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Abstract - This paper proposes a method to adapt existing 
multilayer perceptron (MLP) training algorithms for 
optimizing the area under the receiver operating characteristic 
curve (AUC), in binary classification tasks. It is known that 
error rate minimization does not necessarily yield to optimal 
AUC and, rather than developing new MLP training algorithms 
for AUC optimization, we reuse the vast experience encoded 
into existing algorithms by replacing the error metrics used to 
guide their training processes, with a novel defined AUC loss 
function, leaving unmodified their core logic. The new method 
was evaluated over 2000 MLP configurations, using four 
different training algorithms (backpropagation, resilient 
propagation, simulated annealing and genetic algorithms) in 12 
binary datasets from the UCI repository. AUC was improved in 
5.86% in average and, in addition, the proposed definition 
preserves interesting properties of other error metrics. An 
efficient AUC calculation procedure was also developed to 
ensure the method remains computationally affordable. 

 

Keywords - Multilayer perceptron, AUC optimization, error 

measure, machine learning, binary classifiers. 

I. INTRODUCTION 

Receiver Operating Characteristic (ROC) analysis [1] 
was originally used in signal processing and, more recently, 
is commonly used in biomedicine [2]. ROC curves measure 
the capability of a binary test or classifier to correctly 
distinguish between positive and negative instances, 
accounting for the trade-off between true and false positives 
rates, and the area under the ROC curve (denoted by AUC or 
Az) is used as a scalar comparative metric. In medicine, 
ROC curves are used to analyze and compare diagnostic 
systems [3] or for mining biomedical data [4]. In machine 
learning they are increasingly used to evaluate and compare 
classifier performance in general [5, 6]. 

Machine learning classifier performance is often 
measured by its accuracy (number of dataset elements 
correctly classified), which is obtained by fixing a specific 
threshold on a score produced by the classifier for each 
dataset element. Both accuracy and AUC are complementary 
measures to evaluate classifier performance, and AUC has 
the property of being insensitive to class distribution (class 
skew). Although both are obviously related, it is well 
established that error rate minimization does not necessarily 
yield AUC optimization [7], and several efforts have been 
invested into using AUC in machine learning [6] and, most 
recently, to build AUC optimizing classifiers, mostly from 

scratch or by re-designing the core of existing algorithms to 
include AUC metrics, such as support vector machines [8], 
gradient descent [9], evolutionary algorithms [10] and others 
[11-16].  

In a previous work [17], we successfully adapted 
multilayer perceptron (MLP) classifiers trained with 
simulated annealing for AUC optimization. Now we aim to 
do so in a generalized manner so that, rather than developing 
new algorithms, our approach is to reuse the vast experience 
encoded into existing MLP training algorithms, devising a 
method through which they can be adapted with little effort, 
leaving untouched their core logic. This method is based on a 
novel AUC error metric (loss function) herewith defined that 
replaces the error metrics used in existing training algorithms 
to guide their training processes, therefore requiring simply 
the substitution of the error calculation routines of any MLP 
implementation. 

This paper is structured as follows. Section 2 defines the 
novel AUC error metrics just mentioned and describes the 
method used to compute them efficiently. Section 3 explains 
the experimental setup devised to validate our approach by 
injecting the proposed metric into four existing MLP training 
algorithms and the results obtained. Finally, in Section 4 we 
draw the conclusions and outline future work. 

II. AUC OPTIMIZATION IN MULTILAYER PERCEPTRON 

BASED CLASSIFIERS 

This section formally defines the proposed method to 

adapt existing MLP training algorithms for AUC 

optimization in the sense just described. First, we settle for 

the notation defined in Table 1 to refer to the different 

elements in of a binary classification task (dataset elements, 

binary MLP classifiers and error measures). Then, we use 
the definition of the Mann-Whitney statistic for AUC [3] to 

obtain an AUC based error measure (loss function) and 

discuss its theoretical properties. Finally, since AUC 

calculation is typically expensive, we also provide an 

algorithm for an efficient error-bound approximation of the 

AUC, ensuring our method does not render modified MLP 

training algorithms impracticable.  

A. Generalities 

Since we are dealing with AUC optimization we assume 
the case of MLP based binary classifiers having two output 
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neurons: one positive neuron (representing the positiveness 
assigned by the MLP to the input vector) and one negative 
neuron (representing its negativeness), and we use the 
definitions detailed in Table 1. 

 
TABLE 1: DEFINITIONS FOR BINARY MULTILAYER PERCEPTRONS  

� � �� 
Domain of elements consisting of input 

vectors (with � features) 

� � 	
, � 
The two classes into which input vectors 

are classified 

��, ��, � � �, � � � 
Element with its associated class (for 

supervised training) �� � 	���, ���, … , ���, ��� Dataset (for supervised training) �� � 	� |��, 
� � �� Positive elements of dataset �� � 	� |��, �� � �� Negative elements of dataset � � �� � �� Elements of a dataset 

���� � � 
Class associated to element � through 

dataset � |�| � � Size of dataset 

� � 	 �: �  �   
Set of functions representing binary 

classifiers ! � � A binary classifier 

!��� � � 
Output of binary classifier ! when 

applied to element � 

!"#��� � � 

Score assigned by binary classifier ! to 

element � it is typically used by ! to 

determine !��� by applying some 

threshold, and obtain ROC curves 

$��, !� 
A global error measure of classifier ! 

when applied to training set � 

%��, !� 
An individual error measure of classifier ! when applied to element x 

&'��, !� 
Area under the ROC curve (AUC) of 

dataset � when classified with ! 

( � )��*+�, ��*,-. � � 
Range of output values for the two 

output neurons of a binary MLP 

!� ���, !���� � ( 

Output of the positive and negative 

neurons of the MLP based binary 

classifier ! upon element � 

/����, /���� � ( 
Ideal value for positive and negative 

neurons for � 

%���, !�, %���, !� 

Error measures for the output of the 

positive and negative neurons of binary 

MLP ! upon element � 

 
At this point, given a binary classifier ! and a dataset �, 

we distinguish two kinds of MLP training algorithms: (1) 
those that iterate through all dataset elements, using the error 
measures of each element � � � at the positive and negative 
output neurons, denoted by %���, !�  and %���, !�,  and (2) 
those using the global error measure for the whole dataset, $��, !�, (see Table 1). We name the first kind of algorithms 
as element error training algorithms and the second kind as 
dataset error training algorithms. Notice that dataset error 
training algorithms only use $��, !�  regardless how it is 
calculated. Although typically a global error measure $��, !� 
for a whole dataset is obtained by iterating over the error 

measures of all elements (such as by calculating their mean), 
this might not always be the case. 

For a given dataset element � � �  we define the ideal 

values at the positive and negative output neurons as: 

 /���� � ��012    /���� � ��034    5�   ���� � 
 /���� � ��034    /���� � ��012    5�   ���� � � (1)

 
and fix a score metric, which linearly transforms the output 
of the two neurons to the [0,1] interval according to eq. 1, so 
that a score of 0.0 corresponds to an ideal negative element 
(!���� � ��*+� and !���� � ��*,- ) and a score of 1.0 
corresponds to an ideal positive element (!���� � ��*,-  
and !���� � ��*+� ) 

 !"#��� � 67�-�869�-�:���;<=8��;>? � @ �:                         (2) 

 
It can be easily proven that this definition ensures that !"#���  stays within the [0,1] interval. In fact, for ROC 

purposes this restriction is not strictly needed as what matters 
is the relative ordering between positive and negative dataset 
elements induced by the score !"#  assigned to each one. 

Commonly, a distance metric measures the error at the 
neuron’s output with respect to the ideal output: 

 ∆���, !� � /���� B !���� ∆���, !� � /���� B !���� 
(3)

 

B. Root Mean Square error measures 

Based on the previous definitions, a Root Mean Square 
(RMS) error measure is commonly established for a dataset 
element and for the whole dataset as follows: 

 

%CDE��, !� � F∆���, !�: @ ∆���, !�:2  

$CDE��, !� � ∑ %CDE��, !�-�E |�|  

 

(4)

Having, therefore, $CDE��, !�  as the mean of %CDE��, !� .Then, %CDE��, !�  is simply mapped to each 
output neuron using the distance metric of eq. 3 as follows: 

 %�CDE��, !� � ∆���, !� %�CDE��, !� � ∆���, !� 
 

(5)

In this case, dataset error training algorithms would use $CDE��, !�, whereas element error training algorithms would 
use %�CDE��, !� and %�CDE��, !�. 

 

C. AUC Error Metrics 

We want to make a AUC based error measure so that it 
can be injected back into training algorithms by either 

substituting $CDE��, !�  or %�CDE��, !�  and %�CDE��, !� 

76

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-154-0



without altering the rest of the logic. For this, we use the 
definition of the Mann-Whitney statistic for AUC [3]: 

 

&IJ��, !� �  ∑ ∑ K)!"#��� L !"#���.��E9��E7 |��| · |��|  (6) 

 
where 1)O. denotes the indicator function, yielding 1 if O is 
true and 0 otherwise. Through this, the contribution of 
dataset element � to &IJ��, !� is established as: 

 

&IJ��, !� �  
PQR
QS∑ K)!"#��� L !"# ���.��E9 |��| · |��|  5� � �  ��

∑ K)!"#��� L !"#���.��E7 |��| · |��|  5� � �  ��
T (7) 

 
Notice the fact that the maximum possible values for &IJ�!, �� are reached when the score of � is greater than 

the score of all negative elements if � is a positive element 
(and inversely when � is a negative element): 

 

&IJDUV��, !� �  
PQR
QS |��||��| · |��| �  1|��|     5� � �  ��

|��||��| · |��| �  1|��|     5� � �  ��
T (8) 

 
With this, we define the following error measures for 

dataset elements and for the whole dataset. 
 

%UWX��, !� � 1 B &IJ��, !�&IJDUV��, !� 

$ UWX��, !� � 1 B  &IJ��, !� 

(9)

 
It would be tempting to define %UWX ��, !�  � &IJDUV��, !� B &IJ��, !� , however, &IJDUV��, !�  is 

usually a very small value (specially for large datasets), 
which would make it unpractical for MLP training purposes. 
In addition, this definition preserves the fact that the dataset 
error measure is the mean of the elements error measure, 
such as is the case between $CDE��, !� and %CDE��, !�. 

 

Lemma 1: $ UWX��, !� is the mean of %UWX��, !� over the 
dataset elements as defined in eq. 9 

 

Proof: Exploiting the fact that a binary dataset can be split 

into positive and negative elements: 
 Y %UWX��, !�

-�E � Y %UWX��, !�
��E7

@ Y %UWX��, !�
��E9

 

 

�  Y 1 B &IJ��, !�&IJ*,-��, !���E7
@ Y 1 B &IJ��, !�&IJ*,-��, !���E9

 

 

� |��| B Y |��| · &IJ��, !�
��E7

@ |��| B Y |��| · &IJ��, !�
��E9

 

 

� |��| B Y |��| · ∑ K)!"#��� L !"#���.��E9 |��| · |��|��E7
@ |��|

B Y |��| · ∑ K)!"#��� L !"#���.��E7 |��| · |��|��E9
 

 
 

� |��| B |��| · ∑ ∑ K)!"#��� L !"#���.��E9��E7 |��| · |��| @ |��| 
 

B|��| · ∑ ∑ K)!"#��� L !"#���.��E7��E9 |��| · |��|  

 � |��| B |��| · &IJ��, !� @ |��| B |��| · &IJ��, !� 
 � |��| · Z1 B &IJ��, !�[ @ |��| · Z1 B &IJ��, !�[ 
 � �|��| @ |��|� · Z1 B &IJ��, !�[ � |�| · Z1 B &IJ��, !�[ 

 � |�| · $UWX��, !� 

 

\  $UWX��, !� � ∑ %UWX��, !�-�E |�|  ] 

 
However, %UWX��, !� still needs to be mapped to each 

output neuron of a binary MLP classifier, which we do in the 
following way: 

%�UWX��, !� � %UWX��, !� · ∆���, !�|∆���, !�| @ |∆���, !�|
%�UWX��, !� � %UWX��, !� · ∆���, !�|∆���, !�| @ |∆���, !�| (10)

Therefore, %UWX��, !� is distributed between the positive 
and negative neurons according to how far each one is from 
their ideal value, maintaining the direction of the distance 
metric (∆� and ∆�). This way, using eq.10, dataset elements 
having a perfect AUC score, where &IJ��, !� is maximum, 
do not produce any error even if the output values of the 
output neurons are not the ideal ones. In the limit case, where |∆���, !�| @ |∆���, !�| � 0, we establish both %�UWX��, !� �0 and %�UWX��, !� � 0.  

With this, we inject the proposed $ UWX��, !� error 
measure by replacing $CDE��, !� for dataset error training 
algorithms(such as simulated annealing and genetic 
algorithms as described below), whereas %�UWX��, !�  and %�UWX��, !� replace %�CDE��, !�  and %�CDE��, !�  respectively 
forelement error training algorithms (such as 
backpropagation and resilient backpropagation as described 
below). Most importantly, in practical terms, using $ UWX  and %UWX  in existing MLP training algorithms just amounts to 
substituting the error calculation routine without altering the 
rest of the algorithm logic. 
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D. Efficient AUC Calculation 

One drawback of using the proposed error measures is 
that AUC calculation is computationally expensive, since it 
usually requires full sorting of the measured dataset. This is 
specially relevant when using AUC based metrics in iterative 
algorithms, such as in MLP, since it may render good 
theoretical or experimental results impractical to use. We 
observed that commonly used AUC calculation techniques, 
such as the one provided by Weka [18], slow down about 5 
times the MLP training algorithms described in next section 
and modified to use $ UWX��, !�  and %UWX ��, !�  as just 
explained. To overcome this, we developed an efficient AUC 
calculation method that approximates the actual value to an 
arbitrary maximum error established by the user. It is based 
on discretizing the score space for each dataset element and, 
therefore, removing the need to full sorting. It produces all 
necessary metrics described in previous section namely, &IJ��, !� and %UWX��, !� for each dataset element and, of 
course,  &IJ��, !� and $ UWX��, !� for the whole dataset.  

Recalling that !"#���  � )0,1.  for all elements x  of a 
dataset, our AUC error bounded approximation method is 
based on the observation that, to compute the contribution of 
each positive element to the dataset AUC, &IJ��, !�, � ��� , we are interested only on the number of negative 
elements whose score is lower to the score of x, regardless 
their actual rank. So somehow, full sorting is not totally 
necessary. Intuitively, our method splits the )0,1.  interval 
into contiguous non-overlapping subintervals of equal length 
and counts the number of positive and negative elements 
whose score falls within each subinterval. This operation 
requires one dataset scan and elementary arithmetic. Then, 
for each positive element � � ��, the expression 1)!"#��� L!"#���. in eq. 6 or eq. 7 is approximated by counting the 
number of negative elements of the subintervals under the 
subinterval to which p belongs. Only the negative elements 
falling within the same interval as p will not be counted and 
constitute the source of the approximation error. The finer 
the [0,1] interval split, the more accurate the approximation 
will be. This process can be iterated until the approximation 
error falls below a user defined value involving only dataset 
elements falling within intervals producing the greatest 
errors. With the datasets used in this work, experiments 
showed that with two or three further iterations the 
approximation error always fell under 0.001, which is good 
enough to ensure dispensable influence in MLP accuracy. 
With this approximation, MLP training algorithms were 
slowed down only 1.5 times in average, when comparing the 
RMS error based original algorithms with the AUC error 
modified ones. 

III. EXPERIMENTAL VALIDATION 

A set of experiments was set up to measure the behavior 
of the proposed method for AUC optimization upon existing 

MLP training algorithms, which were modified to use the 

definitions described in previous section. Experiments were 

carried out by using selected datasets from the UCI machine 

learning repository and the goal was to compare the AUC 

performance of the original MLP training algorithms 

(aiming at minimizing the error rate) against their modified 

versions through the same training conditions. 

A. MLP Training Algorithms 

Four different MLP training algorithms were used as 
implemented within the Encog toolkit [19], which use RMS 
error metrics, and modified them to use the AUC error 
metrics defined in previous section: 

Feed Forward Back Propagation (FFBP): The classical 
element error training algorithm, where per-element error 
measures at each output neuron, %���, !� and %���, !�, are 
used to adjust neuron weights of the various layers of the 
MLP backwards from the output layer to the input layer, 
through a gradient descent method controlled by two user 
definable parameters: the learning rate and the momentum. 

Feed Forward Resilient Propagation (FFRP): Also an 
element error training algorithm, since it is a variation of 
FFBP where each neuron has its own set of independent 
parameters to control the gradient descent (similar to the 
FFBP learning rate and momentum) that the algorithm 
adjusts automatically throughout the training process. 

Feed Forward Simulated Annealing (FFSA): A dataset 
error training algorithm, where an MLP is taken through 
several “cooling” cycles. Starting at an initial top 
temperature, at each step in each cooling cycle the MLP 
weights are randomized according to the temperature (higher 
temperatures produce higher random variability) generating 
a new MLP. If the new MLP produces a lower error on the 
whole dataset, $��, !�, it is kept to the next cooling step. 
Otherwise it is discarded. Then, the temperature is lowered 
one step and the process continues. The user definable 
parameters it accepts are start-temperature, end-temperature 
and number-of-cycles. 

Feed Forward Genetic Algorithms (FFGA): A dataset 
error training algorithm, where the vector of MLP weights is 
interpreted as a chromosome and a population of MLPs with 
identical structure and different weights is evolved through 
generations that mate and cross over. MLPs (chromosomes) 
yielding lower errors on the whole dataset, $�S, h� , are 
considered as best suited and, therefore, with a higher 
probability of survival and mating to the next generation. 
The user definable parameters it accepts are population-size, 
mutation-percent and percent-to-mate-with. 

For a given algorithm specific values of its required 
training parameters constitute a training configuration. We 
used the same training configuration in the original and the 
modified algorithms to facilitate comparisons. The term 
“original algorithms” is therefore used for FFBP, FFRP, 
FFGA and FFSA as originally delivered by Encog (using 
RMS based error measures), and the term “modified 
algorithms” is used for their counterparts (FFBPROC, 
FFRPROC, FFGAROC and FFSAROC) adapted by the 
authors to use the previously defined AUC based error 
measures. 

Since many different MLP configurations were to be 
evaluated for different training algorithms and datasets, a 
software framework (named BiomedTK [20]) was specially 
developed to manage their evaluation over distributed 
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computer clusters.  BiomedTK stands for Biomedical Data 
Analysis Toolkit, and implements different kinds of dataset 
normalizations, validation procedures (n fold cross-
validation, leave one out, etc.), distribution of configuration 
into jobs, management of jobs and training results, etc. This 
allowed us to efficiently harness computing power to 
evaluate a complex variety of training algorithms, datasets 
and training configurations by using just a few configuration 
artifacts, such as the exploration definition file shown in 
Table 3. 

B. Selected Datasets and MLP configurations 

Table 2 shows the datasets selected for experimentation 
from the UCI repository. The criteria to select those datasets 
was: (1) they are binary datasets, (2) they provide a diversity 
of skews in their class distribution, (3) they represent 
classification tasks of different nature and (4) they contain 
less than 1000 elements, which makes MLP training 
affordable from a computational point of view. Class skew 
was considered important since AUC is known to be 
insensitive to class distribution. 

 
TABLE 2:BINARY UCI DATASETS USED FOR VALIDATION 

 
 
For each dataset, a set of MLP configurations was 

defined for each original algorithm and its modified version 
(FFSA/FFSAROC, FFGA/FFGAROC, FFBP/FBPROC, 
FFRP/FFRPROC). Table 3 shows an example configuration 
file used through BiomedTK to manage the exploration of 

training configurations for FFSA and FFSAROC MLPs with 
the SPECTF dataset, which results in 24 configurations for 
FFSA and another 24 configurations for FFSAROC. 
Configurations include MLPs with one or two hidden layers, 
with 89 or 178 neurons in the first hidden layer, with the 
parameter start-temperature set to 30 or 100, etc. 

Similar configurations sets were defined for each 
algorithm and dataset, fixing the particular parameters of 
each training algorithm to be the same for all datasets and 
varying only the number of input neurons according to the 
dataset input features, while keeping the same proportions in 
the number of neurons of the hidden layers with respect to 
the input layer (as in the example in Table 3). 

 
TABLE 3: FFSA/FFSAROC EXPLORATIONS FOR SPECTF DATASET. 

 
 
Each MLP configuration was trained with 10-fold cross-

validation. In total, 180 MLP configurations were trained for 
each of the 12 datasets, 90 MLP configurations 
corresponding to the original algorithms and 90 to their 
corresponding modified versions. Overall, 2160 MLP 
configurations were trained on a cluster with 50 computers, 
which, dedicated, took about 4 full physical days. Evaluation 
of all these configurations over the computing resources was 
managed through the BiomedTK software framework as 
mentioned above. 

C. Results 

For each dataset and training algorithms, results were 
processed and averaged in the following way: (1) each MLP 
configuration was trained both with the original algorithm 
from Encog and its modified version; (2) AUC results from 
all configurations trained with the original algorithms is 
averaged and its standard deviation is calculated and (3) 
AUC results from all configurations trained with the 
modified algorithms is averaged and its standard deviation is 
calculated. The percentage of improvement of the averages 
(positive or negative) obtained by the modified version was 
calculated with respect to the original version through the 
following formula: 

 

dataset elements features class skew

pgene 106 57 50%

mmass 961 5 54%

heartsl 270 13 56%

liver 345 6 58%

bcwd 569 30 63%

pimadiab 768 8 65%

tictac 958 9 65%

echocard 131 8 67%

haber 306 3 74%

park 195 22 75%

glass 214 9 76%

spectf 267 44 79%

Data on cardiac Single Proton Emission Computed Tomography 

(SPECT) images. 

Possible configurations of tic-tac-toe game.

Patients surviving for at least one year after a heart attack.

Dataset contains cases from study conducted on the survival of patients 

who had undergone surgery for breast cancer.

Oxford Parkinson's Disease Detection Dataset.

From USA Forensic Science Service; 6 types of glass; defined in terms of 

their oxide content (i.e. Na, Fe, K, etc.).

E. Coli promoter gene sequences (DNA) with partial domain theory

Discrimination of benign and malignant mammographic masses based on 

BI-RADS attributes and the patient's age.

Heart disease database reformatted

BUPA Medical Research Ltd. database on liver desease

Diagnostic breast cancer Wisconsin database.

From National Institute of Diabetes, Digestive and Kidney Diseases; 

Includes cost data.

explore.neurons.input    = 44 

explore.neurons.output   = 2 

explore.neurons.layer.01   = 89:178 

explore.neurons.layer.02   = 44:132 

explore.activation.function   = sigm 

explore.trainingsets   = spectf 

explore.trainengines   = encog.ffsa:encog.ffsaroc 

explore.validation   = cvfolds 10 

explore.encog.ffsa.starttemp  = 30:100 

explore.encog.ffsa.endtemp  = 2:10 

explore.encog.ffsa.cycles   = 50 

explore.encog.ffsa.stop.epochs   = 3000 

explore.encog.ffsa.stop.error  = 0.0001 

explore.encog.ffsaroc.starttemp  = 30:100 

explore.encog.ffsaroc.endtemp  = 2:10 

explore.encog.ffsaroc.cycles         = 50 

explore.encog.ffsaroc.stop.epochs  = 3000 

explore.encog.ffsaroc.stop.error  = 0.0001 

explore.numberofjobs   = 40 
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5c�def � 100 g hi�jkjl�,mn B iojpj�&O,mniojpj�&O,mn  
(11)

Table 4 summarizes the average AUC obtained per 
dataset and category of algorithm (dataset error based or 
element error based), aggregating them in total (column 
‘OVERALL’). Finally, Table 5 provides some correlation 
measures between different obtained measures. 

 
TABLE 4: AUC IMPROVEMENT PER DATASET AND ALGORITHM TYPE 

 
 
As it can be observed, there is a generalized AUC 

improvement by our proposed method, having occasional 
degradations in particular datasets (mostly in pgene and 
bcwd). The global averaged improvement is 5.86% with a 
great variability on each dataset and algorithm. It can also be 
observed that improvement is greater in element error 
training algorithms (FFBP and FFRP) than in dataset error 
training algorithms, although this might be due to the fact 
that these later ones tend to give better results as shown by 
the correlation between improvement and ORIGINAL AUC 
avg in Table 5 line 2 (improvement is greater when 
ORIGINAL AUC is lower). We acknowledge that this last 
observation might be biased by the way improv is defined 
(eq. 11) since greater AUC leave less room for improvement. 

 
TABLE 5: CORRELATIONS BETWEEN EXPERIMENT MEASURE PAIRS 

 
 
Other interesting observations are the following: 
 
A) Both AUC averages and standard deviations are 

strongly correlated between the original algorithms and their 
modified versions (Table 5 lines 4 and 5).  

B) Small standard deviations result from MLP 
configurations producing similar AUC scores (all 

configurations classify the dataset as good or as bad), 
whereas larger standard deviations result from some MLP 
configurations producing significantly better AUC scores 
than others. The strong correlations observed in averages and 
standard deviations leads to think that modified algorithms 
behave similarly to the original ones in the sense that they 
respond in the same way to dataset particularities (difficulty 
or easiness to classify). 

C) Class skew seems to have little influence on 
improvement (Table 5 line 1), or at least in a non-
homogeneous way across the different training algorithms.  

D) Except in the case of FFBP, there seems to be a 
significant correlation (Table 5 line 3) between the standard 
deviation of the ORIGINAL AUC and the improvement 
obtained by our method in the positive direction (increasing 
standard deviation with increasing improvement). Large 
standard deviations may occur in many scenarios, such as 
when a dataset is hard to separate and well performing MLP 
configurations are scarce. The observed correlation might 
suggest that our method could be more appropriate in these 
situations to increase overall MLP AUC performance. 

All these issues might be subject of further research, 
seeking stronger statistical evidence to support the 
hypothesis outlined. 

IV. CONCLUSIONS AND FUTURE WORK 

This work presented a new method to insert AUC based 
error metrics in existing MLP training algorithms for AUC 
optimization. In practical terms, the proposed approach only 
requires the substitution of the error computing routines of 
the underlying training algorithms, respecting their core 
logic. Experimental evidence demonstrated a consistent 
improvement in AUC through a variety of datasets and 
training algorithms requiring little coding effort. In addition, 
and equally important, an efficient method has been develop 
providing an error bound approximation for the AUC, which 
ensures MLP training remains computationally affordable. 
Finally, we can conclude that the newly developed AUC 
error metrics show a consistent behavior in both its 
theoretical definition and experimental results. 

Future work intends to further validate this approach in 
other kinds of machine learning algorithms and explore its 
theoretical implications, specially in those algorithms 
requiring continuity conditions on the loss or error functions 
(such as gradient descent). Also stronger statistical evidence 
for the hypotheses outlined in previous section will be 
pursued. 
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orig mod impro orig mod impro orig mod impro

pgene 0,742 0,731 -1,01% 0,786 0,765 -2,44% 0,698 0,698 0,43%

mmass 0,781 0,827 6,65% 0,708 0,782 11,23% 0,855 0,872 2,07%

heartsl 0,795 0,854 7,93% 0,740 0,813 10,37% 0,849 0,894 5,48%

liver 0,622 0,707 14,59% 0,605 0,684 13,91% 0,640 0,731 15,26%

bcwd 0,900 0,903 0,20% 0,831 0,826 -0,83% 0,969 0,980 1,23%

pimadiab 0,704 0,741 5,19% 0,635 0,665 4,32% 0,774 0,818 6,07%

tictac 0,733 0,786 7,81% 0,747 0,794 6,87% 0,720 0,778 8,75%

echocard 0,566 0,623 11,01% 0,507 0,605 19,45% 0,626 0,641 2,57%

haber 0,629 0,674 7,30% 0,580 0,635 9,33% 0,678 0,714 5,28%

park 0,840 0,846 1,18% 0,800 0,804 1,08% 0,879 0,889 1,27%

glass 0,876 0,899 3,15% 0,795 0,838 5,85% 0,956 0,960 0,46%

spectf 0,673 0,712 6,25% 0,616 0,660 7,47% 0,730 0,764 5,02%

averages 0,738 0,775 5,86% 0,696 0,739 7,22% 0,781 0,812 4,49%

OVERALL AUC

ELMENT BASED AUC 

(FFBP and FFRP)

DATASET BASED AUC 

(FFSA and FFGA)

FFBP FFRP FFSA FFGA ALL

improvement  vs. class skew -0,257 0,259 0,103 -0,208 -0,026

improvement vs. ORIGINAL AUC 

avg
-0,365 -0,872 -0,664 -0,553 -0,717

improvement vs. ORIGINAL AUC 

stddev
0,063 0,454 0,362 0,208 0,178

ORIGINAL AUC stddev vs. 

MODIFIED AUC stddev
0,883 0,631 0,884 0,828 0,682

ORIGINAL AUC avg  vs. 

MODIFIED AUC avg
0,848 0,956 0,981 0,956 0,971
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