
A Two-Phase Security Algorithm for Hierarchical Sensor Networks

Jingjun Zhao

Department of Computer Science

North Dakota State University

Fargo, ND, USA

jingjun.zhao@my.ndsu.edu

Kendall E. Nygard

Department of Computer Science

North Dakota State University

Fargo, ND, USA

Kendall.Nygard@my.ndsu.edu

Abstract – We present a two-phase security system designed for

hierarchical wireless sensor networks and show how it can be

used to detect Denial-of-Service attacks and track harmful

intruders. This type of energy-exhaustion attacks can break the

connection of a sensor network and decreases its lifetime. First,

we apply a Dendritic Cell Algorithm inspired by danger theory to

actively detect attacked sensors that are implementing battery

exhaustion attack to neighbors. Second, the system passively

analyzes the tracks of the moving harmful intruders. The

tracking information is used by the base station to more

efficiently monitor and control the network. We adopt Markov

Chain Monte Carlo methods to track the intruders and a Tabu

Search technique to accelerate the searching of the final intruder

tracks. The simulation results demonstrate good performance of

this corrective and preventive security mechanism on detecting

the malfunction sensors and tracking the intruders.

 Keywords-Wireless Sensor Networks; Dendritic Cells

Algorithm; Markov Chain Monte Carlo; Tabu Search

I. INTRODUCTION

Improved wireless communication and electronics promote
the development of low-power, low-cost and multifunctional
sensor nodes [11]. Large numbers of such nodes can be
deployed in a wireless sensor network (WSN) to sense and
report data of importance. Common application areas include
hospitals, homes, battle fields, and transportation systems.
Security is of high importance in most WSNs. The sensors
deployed typically run on batteries with limited power and
computation ability. The communication channels can be
unreliable and unattended operations result in vulnerability to
attacks and sensor failures such as wormhole [22], denial-of-
service or sinkhole attacks [23]. Traditional cryptographic
security algorithms assume that all nodes are cooperative and
trustworthy [12]. This assumption is not satisfied in most real-
world WSN applications so that traditional security approaches
may not apply.

In this paper, we focus on detecting Denial-of-Service
(DoS) attacks aimed at multiplying the rate of battery
exhaustion in sensors. Harmful intruders maliciously consume
sensors energy by jamming a portion of a network. Local
disconnection may cause the cluster heads and the base station
failure of receiving correct and complete sensing data. This
type of attacks is very harmful to highly critical and sensitive
applications.

We adopt Artificial Immune System (AIS) approach and
multiple-target tracking techniques to detect security threats in
WSNs. This proactive approach of detecting malfunction
sensors and harmful intruders is more effective on increasing
the service lifetime of a given sensor network than passive

methods that only detect dead sensors. AIS is a problem-
solving methodology inspired by how biological immune
systems in mammals detect pathogens and destroy them before
they cause harm to the body. In real-world WSNs it is difficult
to know how many invaders of different types are present. But
knowing the distribution and the tracks of intruders is very
helpful information for a Base Station (BS) to have for
defending the network. In our work, we utilize a Multi-target
tracking technique to track mobile harmful intruders. A track is
a path in time-space traveled by a target [3]. The data
association problem is to identify the tracks of targets from
noisy observations of target positions at known points in time.

The main contribution of our work is the development of a
two-phase security mechanism for WSNs with hierarchical
structure by combining a Dendritic Cell Algorithm (DCA)
algorithm with a multiple-target tracking algorithm and a Tabu
Search technique. The two-level hierarchical sensor network
that we use for our experiments has a static backbone of
sparsely placed high-end sensors nodes called Cluster Heads
(CH). The low-end sensor nodes belong to different clusters
based on their physical position. This hierarchical structure is
well-suited for large scale sensor networks and is understood to
be energy preserving [10]. The DCA algorithm works on the
low-end nodes and identifies malfunctioning neighbors that
have been attacked by harmful intruders. The primary
malfunctions include packet change, fake packet and energy-
exhaustion. The ability to defend against these basic but widely
existing types of attacks in a WNS makes the algorithm a good
fit in practice. The multiple-target tracking algorithm
implementing on Cluster Heads is used to track the mobile
harmful intruders. Information about the distribution and
the trajectory of harmful intruders is used by the Base Station
(BS) to assess and evaluate current network defense capability.
The simulation results show that the immune-inspired
algorithm can effectively detect the low-end sensor nodes that
have been attacked and accurately track the mobile intruders.

Figure 1 shows the two-phase security architecture. Each
low-end sensor detects malfunctioning sensor nodes and
reports their positions to its cluster head. When a low-end
sensor receives a message it utilizes the DCA algorithm to
identify whether or not the message is abnormal. Messages are
reported to head node as normal or abnormal. Before
implementing the multi-target tracking algorithm, a cluster
head performs a K-Neighbor Query Algorithm (KNQA) to
assess the credibility of received abnormal observations. This
algorithm improves the accuracy of reported abnormal
observation. The tracking results are ultimately sent to the base
station.

114

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

mailto:jingjun.zhao@my.ndsu.edu
mailto:Kendall.Nygard@my.ndsu.edu

The rest of the paper is organized as follows. Section II

discusses the related works. We detail the Dendritic Cell

Algorithm in Section III. In Section IV, we present the query

algorithm based on the K-Nearest Neighbor (KNN) technique.

In Section V, we present the MCMC algorithm for multiple-

target tracking. The Tabu Search technique used to identify the

tracks of the targets in a WSN is represented in Section VI. We

simulate the proposed algorithms and compare the performance

with the MCMCDA algorithm in Section VII. Finally, the

conclusion is given in Section VIII.

Figure 1. The two-phase security architecture (hollow circles represent

normal sensors; the solid circle represents a malfunctioning sensor; and the
stars represent mobile intruders)

II. RELATED WORKS

A particular class of AIS methodologies called a Negative
Selection Algorithms (NSA) has been applied to anomaly
detection problems [14]. Inspired by immunology, the
approach uses a learning phase to construct detectors that can
identify and dispatch invaders, but are not harmful to the
organism itself. A fundamental issue in a NSA is maintaining
distinguishing units from the host (self units) from the invaders
(non-self units).[13]. Following another type of AIS, the work
in [15] advanced the Danger Theory (DT) approach to intrusion
detection. In Danger Theory, the central idea is that the
immune system detects and responds to damage to the host,
rather than upfront discrimination between self and non-self
units. Dendritic cells play a central role in Danger theory. Work
by Nauman and Muddassar [16] established a security system
based on the behaviors of Dendritic Cells. The work reported in
[17] includes detailed rules for a Dendritic Cell Algorithm
(DCA) for analyzing abnormal signals. These DCAs are more
flexible at detecting misbehaviors than NSAs, but do require a
monitoring period to identify an intruder, resulting in
inefficiency in situations with moving intruders.

Multiple-target tracking is a competent technique on
tracing moving intruders in WSNs. In [3], the authors proposed
a Markov Chain Monte Carlo Data Association (MCMCDA)
algorithm for tracking a variable number of targets in real-time.
It was established that MCMCDA is computationally efficient
compared to multiple hypothesis tracker (MHT) [18], which is
the prominent methodology for solving the data association
problem, and outperforms MHT when there are large number
of targets. MCMCDA partitions the observations into groups
corresponding to candidate tracks. The collection of different
partitions forms the state space for the MCMC method that
searches for the most likely partitioning into intruder tracks. To
make the computations of the proposal distribution easier, the
authors include two additional assumptions: (1) the maximal
directional speed of any target is less than ̅ ; and (2) the
number of consecutive missing observations of any track is less

than ̅.

Convergence rate is an important criterion on assessment of

MCMC algorithm ability [20]. Although the MCMCDA makes

two assumptions to decrease the size of state space, it doesn’t

have obvious improvement when the state space is very large.

To accelerate the search of the final intruder tracks, we design

two ways to improve the convergence rate of the Markov

Chains used in the MCMC approach. Firstly, we further

decrease the size of state space by classifying observations and

predicting the moving area of an intruder. Secondly, we apply a

proposed Ejection Chain algorithm to the optimal solution

searching process. This approach partitions an optimization

problem into relatively independent sub-optimization

problems, and accelerates the optimization process. Comparing

with a full MCMCDA, our algorithm needs fewer samples to

reach an optimal solution.

III. THE DENDRITIC CELL APPROACH

Our previous work [5] proposed a Dendritic Cell inspired
algorithm. This algorithm consists of three sub-functions:
checking for dangerous messages, abnormal messages and
harmful intruders. Identifying a harmful intruder is a process of
changes among immature state, semi-mature state and mature
state. When a sensor node receives a new message, the
algorithm firstly checks a saved Harmful Intruder (HI) list. If
the sender of this message is an identified harmful intruder with
mature state, the message is considered to be a dangerous
message. If the sender is an identified suspicious intruder with
semi-mature state and exists in a Semi-Harmful Intruder (SHI)
list, the algorithm implements the function of identifying
harmful intruder to decide whether this sender is dangerous
enough to be considered as a harmful intruder. Finally, the
algorithm implements the function of checking for abnormal
message. The sender is saved in the SHI list and its state
changed from immature to semi-mature if the message is
abnormal. This algorithm only consumes limited energy of a
sensor node because of the simple calculation in each sub-
function. The experiment results showed that this algorithm is
capable of detecting static harmful nodes.

IV. K-NEIGHBOR QUERY ALGORITHM

In [1], the authors proposed the KNN Perimeter Tree (KPT)
algorithm for dynamically processing KNN queries in location-

115

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

aware sensor networks. The algorithm KPT first adopts GPSR,
which is a geographical routing algorithm [2], to find the Home
Node (HN) that is the nearest sensor to the Query Point (QP).
As by-products, the perimeter nodes around the QP are also
determined when the HN is found. A circular boundary
including at least K sensor nodes is determined. At each hop
around the perimeter, the midpoint on the line between
perimeter nodes is computed, and by plotting a line from the
QP through the midpoint to the circular boundary the sub-tree
boundaries are determined. In each boundary, a spanning tree is
constructed, shown in Figure 2. Each node on the tree reports
its position and ID to its parent node. Finally, all sensor
information in the circular boundary is reported to the HN. The
HN sorts these nodes by their distance to the QP to find the K
nearest neighbors.

Figure 2. KNN Perimeter Tree

The perimeter boundaries can keep the spanning trees
balanced and thus reduce the overall query latency. It is still
possible that the K nearest neighbors are all or mostly in one
spanning tree. Only querying some sensor nodes densely
distributed in a small area around the QP cannot be trusted. In a
given spanning tree, each node sends packages to its parent
node instead of broadcasting. This reduces the number of
totally transmitted message. But if a parent node in a spanning
tree close to the root node has failed (e.g., because of energy
exhaustion), this spanning tree will be useless for finding the K
nearest neighbors.

To avoid these disadvantages and make the KNN query
algorithm more efficient for detecting harmful intruders, we
design the K- Neighbor Query Algorithm (KNQA) for finding
K querying neighbors. Instead of constructing spanning trees in
each sub-boundary, the KNQA finds K querying sensor nodes
around a suspect harmful intruder, and these querying nodes
tend to be closely and sparsely distributed around the suspect
intruder.

Figure 3 shows an example of identifying 10 querying
sensor nodes around a suspect harmful intruder. The first group
querying nodes are those closest to the suspect node. We first,
find the closest node to the suspect intruder, and then use a
Right-Hand Rule to establish a perimeter [7], sequence of
edges. The left querying nodes are searched clockwise,

checking each boundary which has θ ≥ . In each boundary,
we find the nearest node to the suspect intruder, and plot a line
from the suspect intruder through the newly found node to the
circular boundary. The partition of boundary continues until K

nodes have been found or no boundary has θ ≥ .

Figure 3. Querying K sensor nodes around a suspect intruder (K = 10) (a) the

first 5 sensor nodes; (b) the second 5 sensor nodes

In [6], the authors described an Optimal Threshold Decision
Scheme. According to the results in [6], the best policy for each
node is to accept its own sensor reading if and only if at least
half of its neighbors have the same reading. In this paper, we
adopt this policy for deciding a harmful intruder.

V. MULTIPLE-TARGET TRACKING ALGORITHM

A. Markov Chain Monte Carlo

1) Problem formulation
In [3], the authors designed the MCMC data association

(MCMCDA) algorithm for tracking an unknown number of
targets that appear and disappear in the surveillance region
during a surveillance period of time. The Markov chain Monte
Carlo data association algorithm can initiate and terminate
tracks autonomously and is robust to a high level of false
alarms and missing measurements, a common problem in
sensor networks [8]. During a surveillance period , targets

appear in the surveillance region for some duration [
 ,

] [1,]. Each target moves in at a random position at

 ,

and moves out of at
 . At each time, a target disappears

with probability . The number of targets arriving at each time
over has a Poisson distribution with a parameter where
 is the birth rate of new targets per unit time, per unit volume
 . Similarly, the number of false alarms has a Poisson
distribution with a parameter where is the false alarm
rate per unit time, per unit volume. The detecting probability of
a noisy observation is .The number of observations at time
is . The purpose of MCMCDA is to find out the values

and [
 ,

] (k = 1, 2, …).

2) MCMC Algorithm
MCMCDA adopts the Metropolis-Hastings algorithm to

generate samples from a distribution on a solution space by
constructing a Markov chain with state ω and stationary
distribution . The acceptance probability of a proposed
state is defined as:

 ()

 

where is the current state and is the proposal distribution.

Let = { } be all observations at
time and = { : 1≤ ≤ } be all observations during the
surveillance of . The solution space is defined to be a
collection of partitions of observations , for ω :

116

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

(1) ω = { , , …, };

(2)
 and for ≠ ;

(3) is a set of false alarms;

(4) ≤ 1 for = 1, 2, …, and = 1, 2, …, ;

and

(5) ≥ 2 for = 1, 2, …, .

The MCMCDA defines the stationary distribution as:

 * 

where

 ∏

 ∏ ∏

In this framework, the tracking problem is toto find a state
 with the maximum posterior among all of the checked
states.

 

The Kalman filter is used to estimate the expected value
and covariance is the likelihood of observation;
 : the number of targets terminated at time ; : the
number of new targets at time ; : the number of actual
targets detected at time ; : the number of targets from
time ; : the number of targets from
time that has not terminated at time ;
 : the number of undetected targets;
 : the number of false alarms.

B. Reduction of State Space Size

In [3] the authors make assumptions that any target has a
maximal directional speed ̅ , and that the number of

consecutive missing observations of any track is less than ̅ .
To further accelerate the convergence rate of the Markov
Chain, we distinguish abnormal from normal observations and
identify the moving scope of an intruder at each monitoring
time.

1) Distinguish abnormal observation from normal

observation
When a sensor node receives a modified or fake message

from an intruder it reports an abnormal observation to the
cluster head. otherwise reports a normal observation. The state
space is a collection of partitions of observations. Each
partition has a number of tracks that consist of different
observations. Each track can only include normal observation
or abnormal observation, which reduces the size of the state
space. Figure 4 shows an example of partition with classified
observations.

Figure 4. (a) an example of observation Y (solid circles represent abnormal

observations and hollow circles represent normal observations. The numbers

represent observation times); (b) an example of a partition ω of Y

2) Forecasting intruder position
We follow the method of [4], where it is assumed that a

sensor node can sense an intruder approaching or moving
away. We achieve this function by computing the energy level
of signals, which requires small computational power [9].

Figure 5. The future moving direction of an intruder within the shaded area

A sensor reports the movement trend of an intruder to the
cluster head along with the normal or abnormal observation.
The cluster predicts the movement of an intruder at a future
time by collecting and analyzing received information from
different sensors at a synchronized time and at the same
position. Figure 5 illustrates three sensors. Two of them sense
that an intruder is approaching them (+ symbol), and one
senses that the intruder is moving away (- symbol). The
triangle shows the intruder position. The prediction is that the
future position of this intruder is in the shaded area.

VI. TABU SEARCH

We utilize a local search technique to sample from the
obtained observations. The sampling process is divided into
two steps. First, an initial feasible set of tracks is constructed.
Second, an improved new neighboring set of tracks is found.
We define a cost function for each track as below:

117

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

 ∑ ()

 

We use for the kth track; n is the number of observations

in track ; , and are Boolean values

representing if the distance of two sequential observations
exceeds a threshold value; if the types of two sequential
observations are identical; and if the relative position of two
sequential observations is in the forecasted area (the shaded
area in Figure 5).

An improved track must have cost that is no larger than the
cost of the old track. The new neighboring set of tracks can
include one or more than one improved tracks according to
actual requirements. This new neighboring solution is used as a
proposed state to calculate the acceptance probability in the
MCMC algorithm.

A neighborhood structure for defining moves based on
ejection chains is well-known for the traveling salesman
problem [21]. We use neighborhoods defined by ejection
chains to produce effective moves with reduced computational
effort. This method is a local search optimization technique
which tries to minimize a cost function F(x), where x
represents a parameter vector, by iteratively moving from a
solution x to a solution x0 in the neighborhood of x until a
stopping criterion is satisfied or a predetermined number of
iterations N is reached. Algorithm 1 and 2 show the ejection
chain and Tabu search methodologies.

We developed an ejection chain algorithm for the Tabu
Search (TS) framework to determine if a trial set of tracks from
received observations during a surveillance period. We group
the observations by time period, then identify trial solutions in
each group of observations using a proposed ejection chain
algorithm. A trial solution is a connection among observations
in a group. Ultimately, we combine all these group trial
solutions to get a final trial set of tracks. Figure 6 and 7
illustrate the method. This approach partitions an optimization
problem into relatively independent sub-optimization
problems, and accelerates the optimization process.

Figure 6. An example of observation Y (from time t1 to t3)

Figure 7. Illustration of searching for a trial set of tracks from observation Y

(a) trial solution of group1; (b) trial solution of group2; (c) the whole trial
solution

Algorithm 1 Ejection Chain Algorithm (ECA)

 : Number of observation in the first column;

 : Number of observation in the second column;

 : Current Ejection level;

 : The current best ejection level;

1: Set , = .

2: Create the first level of the ejection chain

 (a) Start from the node which has the largest track cost;

 (b) Try to generate a new trial solution with no larger cost;

 (c) no such trial solution, go to step 4;

 (d) Update current trial solution;

 (e) no ejection occurred, go to step 4;

 (f) Record the last ejection node .

3: Increase the chain to further levels (ref [19])

 (a) Set ;

 (b) Start from , determine a new element that doesn’t

 increase the cost;

 (c) Update current trial solution and ;

 (d) If and go back to

 step 3. Otherwise go to step 4;

4: Get a new trial solution ; Exit.

Algorithm 2 Tabu Search Algorithm (TSA)

Temp: flag;

TM: the maximum value of iteration

1: Generate a starting solution in S randomly, let ;

2: Call Ejection Chain Algorithm.

3: If improving: set Temp = 0, update the best solution with

 the new current solution, ; otherwise Temp++;

 If Temp < TM return to step2, otherwise Exit.

VII. SIMULATION RESULTS

We wrote the MCMC algorithm and Tabu Search algorithm
in the C++ language with Matlab interfaces, and implemented
the DCA algorithm in the Java Agent DEvelopment
Framework (JADE). The results of running the DCA algorithm
are saved in a file that is called by the MCMC algorithm, KNQ
algorithm and Ejection Chain algorithm. The surveillance area

118

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

http://jade.tilab.com/
http://jade.tilab.com/

is a = [0, 100] [0, 100] rectangular region, and 200
sensor nodes are randomly deployed in the area.

Four experiments are implemented. The first experiment is
used to measure and analyze the efficiency of the DCA
algorithm on identifying malfunctioning sensor nodes; the
second assesses the efficiency of the KNQ algorithm
implemented by cluster heads. The KNQA verifies the
credibility of received abnormal observations. The last two
experiments show that the local search algorithm accelerates
convergence of the Markov chain.

A. Experiment 1-DCA algorithm

We randomly deploy 10, 20, 30, 40 and 50 intruders in the
test area and perform experiments on each case. In each case
we take 10 samples. Figure 8 shows the results for detecting
malfunction sensor nodes. The results show the DCA algorithm
can detect more than 90% of the attacked sensor nodes when
fewer than 10% of the intruders are harmful. The algorithm
needs an initial period of time and a cache to monitor and
identify a malfunctioning node. This explains why there is a
low detecting rate at the beginning of the sampling times, and
decreased detecting rate when there are more harmful intruders.

Figure 8. Sampling time vs. attacked node detection rate with different

number of harmful intruders

B. Experiment 2 – K-Neignbor Query Algorithm (KNQA)

The accuracy probability of receiving a message from a

suspect harmful intruder is defined as:

∑

 (5)

where is the number of neighbor nodes, and is the angle

of the neighbor node, the suspect intruder and the current

node. Only those neighbors that have [
] are

considered. In this experiment, we analyze the effectiveness of

the KNQ algorithm on detecting abnormal observation based

on the data from the first experiment. There are five groups of

data for each number of intruders in a WSN. The analysis is for

the group with 20 intruders. The threshold value for the

accuracy probability in (5) is 0.85. The number of querying

node is 10.

Figure 9. KNQ vs. KPT on detecting abnormal observations

Figure 9 indicates that the KNQ algorithm has higher
detection rate than KPT algorithm when considering
interference among neighbor nodes. At sampling time 4.5, the
KNQ has an obvious higher detection rate than KPT, which is
caused by some nodes densely distributed in a particular area.

C. Experiment 3 –MCMC with Tabu Search

In this experiment, we utilize the same simulation settings
as in [3]. The surveillance area is a = [0, 100] [0, 100]
 rectangular region. The number of mobile targets K
varies from 10 to 50. The other parameters are: T = 10,
 , 1.0, , , ̅ , ̅ unit
lengths per unit time. The state vector is
[]

 where (x, y) is a coordinate and () is a

velocity vector. The Kalman filter is used to estimate the states
of an target, and the models are:

where

 [

] [

] [

]

 and are white noises with Gaussian distributions

 and
 respectively, where

 and

 . To estimate the
efficiency of finding the optimal solution among a state space,
we specify value 0.9 as a threshold for defined in
equation (2).

1) Number of samples vs Number of tracks
A MCMC algorithm usually iterates some fixed number of

times and the maximum posterior of a state is the optimal
solution. In our case, the goal is to find the state defined in (3).
We use the number of iterations required to find the state that
has a larger posterior then a threshold as the criterion to
evaluate convergence speed. We compare the algorithm with
Markov Chain Monte Carlo Data Association (MCMCDA) by
running each algorithm 10 times.

119

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

Figure 10. Number of targets vs. number of tracks

The number of tracks is significantly increased with the
increase of targets. That means a longer time is needed to
identify the real target tracks among the options. Figure 10
shows that the algorithm reduces the number of optional tracks.

2) Average running time vs number of tracks
The running times of the algorithms with and without state

space reduction and ejection chains are shown in Figure 11.
The improved MCMC procedure is significantly faster.

Figure 11. Average running time vs. number of tracks

VIII. CONCLUSION AND FUTURE WORK

A two-phase security mechanism that combines Dendritic
Cell, MCMC and Ejection Chain algorithms was developed
and tested. The DCA algorithm detects malfunctioning sensor
nodes and prevents damage to a WSN by ceasing response to
requests from these nodes. The MCMC procedure
simultaneously tracks multiple harmful mobile intruders.
Instead of randomly samplings from the reported observations,
ejection chains and a Tabu Search are used together to
selectively sample from the observations and accelerate the
convergence rate. Our results establish that our new security
mechanism promptly identifies trouble makers.

REFERENCES

[1] J.Winter and W. Lee. Kpt, ―A Dynamic KNN Query Processing
Algorithm for Location-aware Sensor Networks,‖ Proc. of DMSN, 2004.

[2] B. Karp and H. T. Kung, ―GPSR: Greedy Perimeter Stateless Routing
for Wireless Networks,‖ In Proceedings of the 6th Annual Int.
Conference on Mobile Computing and Networking, pp. 243–254, 2000.

[3] S. Oh, S. Russell, and S. Sastry, "Markov Chain Monte Carlo Data
Association for General Multiple-Target Tracking Problems," in Proc. of
the IEEE International Conference on Decision and Control, Paradise
Island, Bahamas, Dec. 2004.

[4] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, and D. Rus,
―Tracking a Moving Object with Binary Sensors,‖ Proc. ACM SenSys
Conf., Nov. 2003.

[5] J. J. Zhao and K. E. Nygard, ―A Dendritic Cell Inspired Security System
in WSNs,‖ FUTURE COMPUTING 2010, Int. Conference on Future
Computational Technologies and Applications, Lisbon, Nov. 21, 2010.

[6] B. Krisnamachari and S. S. Iyengar, ―Distributed Bayesian algorithms
for fault-tolerant event region detection in wireless sensor networks,‖
IEEE Transactions on Computers, Vol. 53, No. 3, Mar. 1, 2004.

[7] B. Karp and H. T. Kung, ―GPSR: Greedy Perimeter Stateless Routing
for wireless networks,‖ in: Proceedings of the Sixth Annual ACM/IEEE
International Conference on Mobile Computing and Networking
(MobiCom), Boston, MA (August 2000).

[8] P. Chen, S. Oh, M. Manzo, B. Sinopoli, C. Sharp, K. Whitehouse, G.
Tolle, J. Jeong, P. Dutta, J. Hui, S. Shaert, S. Kim, J. Taneja, B. Zhu, T.
Roosta, M. Howard, D. Culler, and S. Sastry, ―Experiments in
instrumenting wireless sensor networks for real-time surveillance,‖ In
International Conference on Robotics and Automation (video), 2006.

[9] W. Chen, J. Hou, and L. Sha, ―BDynamic clustering for acoustic target
tracking in wireless sensor networks,‖ in Proc. of the 11th IEEE Int.
Conf. Network Protocols, Nov. 2003, pp. 284–294.

[10] F. L. Lewis, ―Wireless sensor networks,‖ In D. J. Cook and S. K. Das,
editors, Smart Environments: Technology, Protocols, and Applications.
Wiley, 2004.

[11] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, ―A
survey on sensor networks,‖ IEEE Communications Magazine 40, 8
(Aug.), 102—114, 2002.

[12] J. P. Walthers, Z. Liang, W. Shi and V. Chaudhary, ―Wireless Sensor
Networks Security: a Survey,‖ Report MIST-TR-2005-007, 2005.

[13] J. Kim and P. J. Bentley, ―Evaluating Negative Selection in an Artificial
Immune System for Network Intrusion Detection,‖ Proc. Genetic and
Evolutionary Computation Conference (GECCO), 2001.

[14] S. Forrest, S. Hofmeyr, and A. Somayaji, ―Computer Immunology,‖
Communications of the ACM, 40(10):88-96, 1997.

[15] U. Aickelin, P. Bentley, S. Cayzer, J. Kim, and J. McLeod, ―Danger
theory: The link between AIS and IDS,‖ Proceedings of the Second
International Conference on Artificial Immune Systems (ICARIS 2003),
vol. 2787 of LNCS, Springer-Verlag; pp. 147–155, 2003.

[16] N. Mazhar and M. Farooq, ―A sense of danger: dendritic cells inspired
artificial immune system for MANET security,‖ GECCO 2008: 63-70.

[17] A. P. da Silva, M. Martins, B. Rocha, A. Loureiro, L. Ruiz, and H. C.
Wong, ―Decentralized intrusion detection in wireless sensor networks,‖
in Proceedings of the 1st ACM international workshop on Quality of
service & security in wireless and mobile networks (Q2SWinet ’05).
ACM Press, October 2005, pp. 16–23.

[18] D. B. Reid, ―An Algorithm for Tracking Multiple Targets,‖ IEEE
Transaction on Automatic Control, 24(6):843–854, December 1979.

[19] C. Rego, T. James and F. Glover, ― An Ejection Chain Algorithm for the
Quadratic Assignment Problem,‖ Networks, 2009.

[20] M. K. Cowles and B. P. Carlin, ―Markov chain Monte Carlo
convergence diagnostics: a comparative review,‖ Journal of the
American Statistical Association 91, 883–904, 1996.

[21] F. Glover, ― Multilevel tabu search and embedded search neighborhoods
for the traveling salesman problem,‖ Working paper, College of
Business & Administration, University of Colorado, Boulder, CO, 1991.

[22] Y. Hu, A. Perrig and D. Johnson, ―Packet leashes: a defense against
wormhole attacks in wireless networks,‖ IEEE Annual Conference on
Computer Communications (INFOCOM), 2003, pp. 1976–1986.

[23] A. D. Wood and J. A. Stankovic, ―Denial of service in sensor networks,‖
IEEE Computer Magazine, October 2002, pp. 54-62.

120

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

http://dblp.uni-trier.de/db/indices/a-tree/m/Mazhar:Nauman.html
http://dblp.uni-trier.de/db/conf/gecco/gecco2008.html#MazharF08

