
Optimizing the Area Under the ROC Curve in Multilayer Perceptron-based

Classifiers

Raúl Ramos-Pollán
Centro Extremeño de Tecnologías Avanzadas

CIEMAT

Trujillo, Spain

e-mail: raul.ramos@ciemat.es

Naimy González de Posada,

Miguel Angel Guevara López
INEGI-Faculty of Engeniering

University of Porto

Porto, Portugal

e-mail: {nposada,mguevaral}@inegi.up.pt

Abstract - This paper proposes a method to adapt existing
multilayer perceptron (MLP) training algorithms for
optimizing the area under the receiver operating characteristic
curve (AUC), in binary classification tasks. It is known that
error rate minimization does not necessarily yield to optimal
AUC and, rather than developing new MLP training algorithms
for AUC optimization, we reuse the vast experience encoded
into existing algorithms by replacing the error metrics used to
guide their training processes, with a novel defined AUC loss
function, leaving unmodified their core logic. The new method
was evaluated over 2000 MLP configurations, using four
different training algorithms (backpropagation, resilient
propagation, simulated annealing and genetic algorithms) in 12
binary datasets from the UCI repository. AUC was improved in
5.86% in average and, in addition, the proposed definition
preserves interesting properties of other error metrics. An
efficient AUC calculation procedure was also developed to
ensure the method remains computationally affordable.

Keywords - Multilayer perceptron, AUC optimization, error

measure, machine learning, binary classifiers.

I. INTRODUCTION

Receiver Operating Characteristic (ROC) analysis [1]
was originally used in signal processing and, more recently,
is commonly used in biomedicine [2]. ROC curves measure
the capability of a binary test or classifier to correctly
distinguish between positive and negative instances,
accounting for the trade-off between true and false positives
rates, and the area under the ROC curve (denoted by AUC or
Az) is used as a scalar comparative metric. In medicine,
ROC curves are used to analyze and compare diagnostic
systems [3] or for mining biomedical data [4]. In machine
learning they are increasingly used to evaluate and compare
classifier performance in general [5, 6].

Machine learning classifier performance is often
measured by its accuracy (number of dataset elements
correctly classified), which is obtained by fixing a specific
threshold on a score produced by the classifier for each
dataset element. Both accuracy and AUC are complementary
measures to evaluate classifier performance, and AUC has
the property of being insensitive to class distribution (class
skew). Although both are obviously related, it is well
established that error rate minimization does not necessarily
yield AUC optimization [7], and several efforts have been
invested into using AUC in machine learning [6] and, most
recently, to build AUC optimizing classifiers, mostly from

scratch or by re-designing the core of existing algorithms to
include AUC metrics, such as support vector machines [8],
gradient descent [9], evolutionary algorithms [10] and others
[11-16].

In a previous work [17], we successfully adapted
multilayer perceptron (MLP) classifiers trained with
simulated annealing for AUC optimization. Now we aim to
do so in a generalized manner so that, rather than developing
new algorithms, our approach is to reuse the vast experience
encoded into existing MLP training algorithms, devising a
method through which they can be adapted with little effort,
leaving untouched their core logic. This method is based on a
novel AUC error metric (loss function) herewith defined that
replaces the error metrics used in existing training algorithms
to guide their training processes, therefore requiring simply
the substitution of the error calculation routines of any MLP
implementation.

This paper is structured as follows. Section 2 defines the
novel AUC error metrics just mentioned and describes the
method used to compute them efficiently. Section 3 explains
the experimental setup devised to validate our approach by
injecting the proposed metric into four existing MLP training
algorithms and the results obtained. Finally, in Section 4 we
draw the conclusions and outline future work.

II. AUC OPTIMIZATION IN MULTILAYER PERCEPTRON

BASED CLASSIFIERS

This section formally defines the proposed method to

adapt existing MLP training algorithms for AUC

optimization in the sense just described. First, we settle for

the notation defined in Table 1 to refer to the different

elements in of a binary classification task (dataset elements,

binary MLP classifiers and error measures). Then, we use
the definition of the Mann-Whitney statistic for AUC [3] to

obtain an AUC based error measure (loss function) and

discuss its theoretical properties. Finally, since AUC

calculation is typically expensive, we also provide an

algorithm for an efficient error-bound approximation of the

AUC, ensuring our method does not render modified MLP

training algorithms impracticable.

A. Generalities

Since we are dealing with AUC optimization we assume
the case of MLP based binary classifiers having two output

75

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

neurons: one positive neuron (representing the positiveness
assigned by the MLP to the input vector) and one negative
neuron (representing its negativeness), and we use the
definitions detailed in Table 1.

TABLE 1: DEFINITIONS FOR BINARY MULTILAYER PERCEPTRONS

� � ��
Domain of elements consisting of input

vectors (with � features)

� � 	
, �
The two classes into which input vectors

are classified

��, ��, � � �, � � �
Element with its associated class (for

supervised training) �� � 	���, ���, … , ���, ��� Dataset (for supervised training) �� � 	� |��,
� � �� Positive elements of dataset �� � 	� |��, �� � �� Negative elements of dataset � � �� � �� Elements of a dataset

���� � �
Class associated to element � through

dataset � |�| � � Size of dataset

� � 	 �: � �
Set of functions representing binary

classifiers ! � � A binary classifier

!��� � �
Output of binary classifier ! when

applied to element �

!"#��� � �

Score assigned by binary classifier ! to

element � it is typically used by ! to

determine !��� by applying some

threshold, and obtain ROC curves

$��, !�
A global error measure of classifier !

when applied to training set �

%��, !�
An individual error measure of classifier ! when applied to element x

&'��, !�
Area under the ROC curve (AUC) of

dataset � when classified with !

(�)��*+�, ��*,-. � �
Range of output values for the two

output neurons of a binary MLP

!� ���, !���� � (

Output of the positive and negative

neurons of the MLP based binary

classifier ! upon element �

/����, /���� � (
Ideal value for positive and negative

neurons for �

%���, !�, %���, !�

Error measures for the output of the

positive and negative neurons of binary

MLP ! upon element �

At this point, given a binary classifier ! and a dataset �,

we distinguish two kinds of MLP training algorithms: (1)
those that iterate through all dataset elements, using the error
measures of each element � � � at the positive and negative
output neurons, denoted by %���, !� and %���, !�, and (2)
those using the global error measure for the whole dataset, $��, !�, (see Table 1). We name the first kind of algorithms
as element error training algorithms and the second kind as
dataset error training algorithms. Notice that dataset error
training algorithms only use $��, !� regardless how it is
calculated. Although typically a global error measure $��, !�
for a whole dataset is obtained by iterating over the error

measures of all elements (such as by calculating their mean),
this might not always be the case.

For a given dataset element � � � we define the ideal

values at the positive and negative output neurons as:

 /���� � ��012 /���� � ��034 5� ���� �
 /���� � ��034 /���� � ��012 5� ���� � � (1)

and fix a score metric, which linearly transforms the output
of the two neurons to the [0,1] interval according to eq. 1, so
that a score of 0.0 corresponds to an ideal negative element
(!���� � ��*+� and !���� � ��*,-) and a score of 1.0
corresponds to an ideal positive element (!���� � ��*,-
and !���� � ��*+�)

 !"#��� � 67�-�869�-�:���;<=8��;>? � @ �: (2)

It can be easily proven that this definition ensures that !"#��� stays within the [0,1] interval. In fact, for ROC

purposes this restriction is not strictly needed as what matters
is the relative ordering between positive and negative dataset
elements induced by the score !"# assigned to each one.

Commonly, a distance metric measures the error at the
neuron’s output with respect to the ideal output:

 ∆���, !� � /���� B !���� ∆���, !� � /���� B !����
(3)

B. Root Mean Square error measures

Based on the previous definitions, a Root Mean Square
(RMS) error measure is commonly established for a dataset
element and for the whole dataset as follows:

%CDE��, !� � F∆���, !�: @ ∆���, !�:2

$CDE��, !� � ∑ %CDE��, !�-�E |�|

(4)

Having, therefore, $CDE��, !� as the mean of %CDE��, !� .Then, %CDE��, !� is simply mapped to each
output neuron using the distance metric of eq. 3 as follows:

 %�CDE��, !� � ∆���, !� %�CDE��, !� � ∆���, !�

(5)

In this case, dataset error training algorithms would use $CDE��, !�, whereas element error training algorithms would
use %�CDE��, !� and %�CDE��, !�.

C. AUC Error Metrics

We want to make a AUC based error measure so that it
can be injected back into training algorithms by either

substituting $CDE��, !� or %�CDE��, !� and %�CDE��, !�

76

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

without altering the rest of the logic. For this, we use the
definition of the Mann-Whitney statistic for AUC [3]:

&IJ��, !� � ∑ ∑ K)!"#��� L !"#���.��E9��E7 |��| · |��| (6)

where 1)O. denotes the indicator function, yielding 1 if O is
true and 0 otherwise. Through this, the contribution of
dataset element � to &IJ��, !� is established as:

&IJ��, !� �
PQR
QS∑ K)!"#��� L !"# ���.��E9 |��| · |��| 5� � � ��

∑ K)!"#��� L !"#���.��E7 |��| · |��| 5� � � ��
T (7)

Notice the fact that the maximum possible values for &IJ�!, �� are reached when the score of � is greater than

the score of all negative elements if � is a positive element
(and inversely when � is a negative element):

&IJDUV��, !� �
PQR
QS |��||��| · |��| � 1|��| 5� � � ��

|��||��| · |��| � 1|��| 5� � � ��
T (8)

With this, we define the following error measures for

dataset elements and for the whole dataset.

%UWX��, !� � 1 B &IJ��, !�&IJDUV��, !�

$ UWX��, !� � 1 B &IJ��, !�

(9)

It would be tempting to define %UWX ��, !� � &IJDUV��, !� B &IJ��, !� , however, &IJDUV��, !� is

usually a very small value (specially for large datasets),
which would make it unpractical for MLP training purposes.
In addition, this definition preserves the fact that the dataset
error measure is the mean of the elements error measure,
such as is the case between $CDE��, !� and %CDE��, !�.

Lemma 1: $ UWX��, !� is the mean of %UWX��, !� over the
dataset elements as defined in eq. 9

Proof: Exploiting the fact that a binary dataset can be split

into positive and negative elements:
 Y %UWX��, !�

-�E � Y %UWX��, !�
��E7

@ Y %UWX��, !�
��E9

� Y 1 B &IJ��, !�&IJ*,-��, !���E7
@ Y 1 B &IJ��, !�&IJ*,-��, !���E9

� |��| B Y |��| · &IJ��, !�
��E7

@ |��| B Y |��| · &IJ��, !�
��E9

� |��| B Y |��| · ∑ K)!"#��� L !"#���.��E9 |��| · |��|��E7
@ |��|

B Y |��| · ∑ K)!"#��� L !"#���.��E7 |��| · |��|��E9

� |��| B |��| · ∑ ∑ K)!"#��� L !"#���.��E9��E7 |��| · |��| @ |��|

B|��| · ∑ ∑ K)!"#��� L !"#���.��E7��E9 |��| · |��|

 � |��| B |��| · &IJ��, !� @ |��| B |��| · &IJ��, !�
 � |��| · Z1 B &IJ��, !�[@ |��| · Z1 B &IJ��, !�[
 � �|��| @ |��|� · Z1 B &IJ��, !�[� |�| · Z1 B &IJ��, !�[

 � |�| · $UWX��, !�

\ $UWX��, !� � ∑ %UWX��, !�-�E |�|]

However, %UWX��, !� still needs to be mapped to each

output neuron of a binary MLP classifier, which we do in the
following way:

%�UWX��, !� � %UWX��, !� · ∆���, !�|∆���, !�| @ |∆���, !�|
%�UWX��, !� � %UWX��, !� · ∆���, !�|∆���, !�| @ |∆���, !�| (10)

Therefore, %UWX��, !� is distributed between the positive
and negative neurons according to how far each one is from
their ideal value, maintaining the direction of the distance
metric (∆� and ∆�). This way, using eq.10, dataset elements
having a perfect AUC score, where &IJ��, !� is maximum,
do not produce any error even if the output values of the
output neurons are not the ideal ones. In the limit case, where |∆���, !�| @ |∆���, !�| � 0, we establish both %�UWX��, !� �0 and %�UWX��, !� � 0.

With this, we inject the proposed $ UWX��, !� error
measure by replacing $CDE��, !� for dataset error training
algorithms(such as simulated annealing and genetic
algorithms as described below), whereas %�UWX��, !� and %�UWX��, !� replace %�CDE��, !� and %�CDE��, !� respectively
forelement error training algorithms (such as
backpropagation and resilient backpropagation as described
below). Most importantly, in practical terms, using $ UWX and %UWX in existing MLP training algorithms just amounts to
substituting the error calculation routine without altering the
rest of the algorithm logic.

77

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

D. Efficient AUC Calculation

One drawback of using the proposed error measures is
that AUC calculation is computationally expensive, since it
usually requires full sorting of the measured dataset. This is
specially relevant when using AUC based metrics in iterative
algorithms, such as in MLP, since it may render good
theoretical or experimental results impractical to use. We
observed that commonly used AUC calculation techniques,
such as the one provided by Weka [18], slow down about 5
times the MLP training algorithms described in next section
and modified to use $ UWX��, !� and %UWX ��, !� as just
explained. To overcome this, we developed an efficient AUC
calculation method that approximates the actual value to an
arbitrary maximum error established by the user. It is based
on discretizing the score space for each dataset element and,
therefore, removing the need to full sorting. It produces all
necessary metrics described in previous section namely, &IJ��, !� and %UWX��, !� for each dataset element and, of
course, &IJ��, !� and $ UWX��, !� for the whole dataset.

Recalling that !"#��� �)0,1. for all elements x of a
dataset, our AUC error bounded approximation method is
based on the observation that, to compute the contribution of
each positive element to the dataset AUC, &IJ��, !�, � ��� , we are interested only on the number of negative
elements whose score is lower to the score of x, regardless
their actual rank. So somehow, full sorting is not totally
necessary. Intuitively, our method splits the)0,1. interval
into contiguous non-overlapping subintervals of equal length
and counts the number of positive and negative elements
whose score falls within each subinterval. This operation
requires one dataset scan and elementary arithmetic. Then,
for each positive element � � ��, the expression 1)!"#��� L!"#���. in eq. 6 or eq. 7 is approximated by counting the
number of negative elements of the subintervals under the
subinterval to which p belongs. Only the negative elements
falling within the same interval as p will not be counted and
constitute the source of the approximation error. The finer
the [0,1] interval split, the more accurate the approximation
will be. This process can be iterated until the approximation
error falls below a user defined value involving only dataset
elements falling within intervals producing the greatest
errors. With the datasets used in this work, experiments
showed that with two or three further iterations the
approximation error always fell under 0.001, which is good
enough to ensure dispensable influence in MLP accuracy.
With this approximation, MLP training algorithms were
slowed down only 1.5 times in average, when comparing the
RMS error based original algorithms with the AUC error
modified ones.

III. EXPERIMENTAL VALIDATION

A set of experiments was set up to measure the behavior
of the proposed method for AUC optimization upon existing

MLP training algorithms, which were modified to use the

definitions described in previous section. Experiments were

carried out by using selected datasets from the UCI machine

learning repository and the goal was to compare the AUC

performance of the original MLP training algorithms

(aiming at minimizing the error rate) against their modified

versions through the same training conditions.

A. MLP Training Algorithms

Four different MLP training algorithms were used as
implemented within the Encog toolkit [19], which use RMS
error metrics, and modified them to use the AUC error
metrics defined in previous section:

Feed Forward Back Propagation (FFBP): The classical
element error training algorithm, where per-element error
measures at each output neuron, %���, !� and %���, !�, are
used to adjust neuron weights of the various layers of the
MLP backwards from the output layer to the input layer,
through a gradient descent method controlled by two user
definable parameters: the learning rate and the momentum.

Feed Forward Resilient Propagation (FFRP): Also an
element error training algorithm, since it is a variation of
FFBP where each neuron has its own set of independent
parameters to control the gradient descent (similar to the
FFBP learning rate and momentum) that the algorithm
adjusts automatically throughout the training process.

Feed Forward Simulated Annealing (FFSA): A dataset
error training algorithm, where an MLP is taken through
several “cooling” cycles. Starting at an initial top
temperature, at each step in each cooling cycle the MLP
weights are randomized according to the temperature (higher
temperatures produce higher random variability) generating
a new MLP. If the new MLP produces a lower error on the
whole dataset, $��, !�, it is kept to the next cooling step.
Otherwise it is discarded. Then, the temperature is lowered
one step and the process continues. The user definable
parameters it accepts are start-temperature, end-temperature
and number-of-cycles.

Feed Forward Genetic Algorithms (FFGA): A dataset
error training algorithm, where the vector of MLP weights is
interpreted as a chromosome and a population of MLPs with
identical structure and different weights is evolved through
generations that mate and cross over. MLPs (chromosomes)
yielding lower errors on the whole dataset, $�S, h� , are
considered as best suited and, therefore, with a higher
probability of survival and mating to the next generation.
The user definable parameters it accepts are population-size,
mutation-percent and percent-to-mate-with.

For a given algorithm specific values of its required
training parameters constitute a training configuration. We
used the same training configuration in the original and the
modified algorithms to facilitate comparisons. The term
“original algorithms” is therefore used for FFBP, FFRP,
FFGA and FFSA as originally delivered by Encog (using
RMS based error measures), and the term “modified
algorithms” is used for their counterparts (FFBPROC,
FFRPROC, FFGAROC and FFSAROC) adapted by the
authors to use the previously defined AUC based error
measures.

Since many different MLP configurations were to be
evaluated for different training algorithms and datasets, a
software framework (named BiomedTK [20]) was specially
developed to manage their evaluation over distributed

78

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

computer clusters. BiomedTK stands for Biomedical Data
Analysis Toolkit, and implements different kinds of dataset
normalizations, validation procedures (n fold cross-
validation, leave one out, etc.), distribution of configuration
into jobs, management of jobs and training results, etc. This
allowed us to efficiently harness computing power to
evaluate a complex variety of training algorithms, datasets
and training configurations by using just a few configuration
artifacts, such as the exploration definition file shown in
Table 3.

B. Selected Datasets and MLP configurations

Table 2 shows the datasets selected for experimentation
from the UCI repository. The criteria to select those datasets
was: (1) they are binary datasets, (2) they provide a diversity
of skews in their class distribution, (3) they represent
classification tasks of different nature and (4) they contain
less than 1000 elements, which makes MLP training
affordable from a computational point of view. Class skew
was considered important since AUC is known to be
insensitive to class distribution.

TABLE 2:BINARY UCI DATASETS USED FOR VALIDATION

For each dataset, a set of MLP configurations was

defined for each original algorithm and its modified version
(FFSA/FFSAROC, FFGA/FFGAROC, FFBP/FBPROC,
FFRP/FFRPROC). Table 3 shows an example configuration
file used through BiomedTK to manage the exploration of

training configurations for FFSA and FFSAROC MLPs with
the SPECTF dataset, which results in 24 configurations for
FFSA and another 24 configurations for FFSAROC.
Configurations include MLPs with one or two hidden layers,
with 89 or 178 neurons in the first hidden layer, with the
parameter start-temperature set to 30 or 100, etc.

Similar configurations sets were defined for each
algorithm and dataset, fixing the particular parameters of
each training algorithm to be the same for all datasets and
varying only the number of input neurons according to the
dataset input features, while keeping the same proportions in
the number of neurons of the hidden layers with respect to
the input layer (as in the example in Table 3).

TABLE 3: FFSA/FFSAROC EXPLORATIONS FOR SPECTF DATASET.

Each MLP configuration was trained with 10-fold cross-

validation. In total, 180 MLP configurations were trained for
each of the 12 datasets, 90 MLP configurations
corresponding to the original algorithms and 90 to their
corresponding modified versions. Overall, 2160 MLP
configurations were trained on a cluster with 50 computers,
which, dedicated, took about 4 full physical days. Evaluation
of all these configurations over the computing resources was
managed through the BiomedTK software framework as
mentioned above.

C. Results

For each dataset and training algorithms, results were
processed and averaged in the following way: (1) each MLP
configuration was trained both with the original algorithm
from Encog and its modified version; (2) AUC results from
all configurations trained with the original algorithms is
averaged and its standard deviation is calculated and (3)
AUC results from all configurations trained with the
modified algorithms is averaged and its standard deviation is
calculated. The percentage of improvement of the averages
(positive or negative) obtained by the modified version was
calculated with respect to the original version through the
following formula:

dataset elements features class skew

pgene 106 57 50%

mmass 961 5 54%

heartsl 270 13 56%

liver 345 6 58%

bcwd 569 30 63%

pimadiab 768 8 65%

tictac 958 9 65%

echocard 131 8 67%

haber 306 3 74%

park 195 22 75%

glass 214 9 76%

spectf 267 44 79%

Data on cardiac Single Proton Emission Computed Tomography

(SPECT) images.

Possible configurations of tic-tac-toe game.

Patients surviving for at least one year after a heart attack.

Dataset contains cases from study conducted on the survival of patients

who had undergone surgery for breast cancer.

Oxford Parkinson's Disease Detection Dataset.

From USA Forensic Science Service; 6 types of glass; defined in terms of

their oxide content (i.e. Na, Fe, K, etc.).

E. Coli promoter gene sequences (DNA) with partial domain theory

Discrimination of benign and malignant mammographic masses based on

BI-RADS attributes and the patient's age.

Heart disease database reformatted

BUPA Medical Research Ltd. database on liver desease

Diagnostic breast cancer Wisconsin database.

From National Institute of Diabetes, Digestive and Kidney Diseases;

Includes cost data.

explore.neurons.input = 44

explore.neurons.output = 2

explore.neurons.layer.01 = 89:178

explore.neurons.layer.02 = 44:132

explore.activation.function = sigm

explore.trainingsets = spectf

explore.trainengines = encog.ffsa:encog.ffsaroc

explore.validation = cvfolds 10

explore.encog.ffsa.starttemp = 30:100

explore.encog.ffsa.endtemp = 2:10

explore.encog.ffsa.cycles = 50

explore.encog.ffsa.stop.epochs = 3000

explore.encog.ffsa.stop.error = 0.0001

explore.encog.ffsaroc.starttemp = 30:100

explore.encog.ffsaroc.endtemp = 2:10

explore.encog.ffsaroc.cycles = 50

explore.encog.ffsaroc.stop.epochs = 3000

explore.encog.ffsaroc.stop.error = 0.0001

explore.numberofjobs = 40

79

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

5c�def � 100 g hi�jkjl�,mn B iojpj�&O,mniojpj�&O,mn
(11)

Table 4 summarizes the average AUC obtained per
dataset and category of algorithm (dataset error based or
element error based), aggregating them in total (column
‘OVERALL’). Finally, Table 5 provides some correlation
measures between different obtained measures.

TABLE 4: AUC IMPROVEMENT PER DATASET AND ALGORITHM TYPE

As it can be observed, there is a generalized AUC

improvement by our proposed method, having occasional
degradations in particular datasets (mostly in pgene and
bcwd). The global averaged improvement is 5.86% with a
great variability on each dataset and algorithm. It can also be
observed that improvement is greater in element error
training algorithms (FFBP and FFRP) than in dataset error
training algorithms, although this might be due to the fact
that these later ones tend to give better results as shown by
the correlation between improvement and ORIGINAL AUC
avg in Table 5 line 2 (improvement is greater when
ORIGINAL AUC is lower). We acknowledge that this last
observation might be biased by the way improv is defined
(eq. 11) since greater AUC leave less room for improvement.

TABLE 5: CORRELATIONS BETWEEN EXPERIMENT MEASURE PAIRS

Other interesting observations are the following:

A) Both AUC averages and standard deviations are

strongly correlated between the original algorithms and their
modified versions (Table 5 lines 4 and 5).

B) Small standard deviations result from MLP
configurations producing similar AUC scores (all

configurations classify the dataset as good or as bad),
whereas larger standard deviations result from some MLP
configurations producing significantly better AUC scores
than others. The strong correlations observed in averages and
standard deviations leads to think that modified algorithms
behave similarly to the original ones in the sense that they
respond in the same way to dataset particularities (difficulty
or easiness to classify).

C) Class skew seems to have little influence on
improvement (Table 5 line 1), or at least in a non-
homogeneous way across the different training algorithms.

D) Except in the case of FFBP, there seems to be a
significant correlation (Table 5 line 3) between the standard
deviation of the ORIGINAL AUC and the improvement
obtained by our method in the positive direction (increasing
standard deviation with increasing improvement). Large
standard deviations may occur in many scenarios, such as
when a dataset is hard to separate and well performing MLP
configurations are scarce. The observed correlation might
suggest that our method could be more appropriate in these
situations to increase overall MLP AUC performance.

All these issues might be subject of further research,
seeking stronger statistical evidence to support the
hypothesis outlined.

IV. CONCLUSIONS AND FUTURE WORK

This work presented a new method to insert AUC based
error metrics in existing MLP training algorithms for AUC
optimization. In practical terms, the proposed approach only
requires the substitution of the error computing routines of
the underlying training algorithms, respecting their core
logic. Experimental evidence demonstrated a consistent
improvement in AUC through a variety of datasets and
training algorithms requiring little coding effort. In addition,
and equally important, an efficient method has been develop
providing an error bound approximation for the AUC, which
ensures MLP training remains computationally affordable.
Finally, we can conclude that the newly developed AUC
error metrics show a consistent behavior in both its
theoretical definition and experimental results.

Future work intends to further validate this approach in
other kinds of machine learning algorithms and explore its
theoretical implications, specially in those algorithms
requiring continuity conditions on the loss or error functions
(such as gradient descent). Also stronger statistical evidence
for the hypotheses outlined in previous section will be
pursued.

ACKNOWLEDGMENTS

This work is part of the GRIDMED research
collaboration project between INEGI (Portugal) and CETA-
CIEMAT (Spain). Prof. Guevara acknowledges POPH -
QREN-Tipologia 4.2 – Promotion of scientific employment
funded by the ESF and MCTES, Portugal. CETA-CIEMAT
acknowledges the support of the European Regional
Development Fund.

orig mod impro orig mod impro orig mod impro

pgene 0,742 0,731 -1,01% 0,786 0,765 -2,44% 0,698 0,698 0,43%

mmass 0,781 0,827 6,65% 0,708 0,782 11,23% 0,855 0,872 2,07%

heartsl 0,795 0,854 7,93% 0,740 0,813 10,37% 0,849 0,894 5,48%

liver 0,622 0,707 14,59% 0,605 0,684 13,91% 0,640 0,731 15,26%

bcwd 0,900 0,903 0,20% 0,831 0,826 -0,83% 0,969 0,980 1,23%

pimadiab 0,704 0,741 5,19% 0,635 0,665 4,32% 0,774 0,818 6,07%

tictac 0,733 0,786 7,81% 0,747 0,794 6,87% 0,720 0,778 8,75%

echocard 0,566 0,623 11,01% 0,507 0,605 19,45% 0,626 0,641 2,57%

haber 0,629 0,674 7,30% 0,580 0,635 9,33% 0,678 0,714 5,28%

park 0,840 0,846 1,18% 0,800 0,804 1,08% 0,879 0,889 1,27%

glass 0,876 0,899 3,15% 0,795 0,838 5,85% 0,956 0,960 0,46%

spectf 0,673 0,712 6,25% 0,616 0,660 7,47% 0,730 0,764 5,02%

averages 0,738 0,775 5,86% 0,696 0,739 7,22% 0,781 0,812 4,49%

OVERALL AUC

ELMENT BASED AUC

(FFBP and FFRP)

DATASET BASED AUC

(FFSA and FFGA)

FFBP FFRP FFSA FFGA ALL

improvement vs. class skew -0,257 0,259 0,103 -0,208 -0,026

improvement vs. ORIGINAL AUC

avg
-0,365 -0,872 -0,664 -0,553 -0,717

improvement vs. ORIGINAL AUC

stddev
0,063 0,454 0,362 0,208 0,178

ORIGINAL AUC stddev vs.

MODIFIED AUC stddev
0,883 0,631 0,884 0,828 0,682

ORIGINAL AUC avg vs.

MODIFIED AUC avg
0,848 0,956 0,981 0,956 0,971

80

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

REFERENCES

[1] T. Fawcett, "An introduction to ROC analysis," Pattern Recognition

Letters, vol. 27, pp. 861-874, 2006.

[2] M. Zweig and G. Campbell, "Receiver-operating characteristic (ROC)
plots: a fundamental evaluation tool in clinical medicine " Clinical

Chemistry, vol. 39, pp. 561-577, 1993.

[3] J. A. Hanley and B. J. McNeil, "The meaning and use of the area
under a receiver operating characteristic (ROC) curve," Radiology,

vol. 143, pp. 29-36, 1982.

[4] J. Iavindrasana, et al., "Clinical data mining: a review," Yearb Med

Inform, pp. 121-33, 2009 2009.

[5] T. Fawcett, "ROC Graphs: Notes and Practical Considerations for

Researchers," HP Labs Tech Report HPL-2003-4, 2003.

[6] A. P. Bradley, "The use of the area under the ROC curve in the
evaluation of machine learning algorithms," Pattern Recognition, vol.

30, pp. 1145-1159, 1997.

[7] C. Cortes and M. Mohri, "AUC optimization vs. error rate

minimization," Advances in Neural Information Processing Systems

16, vol. 16, pp. 313-320, 2004.

[8] U. Brefeld and T. Scheffer, "AUC Maximizing Support Vector

Learning," Proceedings of the ICML Workshop on ROC Analysis in

Machine Learning, 2005.

[9] T. Calders and S. Jaroszewicz, "Efficient AUC optimization for

classification," Knowledge Discovery in Databases: PKDD 2007,

Proceedings, vol. 4702, pp. 42-53, 2007.

[10] L. Costa, et al., "Tuning Parameters of Evolutionary Algorithms

Using ROC Analysis," in 2nd International Workshop on Practical

Applications of Computational Biology and Bioinformatics

(IWPACBB 2008). vol. 49, J. Corchado, et al., Eds., ed: Springer
Berlin / Heidelberg, 2009, pp. 217-222.

[11] F. Provost and T. Fawcett, "Robust Classification for Imprecise

Environments," Machine Learning, vol. 42, pp. 203-231, 2001.

[12] C. Marrocco, et al., "Maximizing the area under the ROC curve by

pairwise feature combination," Pattern Recogn., vol. 41, pp. 1961-
1974, 2008.

[13] C. L. Castro and A. P. Braga, "Optimization of the Area under the

ROC Curve," in Neural Networks, 2008. SBRN '08. 10th Brazilian

Symposium on, 2008, pp. 141-146.

[14] K. A. Toh, et al., "Maximizing area under ROC curve for biometric

scores fusion," Pattern Recognition, vol. 41, pp. 3373-3392, Nov
2008.

[15] A. K. S. Wong, et al., "Improving text classifier performance based

on AUC," 18th International Conference on Pattern Recognition, Vol

3, Proceedings, pp. 268-271, 2006.

[16] G. Han and C. Zhao, "AUC maximization linear classifier based on

active learning and its application," Neurocomputing, vol. 73, pp.
1272-1280, 2010.

[17] R. Ramos-Pollan, et al., "Introducing ROC curves as error measure

functions. A new approach to train ANN-based biomedical data
classifiers," in 15th Iberoamerican Congress on Pattern Recognition,

Sao Paolo, Brasil, 2010.

[18] Mark Hall, et al., "The WEKA Data Mining Software: An Update,"

SIGKDD Explorations, vol. 11, 2009.

[19] J. Heaton, "Programming Neural Networks with Encog 2 in Java," ed:
Heaton Research, Inc., 2010.

[20] R. Ramos-Pollán et al., “A Software Framework for Building

Biomedical Machine Learning Classifiers through Grid Computing
Resources,” Journal of Medical Systems, 1-13, DOI 10.1007/s10916-

011-9692-3

81

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

