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Abstract – We present a two-phase security system designed for 

hierarchical wireless sensor networks and show how it can be 

used to detect Denial-of-Service attacks and track harmful 

intruders. This type of energy-exhaustion attacks can break the 

connection of a sensor network and decreases its lifetime. First, 

we apply a Dendritic Cell Algorithm inspired by danger theory to 

actively detect attacked sensors that are implementing battery 

exhaustion attack to neighbors. Second, the system passively 

analyzes the tracks of the moving harmful intruders. The 

tracking information is used by the base station to more 

efficiently monitor and control the network. We adopt Markov 

Chain Monte Carlo methods to track the intruders and a Tabu 

Search technique to accelerate the searching of the final intruder 

tracks. The simulation results demonstrate good performance of 

this corrective and preventive security mechanism on detecting 

the malfunction sensors and tracking the intruders. 

 Keywords-Wireless Sensor Networks; Dendritic Cells 

Algorithm; Markov Chain Monte Carlo; Tabu Search 

I.  INTRODUCTION  

Improved wireless communication and electronics promote 
the development of low-power, low-cost and multifunctional 
sensor nodes [11].  Large numbers of such nodes can be 
deployed in a wireless sensor network (WSN) to sense and 
report data of importance.  Common application areas include 
hospitals, homes, battle fields, and transportation systems. 
Security is of high importance in most WSNs.  The sensors 
deployed typically run on batteries with limited power and 
computation ability. The communication channels can be 
unreliable and unattended operations result in vulnerability to 
attacks and sensor failures such as wormhole [22], denial-of-
service or sinkhole attacks [23]. Traditional cryptographic 
security algorithms assume that all nodes are cooperative and 
trustworthy [12]. This assumption is not satisfied in most real-
world WSN applications so that traditional security approaches 
may not apply.  

In this paper, we focus on detecting Denial-of-Service 
(DoS) attacks aimed at multiplying the rate of battery 
exhaustion in sensors. Harmful intruders maliciously consume 
sensors energy by jamming a portion of a network. Local 
disconnection may cause the cluster heads and the base station 
failure of receiving correct and complete sensing data. This 
type of attacks is very harmful to highly critical and sensitive 
applications. 

We adopt Artificial Immune System (AIS) approach and 
multiple-target tracking techniques to detect security threats in 
WSNs. This proactive approach of detecting malfunction 
sensors and harmful intruders is more effective on increasing 
the service lifetime of a given sensor network than passive 

methods that only detect dead sensors. AIS is a problem-
solving methodology inspired by how biological immune 
systems in mammals detect pathogens and destroy them before 
they cause harm to the body. In real-world WSNs it is difficult 
to know how many invaders of different types are present. But 
knowing the distribution and the tracks of intruders is very 
helpful information for a Base Station (BS) to have for 
defending the network. In our work, we utilize a Multi-target 
tracking technique to track mobile harmful intruders. A track is 
a path in time-space traveled by a target [3]. The data 
association problem is to identify the tracks of targets from 
noisy observations of target positions at known points in time. 

The main contribution of our work is the development of a 
two-phase security mechanism for WSNs with hierarchical 
structure by combining a Dendritic Cell Algorithm (DCA) 
algorithm with a multiple-target tracking algorithm and a Tabu 
Search technique. The two-level hierarchical sensor network 
that we use for our experiments has a static backbone of 
sparsely placed high-end sensors nodes called Cluster Heads 
(CH). The low-end sensor nodes belong to different clusters 
based on their physical position. This hierarchical structure is 
well-suited for large scale sensor networks and is understood to 
be energy preserving [10]. The DCA algorithm works on the 
low-end nodes and identifies malfunctioning neighbors that 
have been attacked by harmful intruders. The primary 
malfunctions include packet change, fake packet and energy-
exhaustion. The ability to defend against these basic but widely 
existing types of attacks in a WNS makes the algorithm a good 
fit in practice. The multiple-target tracking algorithm 
implementing on Cluster Heads is used to track the mobile 
harmful intruders. Information about the distribution and 
the trajectory of harmful intruders is used by the Base Station 
(BS) to assess and evaluate current network defense capability. 
The simulation results show that the immune-inspired 
algorithm can effectively detect the low-end sensor nodes that 
have been attacked and accurately track the mobile intruders.  

Figure 1 shows the two-phase security architecture. Each 
low-end sensor detects malfunctioning sensor nodes and 
reports their positions to its cluster head. When a low-end 
sensor receives a message it utilizes the DCA algorithm to 
identify whether or not the message is abnormal. Messages are 
reported to head node as normal or abnormal. Before 
implementing the multi-target tracking algorithm, a cluster 
head performs a K-Neighbor Query Algorithm (KNQA) to 
assess the credibility of received abnormal observations. This 
algorithm improves the accuracy of reported abnormal 
observation. The tracking results are ultimately sent to the base 
station. 
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The rest of the paper is organized as follows. Section II 

discusses the related works. We detail the Dendritic Cell 

Algorithm in Section III. In Section IV, we present the query 

algorithm based on the K-Nearest Neighbor (KNN) technique. 

In Section V, we present the MCMC algorithm for multiple-

target tracking. The Tabu Search technique used to identify the 

tracks of the targets in a WSN is represented in Section VI. We 

simulate the proposed algorithms and compare the performance 

with the MCMCDA algorithm in Section VII. Finally, the 

conclusion is given in Section VIII. 

 

 
 

Figure 1.  The two-phase security architecture (hollow circles represent 

normal sensors; the solid circle represents a malfunctioning sensor; and the 
stars represent mobile intruders) 

II. RELATED WORKS 

A particular class of AIS methodologies called a Negative 
Selection Algorithms (NSA) has been applied to anomaly 
detection problems [14]. Inspired by immunology, the 
approach uses a learning phase to construct detectors that can 
identify and dispatch invaders, but are not harmful to the 
organism itself. A fundamental issue in a NSA is maintaining 
distinguishing units from the host (self units) from the invaders 
(non-self units).[13]. Following another type of AIS, the work 
in [15] advanced the Danger Theory (DT) approach to intrusion 
detection. In Danger Theory, the central idea is that the 
immune system detects and responds to damage to the host, 
rather than upfront discrimination between self and non-self 
units. Dendritic cells play a central role in Danger theory. Work 
by Nauman and Muddassar [16] established a security system 
based on the behaviors of Dendritic Cells. The work reported in 
[17] includes detailed rules for a Dendritic Cell Algorithm 
(DCA) for analyzing abnormal signals. These DCAs are more 
flexible at detecting misbehaviors than NSAs, but do require a 
monitoring period to identify an intruder, resulting in 
inefficiency in situations with moving intruders. 

Multiple-target tracking is a competent technique on 
tracing moving intruders in WSNs. In [3], the authors proposed 
a Markov Chain Monte Carlo Data Association (MCMCDA) 
algorithm for tracking a variable number of targets in real-time. 
It was established that MCMCDA is computationally efficient 
compared to multiple hypothesis tracker (MHT) [18], which is 
the prominent methodology for solving the data association 
problem, and outperforms MHT when there are large number 
of targets. MCMCDA partitions the observations into groups 
corresponding to candidate tracks. The collection of different 
partitions forms the state space for the MCMC method that 
searches for the most likely partitioning into intruder tracks. To 
make the computations of the proposal distribution easier, the 
authors include two additional assumptions: (1) the maximal 
directional speed of any target is less than   ̅ ; and (2) the 
number of consecutive missing observations of any track is less 

than  ̅.  

Convergence rate is an important criterion on assessment of 

MCMC algorithm ability [20]. Although the MCMCDA makes 

two assumptions to decrease the size of state space, it doesn’t 

have obvious improvement when the state space is very large. 

To accelerate the search of the final intruder tracks, we design 

two ways to improve the convergence rate of the Markov 

Chains used in the MCMC approach. Firstly, we further 

decrease the size of state space by classifying observations and 

predicting the moving area of an intruder. Secondly, we apply a 

proposed Ejection Chain algorithm to the optimal solution 

searching process. This approach partitions an optimization 

problem into relatively independent sub-optimization 

problems, and accelerates the optimization process. Comparing 

with a full MCMCDA, our algorithm needs fewer samples to 

reach an optimal solution. 

III. THE DENDRITIC CELL APPROACH 

Our previous work [5] proposed a Dendritic Cell inspired 
algorithm. This algorithm consists of three sub-functions: 
checking for dangerous messages, abnormal messages and 
harmful intruders. Identifying a harmful intruder is a process of 
changes among immature state, semi-mature state and mature 
state. When a sensor node receives a new message, the 
algorithm firstly checks a saved Harmful Intruder (HI) list.  If 
the sender of this message is an identified harmful intruder with 
mature state, the message is considered to be a dangerous 
message. If the sender is an identified suspicious intruder with 
semi-mature state and exists in a Semi-Harmful Intruder (SHI) 
list, the algorithm implements the function of identifying 
harmful intruder to decide whether this sender is dangerous 
enough to be considered as a harmful intruder. Finally, the 
algorithm implements the function of checking for abnormal 
message. The sender is saved in the SHI list and its state 
changed from immature to semi-mature if the message is 
abnormal. This algorithm only consumes limited energy of a 
sensor node because of the simple calculation in each sub-
function. The experiment results showed that this algorithm is 
capable of detecting static harmful nodes. 

IV. K-NEIGHBOR QUERY ALGORITHM 

In [1], the authors proposed the KNN Perimeter Tree (KPT) 
algorithm for dynamically processing KNN queries in location-
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aware sensor networks. The algorithm KPT first adopts GPSR, 
which is a geographical routing algorithm [2], to find the Home 
Node (HN) that is the nearest sensor to the Query Point (QP). 
As by-products, the perimeter nodes around the QP are also 
determined when the HN is found. A circular boundary 
including at least K sensor nodes is determined. At each hop 
around the perimeter, the midpoint on the line between 
perimeter nodes is computed, and by plotting a line from the 
QP through the midpoint to the circular boundary the sub-tree 
boundaries are determined. In each boundary, a spanning tree is 
constructed, shown in Figure 2.  Each node on the tree reports 
its position and ID to its parent node. Finally, all sensor 
information in the circular boundary is reported to the HN. The 
HN sorts these nodes by their distance to the QP to find the K 
nearest neighbors. 

 

 
Figure 2.  KNN Perimeter Tree 

The perimeter boundaries can keep the spanning trees 
balanced and thus reduce the overall query latency.  It is still 
possible that the K nearest neighbors are all or mostly in one 
spanning tree. Only querying some sensor nodes densely 
distributed in a small area around the QP cannot be trusted. In a 
given spanning tree, each node sends packages to its parent 
node instead of broadcasting. This reduces the number of 
totally transmitted message. But if a parent node in a spanning 
tree close to the root node has failed (e.g., because of energy 
exhaustion), this spanning tree will be useless for finding the K 
nearest neighbors. 

To avoid these disadvantages and make the KNN query 
algorithm more efficient for detecting harmful intruders, we 
design the K- Neighbor Query Algorithm (KNQA) for finding 
K querying neighbors. Instead of constructing spanning trees in 
each sub-boundary, the KNQA finds K querying sensor nodes 
around a suspect harmful intruder, and these querying nodes 
tend to be closely and sparsely distributed around the suspect 
intruder. 

Figure 3 shows an example of identifying 10 querying 
sensor nodes around a suspect harmful intruder. The first group 
querying nodes are those closest to the suspect node. We first, 
find the closest node to the suspect intruder, and then use a 
Right-Hand Rule to establish a perimeter [7], sequence of 
edges. The left querying nodes are searched clockwise, 

checking each boundary which has θ ≥     . In each boundary, 
we find the nearest node to the suspect intruder, and plot a line 
from the suspect intruder through the newly found node to the 
circular boundary. The partition of boundary continues until K 

nodes have been found or no boundary has θ ≥    . 
 

   
 

Figure 3.  Querying K sensor nodes around a suspect intruder (K = 10) (a) the 

first 5 sensor nodes; (b) the second 5 sensor nodes 

In [6], the authors described an Optimal Threshold Decision 
Scheme. According to the results in [6], the best policy for each 
node is to accept its own sensor reading if and only if at least 
half of its neighbors have the same reading.  In this paper, we 
adopt this policy for deciding a harmful intruder. 

V. MULTIPLE-TARGET TRACKING ALGORITHM 

A. Markov Chain Monte Carlo 

1) Problem formulation 
In [3], the authors designed the MCMC data association 

(MCMCDA) algorithm for tracking an unknown number of 
targets that appear and disappear in the surveillance region 
during a surveillance period of time.  The Markov chain Monte 
Carlo data association algorithm can initiate and terminate 
tracks autonomously and is robust to a high level of false 
alarms and missing measurements, a common problem in 
sensor networks [8]. During a surveillance period   ,   targets 

appear in the surveillance region   for some duration [   
 , 

  
 ] [1,  ]. Each target moves in   at a random position at   

 , 

and moves out of   at   
 . At each time, a target disappears 

with probability   . The number of targets arriving at each time 
over   has a Poisson distribution with a parameter     where 
   is the birth rate of new targets per unit time, per unit volume 
 . Similarly, the number of false alarms has a Poisson 
distribution with a parameter     where    is the false alarm 
rate per unit time, per unit volume. The detecting probability of 
a noisy observation is   .The number of observations at time   
is     . The purpose of MCMCDA is to find out the values   

and [  
 ,   

 ] (k = 1, 2, …  ). 

2) MCMC Algorithm 
MCMCDA adopts the Metropolis-Hastings algorithm to 

generate samples from a distribution   on a solution space   by 
constructing a Markov chain with state ω     and stationary 
distribution     . The acceptance probability of a proposed 
state    is defined as: 

                                         
 (  )       

           
                

where   is the current state and   is the proposal distribution. 

Let      = {                  } be all observations at 
time   and   = {     :  1≤   ≤   } be all observations during the 
surveillance of  . The solution space   is defined to be a 
collection of partitions of observations  , for ω   :  
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(1) ω = {  ,   , …,    }; 

(2)         
    and          for  ≠  ; 

(3)    is a set of false alarms; 

(4)            ≤ 1 for   = 1, 2, …,   and   = 1, 2, …,  ; 

and  

(5)      ≥ 2 for   = 1, 2, …, . 

The MCMCDA defines the stationary distribution      as:      

                                     *                                        

where 

     ∏  
          

      
           

      
      

    

 

   

 

        ∏        ∏        

     

   

              

In this framework, the tracking problem is toto find a state 
    with the maximum posterior among all of the checked 
states. 

                                                                         

The Kalman filter is used to estimate the expected value   
and covariance          is the likelihood of observation;  
    : the number of targets terminated at time  ;     : the 
number of new targets at time  ;     : the number of actual 
targets detected at time  ;        : the number of targets from 
time    ;                  : the number of targets from 
time     that has not terminated at time  ;           
         : the number of undetected targets;           
     : the number of false alarms. 

B. Reduction of State Space Size 

In [3] the authors make assumptions that any target has a 
maximal directional speed    ̅ , and that the number of 

consecutive missing observations of any track is less than  ̅ . 
To further accelerate the convergence rate of the Markov 
Chain, we distinguish abnormal from normal observations and 
identify the moving scope of an intruder at each monitoring 
time. 

1) Distinguish abnormal observation from normal 

observation 
When a sensor node receives a modified or fake message 

from an intruder it reports an abnormal observation to the 
cluster head.  otherwise reports a normal observation. The state 
space is a collection of partitions of observations. Each 
partition has a number of tracks that consist of different 
observations. Each track can only include normal observation 
or abnormal observation, which reduces the size of the state 
space. Figure 4 shows an example of partition with classified 
observations. 

 

 
 

 
 

Figure 4.  (a)  an example of observation Y (solid circles represent abnormal 

observations and hollow circles represent normal observations. The numbers 

represent observation times); (b) an example of a partition ω of Y 

2) Forecasting  intruder position  
We follow the method of [4], where it is assumed that a 

sensor node can sense an intruder approaching or moving 
away. We achieve this function by computing the energy level 
of signals, which requires small computational power [9].  

 

 
Figure 5.  The future moving direction of an intruder within the shaded area 

A sensor reports the movement trend of an intruder to the 
cluster head along with the normal or abnormal observation. 
The cluster predicts the movement of an intruder at a future 
time by collecting and analyzing received information from 
different sensors at a synchronized time and at the same 
position. Figure 5 illustrates three sensors.  Two of them sense 
that an intruder is approaching them (+ symbol), and one 
senses that the intruder is moving away (- symbol). The 
triangle shows the intruder position. The prediction is that the 
future position of this intruder is in the shaded area. 

VI. TABU SEARCH 

We utilize a local search technique to sample from the 
obtained observations. The sampling process is divided into 
two steps. First, an initial feasible set of tracks is constructed. 
Second, an improved new neighboring set of tracks is found.  
We define a cost function for each track as below: 

117

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-154-0



       ∑ (                          )  
   
               

   

We use    for the kth track; n is the number of observations 

in track    ;        ,        and        are Boolean values 

representing if the distance of two sequential observations 
exceeds a threshold value; if the types of two sequential 
observations are identical; and if the relative position of two 
sequential observations is in the forecasted area (the shaded 
area in Figure 5). 

An improved track must have cost that is no larger than the 
cost of the old track. The new neighboring set of tracks can 
include one or more than one improved tracks according to 
actual requirements. This new neighboring solution is used as a 
proposed state to calculate the acceptance probability in the 
MCMC algorithm. 

A neighborhood structure for defining moves based on  
ejection chains is well-known for the traveling salesman 
problem [21]. We use neighborhoods defined by ejection 
chains to produce effective moves with reduced computational 
effort. This method is a local search optimization technique 
which tries to minimize a cost function F(x), where x 
represents a parameter vector, by iteratively moving from a 
solution x to a solution x0 in the neighborhood of x until a 
stopping criterion is satisfied or a predetermined number of 
iterations N is reached.  Algorithm 1 and 2 show the ejection 
chain and Tabu search methodologies. 

We developed an ejection chain algorithm for the Tabu 
Search (TS) framework to determine if a trial set of tracks from 
received observations during a surveillance period. We group 
the observations by time period, then identify trial solutions in 
each group of observations using a proposed ejection chain 
algorithm. A trial solution is a connection among observations 
in a group. Ultimately, we combine all these group trial 
solutions to get a final trial set of tracks. Figure 6 and 7 
illustrate the method. This approach partitions an optimization 
problem into relatively independent sub-optimization 
problems, and accelerates the optimization process. 

 

 
Figure 6.  An example of observation Y (from time t1 to t3) 

      
 

 
 

Figure 7.  Illustration of searching for  a trial set of tracks from observation Y  

(a) trial solution of group1; (b) trial solution of group2; (c) the whole trial 
solution 

Algorithm 1 Ejection Chain Algorithm (ECA) 

  :  Number of observation in the first column; 

   : Number of observation in the second column; 

 :    Current Ejection level; 

  :   The current best ejection level; 

 

1:   Set    ,    =    . 

2:   Create the first level of the ejection chain 

      (a) Start from the node which has the largest track cost; 

      (b) Try to generate a new trial solution with no larger cost; 

      (c)    no such trial solution, go to step 4; 

      (d) Update current trial solution; 

      (e)    no ejection occurred, go to step 4; 

      (f) Record the last ejection node     . 

3:   Increase the chain to further levels (ref [19]) 

      (a) Set      ; 

      (b) Start from     , determine a new element that doesn’t    

            increase the cost; 

      (c) Update current trial solution and    ; 

      (d) If             and              go back to  

            step 3. Otherwise go to step 4; 

4:   Get a new trial solution    ; Exit. 

 

Algorithm 2 Tabu Search Algorithm (TSA) 

Temp: flag; 

TM:     the maximum value of iteration 

 

1:  Generate a starting solution in S randomly, let     ;    

2:  Call Ejection Chain Algorithm. 

3:  If improving:  set Temp = 0, update the best solution with  

      the new current solution,      ;   otherwise Temp++;  

      If Temp < TM return to step2, otherwise Exit. 

 

VII. SIMULATION RESULTS 

We wrote the MCMC algorithm and Tabu Search algorithm 
in the C++ language with Matlab interfaces, and implemented 
the DCA algorithm in the Java Agent DEvelopment 
Framework (JADE). The results of running the DCA algorithm 
are saved in a file that is called by the MCMC algorithm, KNQ 
algorithm and Ejection Chain algorithm. The surveillance area 
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is a    = [0, 100]   [0, 100]      rectangular region, and 200 
sensor nodes are randomly deployed in the area. 

Four experiments are implemented. The first experiment is 
used to measure and analyze the efficiency of the DCA 
algorithm on identifying malfunctioning sensor nodes; the 
second assesses the efficiency of the KNQ algorithm 
implemented by cluster heads. The KNQA verifies the 
credibility of received abnormal observations. The last two 
experiments show that the local search algorithm accelerates  
convergence of the Markov chain. 

A. Experiment 1-DCA algorithm  

We randomly deploy 10, 20, 30, 40 and 50 intruders in the 
test area and perform experiments on each case. In each case 
we take 10 samples. Figure 8 shows the results for detecting 
malfunction sensor nodes. The results show the DCA algorithm 
can detect more than 90% of the attacked sensor nodes when 
fewer than 10% of the intruders are harmful. The algorithm 
needs an initial period of time and a cache to monitor and 
identify a malfunctioning node.  This explains why there is a 
low detecting rate at the beginning of the sampling times, and 
decreased detecting rate when there are more harmful intruders.  

 
 

Figure 8.  Sampling time vs. attacked node detection rate with different 

number of harmful intruders 

B.  Experiment 2 – K-Neignbor Query Algorithm (KNQA) 

The accuracy probability of receiving a message from a 

suspect harmful intruder is defined as: 

                                 
 

 
∑      

 
            (5) 

where   is the number of neighbor nodes, and    is the angle 

of the     neighbor node, the suspect intruder and  the current 

node. Only those neighbors that have      [ 
     ] are 

considered. In this experiment, we analyze the effectiveness of 

the KNQ algorithm on detecting abnormal observation based 

on the data from the first experiment. There are five groups of 

data for each number of intruders in a WSN. The analysis is for 

the group with 20 intruders. The threshold value for the 

accuracy probability in (5) is 0.85. The number of querying 

node is 10.  

 
                                                                

Figure 9.  KNQ vs. KPT on detecting abnormal observations 

Figure 9 indicates that the KNQ algorithm has higher 
detection rate than KPT algorithm when considering 
interference among neighbor nodes. At sampling time 4.5, the 
KNQ has an obvious higher detection rate than KPT, which is 
caused by some nodes densely distributed in a particular area. 

C. Experiment 3 –MCMC with Tabu Search 

In this experiment, we utilize the same simulation settings 
as in [3]. The surveillance area is a    = [0, 100]   [0, 100] 
     rectangular region. The number of mobile targets K 
varies from 10 to 50. The other parameters are: T = 10,    
    ,     1.0,       ,          ,   ̅   ,   ̅     unit 
lengths per unit time. The state vector is   
[         ]

 where (x, y) is a coordinate and (     ) is a 

velocity vector. The Kalman filter is used to estimate the states 
of an target, and the models are: 

              

           
where 

  

     [

  
  

  
  

  
  

  
  

]      [

  
 

   

  
  

]       [

  
  
  
  

]

 

  

 
   and    are white noises with Gaussian distributions 
       

   and        
   respectively, where   

  
              and   

              . To estimate the 
efficiency of finding the optimal solution among a state space, 
we specify value 0.9 as a threshold for         defined in 
equation (2). 

1)  Number of samples vs Number of tracks  
A MCMC algorithm usually iterates some fixed number of 

times and the maximum posterior of a state is the optimal 
solution. In our case, the goal is to find the state defined in (3). 
We use the number of iterations required to find the state that 
has a larger posterior then a threshold as the criterion to 
evaluate convergence speed. We compare the algorithm with 
Markov Chain Monte Carlo Data Association (MCMCDA) by 
running each algorithm 10 times. 
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Figure 10.  Number of targets vs. number of tracks 

The number of tracks is significantly increased with the 
increase of targets. That means a longer time is needed to 
identify the real target tracks among the options. Figure 10 
shows that the algorithm reduces the number of optional tracks. 

2) Average running time vs number of tracks 
The running times of the algorithms with and without state 

space reduction and ejection chains are shown in Figure 11.  
The improved MCMC procedure is significantly faster.   

 

Figure 11.  Average running time vs. number of tracks 

VIII. CONCLUSION AND FUTURE WORK 

A two-phase security mechanism that combines Dendritic 
Cell, MCMC and Ejection Chain algorithms was developed 
and tested. The DCA algorithm detects malfunctioning sensor 
nodes and prevents damage to a WSN by ceasing response to 
requests from these nodes. The MCMC procedure 
simultaneously tracks multiple harmful mobile intruders. 
Instead of randomly samplings from the reported observations,  
ejection chains and a Tabu Search are used together to 
selectively sample from the observations and accelerate the 
convergence rate. Our results establish that our new security 
mechanism promptly identifies trouble makers.  
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