
Automata-Based Timed Event Program Comprehension

for Real-Time Systems

Aziz Fellah and Ajay Bandi

School of Computer Science and

Information Systems

Northwest Missouri State Univerity

Maryville, Missouri USA

Email:{afellah, ajay}@nwmissouri.edu

Abstract—In this paper, we extend the software space of program
comprehension to real-time systems and introduce two orthogonal
and hybrid paradigms that we refer to as timed event component
comprehension and timed event program comprehension. The
former, timed event component comprehension, with no role in
the coding aspect, is a set of autonomous timed event components
that provide a high-level system-specific functionality about the
overall real-time system including its structure, components
and their synchronized interrelationships at different level of
granularity, and static and dynamic behaviors. The later, timed
event program comprehension recovers high level of information
from timed event component comprehension and then builds an
automata-based model about the system. This process occurs
before carrying any program comprehension. We show that
both paradigms are intrinsically linked and neither of them can
be explored in isolation. Importantly, we map the component
comprehension paradigm into a distinguished component class
that we refer to as timed event components (TeCmp) which,
in turn, are formally modeled as timed event automata, a
powerful canonical model for modeling and verifying real-time
computations. Furthermore, to support this research towards an
effective program comprehension geared towards real-time and
embedded systems, we investigated and evaluated the effect of
our approach through a practical Internet of Things (IoT) case
study.

Keywords–Program comprehension; program understanding;
software modeling; real-time systems; embedded systems; IoT; timed
event automata.

I. INTRODUCTION

Because of its importance in software engineering, pro-
gram comprehension has emerged as a significant component
in software evolution and maintenance. It is a process of
understanding an existing software system before it can be
properly maintained, enhanced, reused, and extended. For
instance, a common situation that software developers may
find themselves in is reviewing and extending their own or
their teammate’s code. This situation is much easier than
understanding and maintaining the code of unfamiliar software
systems, or reading the code of an Application Program-
ming Interface (API)/utility library. We call these knowledge-
intensive activities program comprehension, which is con-
sidered as an important aspect of the software development
process. In general, new developers spend much of their time
analyzing code and searching for information to understand the
system under evolution. Other closely related terms are also
used to describe activities related to program comprehension,

such as code refactoring and reverse engineering. For years,
researchers have tried to understand how developers compre-
hend programs during software maintenance and evolution,
and assess the quality of program comprehension. To address
these challenges, numerous proposals and approaches have
been investigated by Storey [1], Siegmund [2], Yuan et al. [3],
Fowkes et al. [4], and Lucia et al. [5], just to name a few that
span a spectrum of activities, such as cognitive models and
software visualization, empirical evaluation, mental models
representation of the program, knowledge-base models, top-
down and bottom-up comprehension, code semantics, and
data context interaction [1], [6]–[8]. Some of these theoretical
models are grounded in experimental studies and validated by
experienced programmers.

In this paper and with no comprehensive overview, we
attempt to lay a foundation of program comprehension for real-
time systems, an area of research that has not received much
attention and could be investigated in various directions. In
this work, we are not claiming that we developed a general
and conclusive program comprehension framework for real-
time and embedded systems, but our work will add value to
the existing approaches. The paper describes strategies and
knowledge needed as well as the rational of this orthogonal
paradigm: component and program comprehension. We will
shed light on what developers should emphasize when faced
with the challenging time-dimension tasks of gaining an un-
derstanding of real-time source code. This should be aligned
with the original code of the designers.

Importantly, the focus of this contribution is on two or-
thogonal and hybrid paradigms that we introduce and refer
to as timed event component comprehension and timed event
program comprehension. Such a dual comprehension paradigm
would help programmers with comprehending systems‘ func-
tionality, understanding code, interweaving abstractions, and
building a mental model about a piece of software as well
as using effective tools to support program comprehension
activities.

Timed event component comprehension provides a high
level system-specific functionality about the overall real-time
system including its architectural structure, static and dynamic
behaviors, and synchronized interrelationships at different lev-
els of granularity. With no role in the coding aspect, timed
event component comprehension tasks are grounded on a set
of autonomous functional block units that we refer to as timed

21Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

event components (TeCmp). The abbreviation of TeCmp will
be used for both singular and plural terms in the concordant
context of the sentence in the rest of this paper.

Timed event program comprehension recovers high-level
of information from timed event component comprehension
and builds an automata-based model about the system before
carrying program (i.e., source code) comprehension. The co-
ordination and interaction between TeCmp is fully delegated
to a special class of components that we refer to as timed
component connector (TeCnn).

A major challenge in the proposed timed event component
comprehension development is the coordination of the ac-
tive components and entities that comprise real-time systems.
Thus, there is a need to complement TeCmp with formalisms
for coordinating, integrating, and synchronizing components
which have well-defined and fixed interfaces. In addition,
we collectively refer to the pair, timed event component and
timed event connector models, as (TeC&C) which are formally
modeled by timed event finite automata, a powerful canonical
model for modeling and verifying real-time computations.

The structure of the paper is as follows. In Section II, we
survey the related work and research challenges that appear in
software systems related to program comprehension. In Section
III, we describe timed event component-based framework
which is characterized in terms of two types of components
that we refer to as TeCmp and TeCnn. Both of these components
are intrinsically linked and neither of them can be explored in
isolation. Section IV discusses the challenges of component
comprehension in real-time systems. Furthermore, this section
states some definitions and concepts that can be used in subse-
quent sections. Section V focuses on timed event component
and connector models (TeC&C) to gain an understanding of
the overall system‘s inner workings in terms of the time
dimension. Section VI describes time event transitions which
are fundamentally important for real-time systems. It also maps
the main component, such as TeCmp into timed event automata.
The characteristics of the IoT irrigation case study system are
presented and summarized in Section VII. We conclude the
paper with some potential discussions in Section VIII.

II. RELATED WORK

Over decades program comprehension has been character-
ized by several classical theories and strategies in conjunction
with other complementary techniques such as software inspec-
tion, visualization [9], static and dynamic source code analysis.
For instance, the knowledge-base model of [10] which is
based on the problem domain, developer’s experience and
background knowledge. A number of mental representations at
various levels of abstraction have been investigated in literature
[1]–[6] [11]. The top-down model [1] which reflects the devel-
oper’s mental and conceptual representations integrate domain
knowledge as a starting point. On the contrary, with no prior
knowledge and little experience with the domain, program
comprehension starts at the source code level and builds a
higher-level abstraction (bottom-up model) [11]. Knowledge-
based, mental and top-down models support the timed event
component comprehension paradigm. However, the bottom-up
model supports timed event program comprehension paradigm.
Based on the nature of events, time-driven and event-driven of
[12] and [13], real-time UML (Unified Modeling Languages)
has emerged as the choice of the development of real-time and

embedded systems. Data context interaction architecture [8] is
a software paradigm whose main goal is to bring the end user’s
mental models and computer program models closer. Data con-
text interaction [8] focuses on objects and their relationships
to mental models by which users and programmers add new
functionalities and modify the existing ones.

Furthermore, the software system development has shifted
its emphasis from traditional building and programming soft-
ware systems to a component-based approach. Component-
Based Development (CBD) [14]–[18] has emerged among
the most feasible approaches to overcome and address the
software complexity in different domain areas, and advocates
the reuse of independently developed software components
as a promising technique for the development of complex
software systems. Importantly, individual component-based
functionalities incorporate potential future reusability, hence
served to increase the program comprehension.

Our approach is different from other existing conceptual
and theoretical models because we are primarily focusing on
the timing characteristics of the application, which is the most
predominant factor in real-time and embedded systems. In
general, our work partially borrows the concept of time stamps
of Leslie Lamport [19], but in particular it is grounded on the
foundation of timed automata of Alur [12].

III. TIMED EVENT COMPONENT-BASED DEVELOPMENT

The component-based model [14]–[16] is used to develop
software at higher abstraction levels and promotes the reuse
and evolution of existing artifacts and entities developing new
software systems. It is composed of a collection of func-
tional building blocks or services that have become a system
blueprint in modern software engineering development life
cycle. In timed event component-based development (TeCBD),
we refer to the smallest functional block unit as TeCmp. It is
defined in much the same way as a standard component in
CBD.

This work is based on component-based software develop-
ment. In this research, (TeCBD) an emerging software devel-
opment approach is based on building new software systems
from the existing and reusable components. TeCBD involves
three stakeholders, TeCmp, TeCnn, and interfaces, which in turn
provide, get, or synchronize services. Testing these TeCBD is
done first at the component level and then at the assembled
unit level.

In this paper, we only focus on the key characteristics of
such TeCmp. Individual TeCmp are designed and developed
from a hybrid of custom and off-the-shelf (potentially reusable)
components. They can be used independently or composed
with other TeCmp. In real-time and embedded systems, TeCmp

often perform dedicated functionalities under computing and
timing constraints as they become more complex and dis-
tributed in various environments. Each TeCmp hides its im-
plementation and complexity behind an interface and provides
only its functionality to the outside environment, but their
interaction and coordination are realized throughout TeCnn.

TeCmp are developed for real-time systems where the
logical correctness depends on both the functionality and
temporal correctness in a specific environment where the
portability should be held to a minimum. Overall, TeCmp

describe a syntactically constructive representation where all

22Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

tasks are grounded in a set of autonomous functional block
units, capturing a common understanding of the application
domain at a higher level and according to its semantics.

TeCnn, defined by the protocols, describe the intercon-
nection between TeCmp. That is, they represent a path of
interactions between TeCmp and allow transferring data from
one TComp′s interface to another without compromising the
integrity of the data. TeCmp and TeCnn together depict the
functionality of the system at runtime.

The overall behavior of TeCnn is to control in a timely
fashion the way TeCmp communicate with each other and
provide detailed control over the data- and control-flow. Refer
to the example of the IoT irrigation application where the
system is composed of several TeCmp and TeCnn in Section
VII.

IV. COMPONENT COMPREHENSION’S CHALLENGES IN

REAL-TIME SYSTEMS

We focus our attention on the role of time and modeling
which are the most predominant factors when comprehend-
ing a real-time system through its source code. In general,
real-time systems may involve different disciplines (i.e., IoT,
robotic automation), function typically under different real-
time computing constraints, and are distributed in various
environments. These underlying constraints include, but not
limited to timing, liveness, safety, dependability requirements,
and evolution of each discipline. Real-time systems are also
composed of components that communicate with each other,
and each component performs a set of dedicated functions
under real-time computing constraints. In a component-based
system, components interact with each other in their environ-
ment through well-defined interfaces and coordinate protocols
by combining each individual component’s functionality. Thus,
the component-based paradigm entangles both components’
computations and services with components’ coordination,
which turns collectively these autonomous components into
a coherent software working application.

First, we focus our attention on the interaction that de-
scribes how TeCmp interact rather than focusing on the indi-
vidual functionalities and services. Furthermore, in this work
and in essence of implementing and automating our results,
we are aiming at mapping the theory and properties of timed
event transitions systems. In particular, timed event automata
to TeCmp, an insight in supporting program comprehension
for real-time systems. In addition, abstraction, modularity,
and modeling are key factors that enable the development
of reusable software. We propose a multitude number of
layered abstraction views and models which mimic not only
common modeling architectural designs, but also improving
maintainability and promoting reusability. In the context of
this paper, this high layer of abstraction consists of several
constructs such as timed event components, ports, timed event
connectors, configurations, and interfaces. Importantly, our
focus is still on TeCmp and TeCnn. That is, we explicitly express
TeCmp and TeCnn, two distinguished component classes, at the
implementation level by formally modeling the functionality
of TeCmp units and the interaction protocols of TeCnn as timed
event finite automata.

The correctness of real-time and embedded systems de-
pends not only on the logical correctness of the computation,

but also on the time at which these computations occurred.
Furthermore, the structural decomposition of such systems is
embodied in their various components and relationship to each
other. Thus, there is a need to promote a software space of
design alternatives by putting these pieces together, namely a
collection of application-specific interfaces, ports, timed event
components, port-connectors, and a set of defined real-time
constraints. More explicitly, interfaces describe services that
TeCmp provide and services they require from other TeCmp,
including their compliance with executions. Ports are the
access points in TeCmp through interfaces and services. TeCmp

can be atomic or composed of layered interactions between
a collection of TeCmp that interact with each other providing
new functionalities. TeCnn play a primary role in mediating
interactions among TeCmp by providing architectural interac-
tion using different techniques such as queries. Furthermore,
they provide different type of services such as data transfer,
communication protocols, and control transfer. Configurations
are a set of associations between TeCmp and TeCnn.

We assume TeCnn can have at least one TeCmp coupled at
each of its ports performing operation requests (i.e., data and
control). We define three types of interaction interfaces, get-

interface, put-interface, and syn-interface where get-interfaces
are required and put-interfaces are provided interfaces by
TeCmp. However, there may be complicated synchronization
constraints between two or more interfaces of a single TeCmp,
then we complement TeCmp with a third type of interface
that we refer to as syn-interface. Two TeCmp, C1 and C2, may
interact synchronously through syn-interface. Figure 1 shows
a timed component-based system with three timed event
components, C1, C2, and C3 which communicate through
their respective ports, interfaces, and TConn.

C1C1

C3C3

C2C2

C1C3

syn-interface
C1C2

get-interface

put-interface

Figure 1. A component-based system with three composed TeCmp, C1, C2,
and C3 communicating via encapsulated ports/TeCnn, and interfaces.

Now, we can define the following relations between TeCmp.
Let C1 and C2 be two TeCmp, we define the following TeCmp

relationships:

1) TeCmp Inheritance

We say two TeCmp, C2 and C1, have an inheritance relation, in
terms of object-oriented classes, if C2 inherits all the properties
of C1. In addition, C1 may have more interaction interfaces and
all the inherited interaction interfaces of C2 work exactly the
same way as those of C1.

23Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

2) TeCmp Association

We say two TeCmp, C1 and C2, have an association relation if
they have at least one interaction interface.

3) TeCmp Aggregation

We say two TeCmp, C1 and C2, have an aggregation relation
if C1 is a subset of C2. In addition, a single TeCmp can be
aggregated by several TeCmp. The aggregated TeCmp has all
the interaction interfaces of its TeCmp.

4) TeCmp Composition

A composition is the combination of two or more TeCmp

at different levels of abstraction to achieve modularity and
decomposition of TeCmp using various programming languages
or composition tools as defined by the TeCmp infrastructure.
Let C1, C′

1, C2, C′
2 be four TeCmp. Let the operators ≡ and ×

be the equivalence and composition operators in the semantic
context, respectively. Then, if C1 ≡ C′

1 and C2 ≡ C′
2 implies

C1 × C2 ≡ C′
1 × C′

2.

5) TeCmp Encapsulation

We say that TeCmp C1 exhibits functional encapsulation if
C1 hides its details while exposing a well-defined interface
through its ports. Furthermore, embedded TeCmp may occur
at different levels of abstraction and could potentially foresee
what we call recursive encapsulation, a fundamental scheme
in comprehending programs. We say two TeCmp, C1 and C2,
have an association relation if they have at least on interaction
interface.

The terms association, aggregation, and composition are
extended versions of the common terms used in conceptual
modeling. In general, the definition of inheritance in this
paper is defined in the context of object-oriented programming
languages (including C#, C++ and Java). For instance, the
inheritance could be considered as covariant, invariant and
contravariant in C#.

Abstraction and modularity are key factors in timed
component-based framework that enable the development of
re-usable software. We start with various and rigorous levels
of abstractions and structures that are refined at each stage of
the development before mapping them to programming. For
instance in timed event components and connectors (TeC&C)
model, TeCmp architectural abstractions expose a high-level
of the structure of the system, including TeCmp’s logical
abstractions. On the other hand, TeCnn data- and control-flow
abstractions propose categorization spaces of data types and
control the flow of imposed conditions. TeCnn communication
and synchronization abstraction styles support protocols, and
enforce synchronous and asynchronous requests. TeCmp and
TeCnn timing abstractions and properties address several issues
of real-time systems throughout modeling formalisms.

Component Comprehension’s Abstraction

Abstraction can take many forms and dimensions to serve
various purposes in software development. In the context of
this work, we propose two different levels of abstraction. A
horizontal abstraction that studies component comprehension
at a very high level of abstraction, such as TeCmp’s func-
tionality, ports, interfaces, and TeCnn. However, details and
refinements regarding low-level abstractions such as time struc-
tures, timed automata, data types, configuration protocols, data

structures, and algorithms are performed on a vertical level. In
fact, the integration of both horizontal and vertical abstractions
reflect an orthogonality at the system and process models,
respectively. Partitioning for the purpose of comprehension
through various dimensions and abstractions can be found in
literature [20] and [21]. Figure 2 views a prism rectangle box
with special components, TeCmp, ports, TeCnn, interfaces and
a “time event clock”.

A prism rectangle box as shown in Figure 2 views special
components, TeCmp, ports, TeCnn, interfaces and a “time event
clock”. Similarly, Figure 3 shows explicitly a series of com-
prehension views through a high-level horizontal and low-level
vertical layers of abstraction. The former layer is composed of
constructs such as TeCmp, interfaces, and ports. The latter is
composed of constructs such as timed event automata, timed
event signature, and source code.

T
eC

m
p

Ports

Ports

In
te

rf
ac

es

TeCmp

T
eC

m
p

TeCnn

Timed
event

Timed
event

Timed
event

Timed
event

Timed
event

Timed
event

Comprehensiveness

Abstraction

Figure 2. Comprehension dimensions through TeCmp, TeCnn, ports and
interfaces.

T
eC

m
p

Ports

Ports

In
te

rf
ac

es

TeCmp

T
eC

m
p

TeCnn

Timed
event

Timed
event

Timed
event

Timed
event

Timed
event

Timed
event

Component
comprehension

TeCmp Ports TeCnn Interfaces

TeCmp
Interfaces

TeCmp TeCnn

Ports

Timed event
automata

Port
automata

Timed event
siganture

Configuration

Specification

Functionality

Source
code

Program
comprehension

Figure 3. Comprehension dimensions through timed event program.

24Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

V. TIMED EVENT COMPONENT AND CONNECTOR

MODELS

The coordination and interaction between TeCmp is fully
delegated to a special class of component connector that
we refer to as TeCnn. An expressive and intuitive way of
visualizing TeCnn is to view such a special type of component
as a “black box” with some “special code” and a “clock”
that allows real-time coordination between the active software
timed component entities. Clocks are used to justify timed
transitions and sequences of events in such a model. Connec-
tors are modeled as a relation between timed event component
streams.

We leverage the time logic and dimension structures of
[6] and [22] to describe real-time interactive or concurrent
systems in this work. Importantly, we consider the time-
dependent behavior of any TeCmp is an important aspect of the
system’s requirements, enforced by the component itself and
coordinated by TeCnn. To develop a uniform timing framework,
we consider the absolute time which could be modeled using
a global clock.

Let C= {C1, C2, . . . , Cn} ⊆ TeCmp be a finite set of timed
event component instances where |C| = n. Let Ω = (T , E),
where T = {t1, t2, . . . , tk} is a set of points in the time
domain and E = {e1, e2, . . . , ek} is a set of events in the
event domain. For convenient, we assume |T | = |E| = k.
Let ≺ be a strict partial order precedence relation over T . Let
C1(e1, t1), C2(e2, t2), and C3(e3, t3) indicate that C1, C2, and
C3 are being active on the occurrence of the event ei at time
ti, respectively where i = 1 . . . , n. We define the timed event
dimension structure over TeCmp as a tuple in the form C(E , T)
that satisfies the following properties:

(i) For all e ∈ E , if C1(e, t1) ≺ C2(e, t2) and
C2(e, t2) ≺ C3(e, t3) then C1(e, t1) ≺ C3(e, t3).

(ii) For all e ∈ E and t ∈ T , Ci(ei, ti) 6≺ Ci(e1, ti),
i = 1, . . . , n.

(iii) For all e ∈ E and t ∈ T , if C1(e1, t1) ≺ C2(e2, t2)
then C2(e2, t2) ⊀ C1(e1, t1).

(vi) For all Ci(e, t) and Cj(e, t), if Ci(e, t) ⊀ Cj(e, t)
then Ci and Cj are interpreted as being concurrent,
for all e ∈ E and t ∈, and where i, j = 1, . . . , n.

The external view of the port model is based on the pipe-
and-filter architectural style with consists of a set of data and
control port groups. In addition and for various purpose, we
assume there is one extra internal group ports that we refer to
as special ports. The data port group is explicitly divided into
input and output data ports. Similarly, the control port group
is explicitly divided into input and output control ports. Both
the data and control ports are provided by default for each
port. However, other types of variables such as monitoring
and controlling ports can be an intrinsic part of the internal
port depending on the application domain. In the context of
this paper, we define a port signature S as follows:

Definition 5.1: A timed event port signature is a quintuple
S = (Event, Type, Data, Control, T ime), where Event =
{In,Out, Spec} and In, Out, Spec are the set of input,
output, and special ports respectively; Type is a finite set of
type names, Data and Control are sets of data and control
values, respectively. T ime is a set of point structure of time,
modeled by a global clock. Moreover, (In∩Out∩Spec) = ∅,
and the set of data and control values is disjoint.

In the rest of the paper and for clarity, the terms timed event
port signature and port signature are interchangeable. Now,
borrowing from the syntax and semantics of components and
connectors views, [23] and [24], we formalize the structure
of the timed event component and connector model (TeC&C)
model by not focusing on the interfaces defined for the ports,
but rather on the relation between the different pieces of the
TeC&C model.

Definition 5.2: A timed event component and connector

TeC&C model is a sextuple structure CC = (C, Ĉ, P , S, δp, δt)
where

(i) C = {C1, C2, . . . , Cn} ⊆ TeCmp is a finite set of
timed event component instances where |C| = n.

(ii) P = {p1, p2, . . . , pm} is a finite set port instances
where |P| = m

(iii) S = {s1, s2, . . . , sm} ⊆ port signatures is a finite
set of port signature instances where |S| = |P| =
m.

(iv) Ĉ = {Ĉ1, Ĉ2, . . . , Ĉq} ⊆ TeCnn is a finite set
of connector instances which are used to capture
pathways of events (data transfer flow and control

flow) between Ci, i = 1 . . . n. (|Ĉ| << |C|).
(v) δp: C × P → C × P . That is, δp(Ci, pj) ⊆ P ,

for all i = 1 . . . n and j = 1 . . .m.
(vi) δt: P × S → P × S. That is, δt(pj , sj) ∈ (P

× S), for all j = 1 . . .m.

The requirements of real-time systems must be able to accom-
modate real-time timing constraints and discrete/continuous
behaviors, such as safety, resources limitations, predictability,
and reliability. Thus, the designer must be equipped with
modeling formalisms, formal analysis, techniques, and support
tools throughout the development process of TeC&C. A well-
established modeling formalism to support real-time systems
is timed automata [12] that extend finite state automata where
transitions are guarded with conditions based on clock vari-
ables. Each TeCmp consists of the component requirement
specifications, implementations, and interfaces. Consequently,
the development of the TeC&C model typically starts with
requirements specification which should be written in some
formal notations (i.e., formal methods). Thus, it is important
to develop a formal description of TeCmp, TeCnn, and TeC&C

models for real-time systems. In the following sections, we fo-
cus on a series of methodology and automata-based formalisms
that capture this collection of timed event interconnected
components and connectors. Refer to the example of the IoT
irrigation application where the system is composed of several
TeCmp and TeCnn in Section VII.

VI. AUTOMATA-BASED COMPONENT AND PROGRAM

COMPREHENSION

In the program source comprehension, developers pursue
their familiarization effort with TeCmp at various level of
granularity, and try to gain an understanding of the program
through preliminary evaluations, its structure, and through
static and dynamic analysis (or by a combination of both).
A drawback is that dynamic analysis can only provide a
partial picture of the system based on the developers explo-
rations of the program’s behavior through the execution of
the system. Static analysis focuses on the source code and
extract important information from the program source. The

25Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

correctness of a real-time system depends not only on the
correctness of the sequence of the events, but also on their
time of occurrence. In the following section, we establish
approaches and models to understand visualize, and navigate
through the source code. First, developers focus on understand-
ing the software as a whole (i.e., component comprehension)
avoiding program comprehension whenever possible. Second,
developers focus on mental models and visualization during
program comprehension inspection activities using timed event
automata formalism for comprehending real-time source code
and acquire run-time information.

In general, timed transition systems and in particular event
transition systems have been extensively studied in the lit-
erature [13] [25] [26]. Moreover, both systems have been
combined and used practically in the verification, testing, and
development of real-time platforms where reliability, safety,
and correctness depend to a large extent on the time fea-
tures. Both time-driven and event-driven computing models
are fundamentally important for real-time and embedded sys-
tems, given that such systems are reactive by nature. In a
time-driven model, computations and actions are triggered
by time, either periodically or in terms of deadlines by
which computational activities must be completed. In a time-
driven model, the state continuously keeps changing as time
changes. Thus, the synchronous nature of time guarantees the
deterministic behavior of the model. In contrast, in an event-
driven model, computational activities or actions are triggered
upon occurrences of asynchronous events. We combine time-
driven and event-driven models into one unified hybrid system
architecture, and propose a real-time model that we refer
to as a Timed Event Automaton (TeAut). The state of the
TeAut continuously changes as time changes and the occur-
rences of asynchronously generated events forces instantiated
state transitions. In consequence, the correctness of real-time
system’s TeCmp depends not only on the correctness of the
computational tasks in the system, but also on the time at
which these computations are performed. Let E and T denote
the event set and time base, respectively, The time domain T
can be modeled as discrete, continuous, or over an interval
[tl, tu] ⊆ T , tl ≤ tu. In this work, we consider continuous
time systems, that is all the variables (i.e., input, output, states)
are defined over all possible values of time. In particular, we
consider the time domain, T , as the non-negative reals R≥0.
A timed event ω = (e, t) over a finite set of events E and the
time t ∈ [0,∞) denotes an event e ∈ E occurs at time t.

Let X be a set of finite clock variables (or clocks for short),
the set Φ(X) of clock constraints φ over X is defined by the
following grammar:

φ := x ⊲⊳ c | φ1 ∧ φ2 | true | false

where c ∈ X , c ∈ N such that c ≥ 0, ⊲⊳ ∈ {<,≤,=, >,≥},
and ∧ stands for the and logical operator. The precondition
clock constraint φ ∈ Φ specifies when the transition is enabled,
and the postcondition set X0 ∈ 2X gives the set of clocks to
be reset to zero while all other clocks remain unchanged. A
clock valuation represents the values of all clocks in X at a
given snapshot in time.

Definition 6.1: Let X be the set of clock variables. A clock
valuation over X is a function ν from X to R≥0 that maps
every clock x ∈ X to a non-negative real number.

For t ∈ R≥0, the valuation ν + t is defined as (ν + t)(x) =
ν(x) + t. For X ′ ⊆ X the valuation is defined as (ν[X ′ :=
0])(x) = 0 if x ∈ X ′ and (ν[X ′ := 0])(x) = ν(x) otherwise.
We denote by V = (ν1, . . . , νn) a characteristic vector of clock
valuations of the timed automata A. In general, our work
partially borrows the concept of time stamps of Leslie Lamport
[19], but in particular it is grounded on the foundation of timed
automata of Alur [12]. Without loss of generality, a state is
defined as a pair (q, V), where q ∈ Q and V is a clock valuation
at state q.
A time sequence t is a non-empty finite (or infinite) sequence
of time values denoted by t = t1t2 . . . tn such that ti ∈ R≥0

and all ti
′s satisfies the monotonicity and progressiveness

conditions. That is, for all 1 ≤ i ≤ |t|, ti ≤ ti+1, and for
each t ∈ R≥0 there exists ti, i ∈ N such that ti < ti+1. If t
is infinite then ti is not bounded for all i ≥ 1.

We define a finite set of timed events Ω =
(e1, t1)(e2, t2) . . . (en, tn) over E and T , formally denoted as

Ω = {(e, t)∗ | e ∈ E ∪ {ωλ}, t ∈ T }

Define ωλ = (λ, 0), where λ /∈ E is the null time event to
indicate no event has occurred.

Now, we abstract and simulate TeCmp and TeCnn in terms
of timed event automata and timed event port-automata, re-
spectively. A timed event automaton induces a timed event
transition system. A timed event automaton (TeAut) is a
structure defined as follows:

Definition 6.2: A timed event automaton (TeAut) is a sex-
tuple A = (Ω, X , Q, q0,Γ, F), where (i) Ω is the finite set of
timed events over E × T , (ii) X is the set of clock variables;
(iii) Q is the set of states; (iv) q0 ∈ Q is the initial state; (v)
Γ ⊆ Ω×Q×Φ(X)× 2X ×Q is a finite set of transitions; (vi)
F ⊆ Q is the set of accepting states.

The values of the clock variables increase monotonically with
the passage of time. The next state of a timed event automaton
depends on both the event symbol and the values of the clock
constraints. In addition, each transition may reset some of the
clocks. A transition can only be taken if the current clock
values satisfy the time constraints and the event symbol.

Let A be a TeAut and t ∈ R≥0. Define a timed event
requirement specification A as

R(A) = {ω ∈ Ω : Γ(q0, ω) ∈ F}

Now, we define timed event port-automata over a single and
global clock.

Definition 6.3: A timed event port-automaton (TePA) is
a sextuple A = (Ω,S, Q,P , X , δ) where (i) Ω is the set
of timed events set; (ii) S is a port signature; (iii) Q is
the set states; (iv) Q0 ⊆ Q is the set of starting states;
(v) P is the set of all ports; the transition function (vi)
δ ⊆ Ω×Q × S × 2P × Φ(X)×Q.

We extend each timed event port-automaton A with the
powerful primitives of Reo [27] and [28] connectors, a
paradigm for communication protocols and composition of
software components. Each timed event connector TeCnn via
its ports imposes a specific coordination on the active TeCmp,
which in turn offer a set of services. The sync(a, b, e, t) time
event port-automaton models the Reo primitive that allows

26Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

synchronous activities on two ports a and b. Moreover, the
synchronous nature of time guarantees the deterministic behav-
ior of the port-automaton. In contrast, computational activities
or actions are triggered upon occurrences of asynchronous
events. The lossy(a, b, e, t) is similar to the sync primitive,
in addition it can have activities through its end, a. The xor
(a, b, c, e, t) primitive synchronizes a with either b or c. The
fifo (a, b, e, t) models a buffer with a source port-automaton
a and a sink port-automaton b, which are synchronously
timed coordinated and asynchronously event triggered. Other
operations can be performed on timed event port-automata,
such as the product and composition. The desired coordination
between two exclusive ports is given as timed event port-
automaton. However, the coordination among all TeCmp, as
shown in Figure 4, is modeled through individual ports.

q0 q0

q0 q0 q1

sync (a, b, e, t)

a, e, t

lossy (a, b, e, t)

a, b, e, t

b, e, t
xor (a, b, c, e, t) fifo (a, b, e, t)

a, c, e, t

a, e, t

a, b, e, ta, b, e, t

Figure 4. Examples of timed event port automata using Reo’s primitives.

VII. IOT CASE STUDY

We describe a case study that has been conducted and
implemented on an IoT irrigation embedded system. Overall,
the system regulates a water solenoid valve for controlling
a drip irrigation system using Arduino and Raspberry Pi
infrastructure. For the experiment, we selected and expand the
recent IoT project of three graduate students as the basis of
our case study by running a variety of experiments to test
the proposed theoretical work. The experiment was tested on
several events, such as moisture, temperature, and humidity.
The system is able to deliver water to the plants based on
the moisture of the soil, temperature, and humidity of the day
which are obtained through DHT sensors. Importantly, we use
a real-time clock that allows the system to set the start of
the irrigation system based on the moisture and temperature
levels. Furthermore, the system can also start and stop at the
specified time intervals to control the water management. In
the experiment, the IoT system is controlled by the real-time
status of the soil moisture, atmospheric conditions, and on
the real time clock to adjust the irrigation scheduling through
time intervals. In this IoT-based system, a strong emphasis is
put on timed event components of the system and empirical
evaluations. The comprehensiveness at both component and
program must be sufficiently understood by its developers on
performing a broad spectrum of maintenance tasks.

In analogical mapping, our abstract model of study, timed
event automata-based components, chas been mapped into
the real-time target irrigation domain. That is, soil moisture,
temperature, and humidity sensors send real data to the
microcontroller, which is considered as the central TeC&C

comprehension information gateway. The microcontroller can
be monitored and operated via WiFi using a Web browser,

or managed by the user through a mobile application. The
TeCmp sprinkler controller ensures uniform distribution of
water to all part of the plant and it is monitored by the
microcontroller. In addition, the TeCmp sprinkler may be
switched off and on once the soil moisture sensor has reached
the appropriate threshold value. We may consider that DHT
moisture, temperature, and humidity sensors are equipped
with some ports communicating with various TeCmp. The
coordination and interaction between various TeCmp is fully
delegated to a special class of component that we referred
to as TeCnn. These connectors have no relevant role in
the irrigation aspect, but mediate, coordinate, and control
interactions among various TeCmp photons. In addition, the
data of sensors is displayed in a graphical format, analyzed
and visualized by the end-user. This is considered as part
of the multi-view learning approaches to perform program
comprehension activities. The event domain E is a set
of events in the irrigation domain. That is, E could be
{moisture, temperature, wind, humidity, precipitation}.
When the sensors report that the moisture, temperature, or
humidity levels have fallen below the threshold level, the
LED light glows, indicating that a timed irrigation event has
to be initiate. In addition, the LED lights are also used for
other purposes in the context of this irrigation project as
summarized below in Figure 5.

Cloud Platform

TeCmp Selonoid ValveTeCmp Selonoid Valve

Arduino Raspberry PiArduino Raspberry Pi

TeCmp Photon1TeCmp Photon1 TeCmp Photon2TeCmp Photon2 TeCmp Photon3TeCmp Photon3

DHT MoistureDHT Moisture DHT TemperatureDHT Temperature DHT HumidityDHT Humidity

TeCmp/TeConn MicrocontrollerTeCmp/TeConn Microcontroller LED LightLED Light

Device1Device1 Device2Device2 Device3Device3 Device4Device4

Figure 5. Cloud Control and flow of information in the IoT irrigation
System: Soil moisture, temperature, humidity sensors send real-time data to

the timed event microcontroller.

27Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

VIII. CONCLUSION

Our work revealed an apparent lack of foundations in the
literature that relates to program comprehension for real-time
and embedded systems. This is an area of research that has not
received much attention and could be investigated in various
directions. We investigated two timed orthogonal program
comprehension paradigms, timed event component and pro-
gram comprehension, which led to comprehending programs
with a greater degree of structure, abstraction techniques, and
architecture reconstruction, hence offered a series of potential
effectiveness and enhancement in gaining a deeper understand-
ing of program comprehension in real-time systems. First, we
mainly rely on architectural levels and time dimensions which
have been explicitly targeted in our work and how they are
clearly manifested in a real-time systems’s implementation.
Second, we have examined the relationships between timed
event component comprehension and timed event automata-
based program comprehension. Such refinement and analysis
from component levels to program levels comprehension is
significantly represented in the source code. Furthermore, we
have performed an empirical IoT irrigation case study in order
to complement and provide a qualitative base and characteriza-
tion of our approach to program comprehension and software
evolution. In this work, we validated our theoretical framework
on the IoT irrigation application. As a future work, we will
investigate this program comprehension paradigm by applying
it in various real-time and embedded systems of different
domains.

REFERENCES

[1] M. A. Storey, “Theories, Methods and Tools in Program Comprehen-
sion: Past, Present and Future,” in Proceedings of the 13th International
Workshop on Program Comprehension (IWPC ’05). Washington DC,
DC, USA: IEEE Computer Society, 2005, pp. 181–191.

[2] J. Siegmund, “Program Comprehension: Past, Present, and future,” in
Proceedings of the 23th Internationa Conference on Software Analysis,
Evolution, and Engineering (SANER ’16). IEEE SANER, 2016, pp.
13–20.

[3] B. Yuan, V. Murali, and C. Jermaine, “Abridging source code,” in
Proceedings of the ACM on Programning Languages (OOPSLA 58:1).
ACM New York, NY, USA: ACM, 2017, pp. 13–20.

[4] J. Fowkes, P. Chanthirasegaran, R. Ranca, M. Allamanis, M. Lapata,
and C. Sutton, “Tassal: Autofolding for Source Code Summarization,”
in Proceedings of the 38th International Conference on Software Engi-
neering Companion, (ICSE 16). ACM New York, NY, USA: ACM,
2016, pp. 649–652.

[5] D. e. a. Lucia, “Labeling Source Code with Information Retrieval
Methods: An Empirical Study,” Empirical Software Engineering, vol.
19, No. 5, 2004, pp. 1383–1420.

[6] T. Ben-Nun, A. S. Jakobovit, and T. Hoefler, “Neural Code Comprehen-
sion: A Learnable Representation of Code Semantics,” in Proceddings
of the 32nd Conference on Neural Information Processing Systems
(NeurIPS ’18, Montreal, Canada, 2018, pp. 3589–3601.

[7] S. Xu, “A Cognitive Model for Program Comprehension,” in Pro-
ceedings of the 3rd International Conference on Software Engineering
Research, Management and Applications (ACIS ’05), Montréal, Canada,
2005, pp. 392–398.

[8] T. Reenskaug and J. O. Coplien, “DCI as a new Foundation for
Computer Programming,” Software Engineering in Intelligent Systems,
Springer, vol. 3, no. 5, 2009, pp. 1383–1420.

[9] J. Riling and S. P. S.P. Mudur, “3D Visualization Techniques to Support
Slicing-based Program Comprehension,” Computer & Graphics, vol. 29,
No. 3, 2005, pp. 311–329.

[10] S. Letovsky, “Cognitive Process in Program Comprehension,” Journal
of Systems and Software, Elsevier, vol. 7, no. 4, 1998, pp. 325–339.

[11] T. LaToza, G. Venolia, and R. DeLine, “Maintaining Mental Models:
a Study of Developer Work Habits,” in Proceedings of the 28th
international conference on Software engineering. ACM, 2006, pp.
492–501.

[12] R. Alur and A. A. Dill, “Theory of Timed Automata,” Theoretical
Computer Science, vol. 126, no. 2, 1994, pp. 183–235.

[13] A. Fellah, “Timed Event Systems and Automata,” in Proceedings of the
13th IASTED International Conference on Control and Applications.
Acta Press, 2011, pp. 730–739.

[14] A. Ahmad, P. Jamshidi, and K. Fawad Pahl Claus, “A pattern Lan-
guage for the Evolution of Component-based Software Architectures,”
Electronic Communications of the EASST, vol. 59, 2014, pp. 1–31.

[15] O. Le Goaer, D. Tamzalit, M. Oussalah, and A.-D. Seriai, “Evolution
Shelf: Reusing Evolution Expertise within Component-based Software
Architectures,” in Proceedings of the 32nd Annual IEEE International
Computer Software and Applications. IEEE, 2008, pp. 311–318.

[16] H. Yin and H. Hansson, “Fighting CPS Complexity by Component-
based Software Development of Multi-mode Systems,” in Proceedings
of the 32nd Annual IEEE International Computer Software and Appli-
cations, vol. 2, no. 4. Designs, 2018, pp. 1677–1718.

[17] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. Chaudron, “A classifica-
tion Framework for Software Component Models,” IEEE Transactions
on Software Engienering, vol. 37, 2011, pp. 593–615.

[18] J. Criado, D. Rodriguez-Gracia, L. Iribarne, and N. Padilla, “Toward
the Adaptation of Component-based Architectures by Model Transfor-
mation: Behind Smart User Interfaces,” Software Practice Exp., vol. 45,
2015, pp. 1677–1718.

[19] M. Plakal, D. J. Sorin, A. E. Condon, and M. D. Hill, “Lamport clocks:
Verifying a Directory Cache-coherence Protocol,” in Proceedings of the
10th Annual ACM symposium on Parallel Algorithms and Architec-
tures. ACM, 1998, pp. 67–76.

[20] R. T. Mittermeir, A. Bollin, H. Pozewauning, and D. Rauner-
Reithmayer, “Fighting CPS Complexity by Component-based Software
Development of Multi-mode Systems,” ACM SIGSOFT Software En-
gineering Notes, vol. 26, no. 3, 2001, pp. 95–102.

[21] M. Tomgren, D.-J. Chen, and I. Crnkovic, “Component-based vs Model-
based Development: a Comparison in the Context of Vehicular Embed-
ded Systems,” in Proceedings of the 31st EUROMICRO Conference on
Software Engineering, 2001, pp. 95–102.

[22] S. Yu, “The Time Dimension of Computation Models,” Where Math-
ematics, Computer Science, Linguistics and Biology Meet, Springer,
Dordrecht, 2001, pp. 161–172.

[23] S. Maoz, N. Pomerantz, and B. Rumpe, “Synthesis of Component and
Connector Models from Crosscutting Views,” ACM ESEC/SIGSOFT
FSE, 2013, pp. 444–454.

[24] S. Maoz, N. Pomerantz, J. O. Ringert, and R. Shalom, “Why is
my Component and Connector Views Specification Unsatisfiable?”
in Proceedings ACM/IEEE 20th International Conference on Model
Driven Engineering Languages and Systems. ACM/IEEE, 2017, pp.
134–144.

[25] T. Brengos, “Behvioural Equivalences for Timed Systems,” Logical
Methods in Computer Science, vol. 15, no, 1, 2019, pp. 17:1–17:41.

[26] T. Henzinger, Z. Manna, and A. Pnueli, “Timed Transition Systems,” in
Proceedings of the Real-Time: Theory in Practice, 1991, pp. 226–251.

[27] A. Arbab Reo, “A Channel-Based Coordination Model for Component
Fomposition,” Mathematical Structures in Computer Science, vol. 14,
2004, pp. 329–366.

[28] F. Arbab, C. Baier, F. de Boer, and J. Rutte, “Models and temporal
logical specifications for timed component connectors,” Software and
Systems Modeling, vol. 6, no. 3, 2007, pp. 59–82.

28Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

