critical system,” arXiv preprint
arXiv:1704.04173, 2017.

[12] A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara,
“From monolithic to microservices: an experience report from the
banking domain,” Ieee Software, vol. 35, no. 3, 2018, pp. 50–55.

[13] M. Villamizar et al., “Evaluating the monolithic and the microservice
architecture pattern to deploy web applications in the cloud,” in 2015
10th Computing Colombian Conference (10CCC). IEEE, 2015, pp.
583–590.

[14] ——, “Cost comparison of running web applications in the cloud
using monolithic, microservice, and aws lambda architectures,” Service
Oriented Computing and Applications, vol. 11, no. 2, 2017, pp. 233–
247.

[15] M. Fowler and J. Lewis. Microservices a definition of this new architec-
tural term. [Online] http://martinfowler.com/articles/microservices.html
[Accessed: 11 September 2019].

[16] T. Cerny, M. J. Donahoo, and M. Trnka, “Contextual understanding of
microservice architecture: current and future directions,” ACM SIGAPP
Applied Computing Review, vol. 17, no. 4, 2018, pp. 29–45.

[17] D. Shadija, M. Rezai, and R. Hill, “Towards an understanding of
microservices,” in 2017 23rd International Conference on Automation
and Computing (ICAC). IEEE, 2017, pp. 1–6.

[18] P. Di Francesco, I. Malavolta, and P. Lago, “Research on architecting
microservices: trends, focus, and potential for industrial adoption,” in
2017 IEEE International Conference on Software Architecture (ICSA).
IEEE, 2017, pp. 21–30.

[19] C. Pahl and P. Jamshidi, “Microservices: A systematic mapping study.”
in CLOSER (1), 2016, pp. 137–146.

[20] RedHat, “Openshift,” https://www.openshift.com/, 2019, [Online; ac-
cessed 21-October-2019].

[21] Docker Inc., “Docker,” https://www.docker.com/, 2019, [Online; ac-
cessed 21-October-2019].

[22] A. Lossent, A. R. Peon, and A. Wagner, “PaaS for web applications with
OpenShift origin,” Journal of Physics: Conference Series, vol. 898, oct
2017, p. 082037.

[23] GitHub, Inc., “Github,” https://github.com/, 2019, [Online; accessed 21-
October-2019].

[24] JFrog Ltd, “Artifactory,” https://jfrog.com/artifactory/, 2019, [Online;
accessed 21-October-2019].

[25] The Apache Software Foundation, “Maven,” https://maven.apache.org/,
2019, [Online; accessed 21-October-2019].

[26] Software in the Public Interest, Inc., “Debian,” https://www.debian.org,
2019, [Online; accessed 21-October-2019].

[27] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework. Pearson Education, 2008.

[28] Obeo, “Obeo designer,” https://www.obeo.fr/en/, 2019, [Online; ac-
cessed 21-October-2019].

[29] V. Viyović, M. Maksimović, and B. Perisić, “Sirius: A rapid develop-
ment of dsm graphical editor,” in IEEE 18th International Conference
on Intelligent Engineering Systems INES 2014. IEEE, 2014, pp. 233–
238.

[30] P. Roques, “MBSE with the ARCADIA Method and the Capella Tool,”
in 8th European Congress on Embedded Real Time Software and
Systems (ERTS 2016), Toulouse, France, Jan. 2016.

[31] SmartBear Software, “Swagger,” https://swagger.io/, 2019, [Online;
accessed 21-October-2019].

13Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

