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Abstract—One of the difficulties for current GPGPU
(General-Purpose computing on Graphics Processing Units)
users is writing code to use multiple GPUs. One limiting
factor is that only a few GPUs can be attached to a PC,
which means that MPI (Message Passing Interface) would be
a common tool to use tens or more GPUs. However, an MPI-
based parallel code is sometimes complicated compared with a
serial one. In this paper, we propose DS-CUDA (Distributed-
Shared Compute Unified Device Architecture), a middleware
to simplify the development of code that uses multiple GPUs
distributed on a network. DS-CUDA provides a global view
of GPUs at the source-code level. It virtualizes a cluster of
GPU equipped PCs to seem like a single PC with many GPUs.
Also, it provides automated redundant calculation mechanism
to enhance the reliability of GPUs. The performance of Monte
Carlo and many-body simulations are measured on 22-node
(64-GPU) fraction of the TSUBAME 2.0 supercomputer. The
results indicate that DS-CUDA is a practical solution to use
tens or more GPUs.

Keywords-GPGPU; CUDA; distributed shared system; virtual-
ization.

I. INTRODUCTION

Optimization of communication among several hundreds
of thousands of CPU cores is one of the main concerns
in high performance computing. The largest supercomputer
[1] has nearly a million cores, on which the communication
tends to be the bottleneck instead of the computation.

On modern massively parallel systems, several (typically
4–16) CPU cores in one processor node share the same
memory device. The design of a program should take this
memory hierarchy into account. A naive design that assigns
one MPI (Message Passing Interface) process to each core
causes unnecessary communication among cores in the same
node. In order to avoid this inefficiency, a hybrid of MPI
and OpenMP is often used, where each OpenMP thread is
assigned to one core, and one MPI process is used per node.

Moreover, a significant fraction of recent top machines in
the TOP500 list [2] utilize GPUs. For example, the TSUB-
AME 2.0 supercomputer [3] consists of 1,408 nodes, each
containing 3 NVIDIA GPUs. In order to program GPUs,
frameworks such as CUDA [4] or OpenCL [5] are necessary.
Therefore, a program on massively parallel systems with

GPUs needs to be written using at least three frameworks,
namely, MPI, OpenMP, and CUDA (or OpenCL).

However, even a complicated program using all three
frameworks may fail to take full advantage of all the CPU
cores. For example, if one thread is assigned to a core to
control each GPU, only a few cores per PC would be in
use, since only a few GPUs can be attached to a PC. There
are typically more cores than GPUs on a single node, and
utilizing these remaining cores is also important.

We propose a Distributed-Shared CUDA (DS-CUDA)
framework to solve the major difficulties in programming
multi-node heterogeneous computers. DS-CUDA virtualizes
all GPUs on a distributed network as if they were attached to
a single node. This significantly simplifies the programming
of multi-GPU applications.

Another issue that DS-CUDA addresses is reliability of
GPUs. Consumer GPUs such as GeForce sometimes are
prone to memory errors due to the lack of ECC (Error Check
and Correct) functions. Hamada et al. [6] reported around
a 10% failure rate for one week of execution on GeForce
GTX 295 cards. Furthermore, even with server-class GPUs,
erroneous code may cause faulty execution of successive
parts of the program, which is difficult to debug on a multi-
GPU environment. DS-CUDA increases the reliability of
GPUs by a built-in redundancy mechanism.

The virtualization of multi-GPUs in DS-CUDA also alle-
viates the increased burden to manage heterogeneous hard-
ware systems. For example, some nodes in a GPU cluster
might have a different number of GPUs than others, or even
no GPUs. With DS-CUDA the user no longer needs to worry
about the number of GPUs on each node.

A key concept of DS-CUDA is to provide a global view of
GPUs for CUDA based programs. Global view of distributed
memory is one of the key features of next generation
languages, such as Chapel [7] and X10 [8]. These languages
greatly reduce the complexity of the program compared to
MPI and OpenMP hybrid implementations. However, they
do not provide the global view on GPUs, since GPUs can
only be accessed through dedicated APIs such as CUDA and
OpenCL.
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Figure 1. The structure of a typical DS-CUDA system. The client program
using CUDA runs on a client node, while DS-CUDA server programs run
on each server node for each GPU.

Similar ideas for virtualizing GPUs have been implemeted
in rCUDA [9][10], vCUDA [11], gVirtuS [12], GViM [13],
and MGP [14]. However, vCUDA, gVirtuS and GViM virtu-
alize the GPUs to enable the access from a virtual machine
in the same box, and they do not target remote GPUs.
MGP is a middleware to run OpenCL programs on remote
GPUs. Their idea is similar to ours, but they only support
OpenCL, and not CUDA. rCUDA is also a middleware
to virtualize remote GPUs, and it supports CUDA. In this
sense, rCUDA is quite similar to DS-CUDA. The primary
difference between rCUDA and DS-CUDA is that the former
aims to reduce the number of GPUs in a cluster for lowering
construction and maintenance cost, while the latter aims to
provide a simple and reliable solution to use as many GPUs
as possible. To this end, DS-CUDA incorporates a fault
tolerant mechanism, that can perform redundant calculations
by using multiple GPUs. Errors are detected by comparing
the results from multiple GPUs. When an error is detected,
it automatically recovers from the error by repeating the
previous CUDA API and kernel calls until the results match.
This fault tolerant function is hidden from the user.

In this paper, we propose a DS-CUDA middleware. In
Section II, the design and implementation are explained. In
Section III, the performance measured on up to 64 GPUs
is shown. In Section IV, conclusions and future work are
described.

II. IMPLEMENTATION

In this section, we describe the design and implementation
of DS-CUDA.

A. System Structure

The structure of a typical DS-CUDA system is depicted
in Figure 1. It consists of a single client node and multiple
server nodes, connected via InfiniBand network.

Client Node

User Application

CUDA API Wrapper

IB Verb Lib.

IB HCA Driver 

IB Interconnect

Server Node

GPU

IB HCA Driver 

IB Verb Lib.

DS-CUDA Sever

CUDA Runtime Lib.

CUDA Driver Lib.

CUDA Driver

PCIe

Figure 2. The software-layer stack. On the client node, the user application
program calls CUDA API wrappers instead of native CUDA APIs. On
server node, DS-CUDA server calls actual cuda APIs. Communication
between client and server nodes are performed by InfiniBand Verbs by
default.

Each server node has one or more CUDA devices (i.e.,
GPUs), each of which is handled by a server process. An
application running on the client node can utilize these
devices by communicating with the server node over the
network.

B. Software-Layer Stack

Figure 2 shows the software-layer stack of both the
client and server node. On the client node, the application
program is linked to the DS-CUDA client library. The library
provides CUDA API wrappers, in which the procedure to
communicate with the servers are included. Therefore, the
CUDA devices on the server nodes can be accessed via usual
CUDA APIs, as if they were locally installed.

By default, the client-server communication uses Infini-
Band Verbs, but can also use TCP sockets in case the
network infrastructure does not support InfiniBand.

C. CUDA C/C++ Extensions

Access to CUDA devices are usually done through CUDA
API calls, such as cudaMalloc() and cudaMemcpy().
As mentioned above, these are replaced with calls to CUDA
API wrappers, which communicate with the devices on the
server nodes.

There are, however, several exceptions. Some
CUDA C/C++ extensions, including calls to
CUDA kernels using triple angle brackets, e.g.,
myKernel<<<g,b>>>(val,...), access the CUDA
devices without explicit calls to CUDA APIs.

The DS-CUDA preprocessor, dscudacpp handles
CUDA C/C++ extensions. Figure 3 summarizes the pro-
cedure: In order to build an executable for the application
program, the source codes are fed to dscudacpp, instead
of usual nvcc. The sources are scanned by dscudacpp,
and the CUDA C/C++ extensions are replaced with remote
calls which load and launch the kernel on the server side.
Then, it passes the modified sources on to the C compiler
cc. Meanwhile, dscudacpp retrieves the definitions of
kernel functions and passes them on to nvcc. The kernel
functions are compiled by nvcc, and kernel modules are
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__global__ void
myKernel(float *arg,...)
{
    ....

myKernel<<<g, b>>>(val,...);

userapp.cu
dscudacpp

nvcc
userapp.ptx

call to :
  - kernel-module loader
  - kernel launcher

Figure 3. CUDA C/C++ Extensions are preprocessed by dscudacpp.
GPU kernel myKernel is compiled by native nvcc compiler and also
converted by dscudacpp to calls to the kernel-module loader and kernel
launcher.

generated in .ptx format. During the execution of the
application program, the kernel modules in the client node
are transferred to the server nodes upon request.

D. Virtual Device Configuration

The application program sees virtual devices that
represent real devices on the server nodes via the CUDA
API wrapper. The mapping of the real to virtual devices
is given by an environment variable DSCUDA_SERVER.
Table I gives an example of the mapping.

sh> export DSCUDA_SERVER= \
"node0:0 node0:1,node1:0 node1:1"

Device0 on Server Node0 is mapped to the virtual Device0,
Device1 of Node0 and Device0 of Node1 are mapped to
virtual Device1, and so on. Note that two devices, Device1
of Node0 and Device0 of Node1, are mapped to a single
virtual Device1, that represents a 2-way redundant device.
The mechanism of redundant devices will be described in
the next section.

E. Fault-Tolerant Mechanism

A virtual device can have redundancy, in order to improve
reliability of the calculations performed on the device. That
is, multiple CUDA devices on the server nodes can be as-
signed to a single virtual device on the client node. Identical
calculations are performed on the redundant devices, and the
results are compared between the redundant calculations. If
any of the results do not match, the client library invokes
an error handler.

By default, the handler tries to recover from the er-
ror. It reproduces all CUDA API calls after the lat-
est successful call to cudaMemcpy() of transfer type
cudaMemcpyDeviceToHost. The application program
may override this behavior, if it is not desirable.

F. Functional Restrictions

Although DS-CUDA provides transparent access to
CUDA devices over the network, its function is not fully
compatible with the native CUDA framework. The current
version has the following restrictions:
(a) The graphics relevant APIs, such as OpenGL and

Direct3D interoperability, are not supported.

Table I
AN EXAMPLE OF A MAPPING OF REAL DEVICES ON THE SERVER NODES

TO VIRTUAL DEVICES ON THE CLIENT NODE.

Client-side Server-side
virtual device real device
Device 0 Device 0 of node0
Device 1 Device 1 of node0 and device 0 of node1

(2-way redundancy)
Device 2 Device 1 of node1

(b) Only CUDA Toolkit 4.0 is supported.
(c) Some capabilities to set memory attributes, including

page lock and write combining, are not supported.
(d) Asynchronous APIs are implemented as aliases to their

synchronous counterparts.
(e) Only the CUDA Runtime APIs, a part of CUFFT and

a part of CUBLAS are supported. The CUDA Driver
APIs are not supported.

The graphics APIs listed in (a) are meaningless for remote
devices, whose video outputs are not used. Rest of the
restricted capabilities, (b)–(e), are planned to be supported
in the near future.

III. MEASURED PERFORMANCE

In this section, we show performances of the DS-CUDA
system measured on a fraction of the TSUBAME 2.0 [3]
GPU cluster. The fractional system consists of 22 nodes,
each houses two Intel Xeon processors (X5670) and three
NVIDIA Tesla GPUs (M2050, x16 Gen2 PCI Express,
64Gbps).

In Section III-A, some measurements on our prototype
GPU cluster are also shown. The cluster consists of 8 nodes,
each houses an Intel Core i5 processor (i5-2500) and an
NVIDIA GeForce GPU (GTX 580, x16 Gen1 PCI Express,
32Gbps).

In the both systems, the nodes are connected via Infini-
Band (X4 QDR, 40Gbps) network.

A. Data Transfer

Here, we show data transfer speeds of the
cudaMemcpy() wrapper function. Curves labeled
“IB Verb” in Figure 4 show the results. The left and right
panels are for our prototype system and the TSUBAME
2.0, respectively. For comparison, the speeds of native
cudaMemcpy() are also shown as “local” curves.

On the both systems, the effective bandwidth is around
1GB/s for large enough data size (≥ 100kB). This speed
is marginal for some productive runs as shown in later
sections and [9]. Also, we should note that we still have
room for improvement in the effective bandwidth. In [10],
the effective bandwidth of nearly 3GB/s is reported. The
high data bandwidth is achieved by eliminating the main
memory to main memory copy using GPU direct [15] tech-
nology. Furthermore, they overlapped the network transfer
and memory copy.
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Figure 4. Performance of the cudaMemcpy() wrapper function. Data
transfer speeds are plotted against data payload size. The left panel shows
the results on the prototype system, and the right shows that on the TSUB-
AME 2.0. Curves with open circles are results for transfer from the client to
the server (transfer type cudaMemcpyHostToDevice), those with filled
squares are from the server to the client (cudaMemcpyDeviceToHost).

Poor performance at smaller data size (≤ 100kB) is
observed on the TSUBAME 2.0. We observe performance
degradation for “local” curves, too. This is likely to be
caused not by the network latency, but by the memory-access
latency inside the server node.

Curves labeled “IPoIB” and “Gbit Ether” in the left panel
are results with data transfer using the TCP socket over
InfiniBand and over Gigabit Ethernet, respectively. These
are shown just for comparison.

B. MonteCarloMultiGPU

Next, we show the performance of
MonteCarloMultiGPU, an implementation of the
Monte Carlo approach to option pricing, which is included
in the CUDA SDK. In the source code, the number of
options calculated for is given by a parameter OPT_N, and
the number of integration paths is given by PATH_N. We
measured the calculation speed for various combinations of
OPT_N, PATH_N and the number of CUDA devices, Ngpu,
involved in the simulation.

Figure 5 shows the results. Calculation speeds (defined as
the total number of paths processed per second) are plotted
against Ngpu. The left and right panels are for PATH_N
= 229 and PATH_N = 224, respectively. Three curves in
each panel are for runs with OPT_N fixed to 256 and 2048
in order to see strong scaling, and those with OPT_N scaled
by Ngpu to see weak scaling.

In the left panel, the result shows 95% weak scaling.
Although strong scaling goes down to 68% (OPT_N=2048)
and 18% (OPT_N=256) at runs with 64 devices, they show
better scalability for runs with smaller Ngpu.

The results in the right panel also show ideal weak
scalability. Strong scalings are, however, lower than 10%
even with OPT_N=2048. In this case, runs with more than
a few devices are not practical.

3 x 1010

1011

3 x 1011

1012

1 2 4 8 16 32 64

C
al

cu
la

tio
n 

Sp
ee

d 
(o

pt
io

n 
pa

th
 / 

s)

Ngpu

lin
ea

r s
ca

le

PATH_N=229

1 2 4 8 16 32 64

Ngpu

lin
ea

r s
ca

le

PATH_N=224

weak scaling
OPT_N=
# of GPUs x 256

OPT_N=256, 2048
strong scaling

weak scaling
OPT_N=
# of GPUs x 256

  OPT_N=2048

 strong scaling

OPT_N=256

Figure 5. Performance of MonteCarloMultiGPU, an implementation
of the Monte Carlo approach to option pricing, included in the CUDA SDK.
Calculation speeds are plotted against the number of GPU devices, Ngpu.
The number of options calculated for is denoted by OPT_N. The number of
integration paths is denoted by PATH_N. Weak scaling graphs show good
scalability for both cases, but for strong scaling with smaller calculation
cost shown in right panel is worse.

C. Many-Body Simulation

Now we show the performance of the simplest gravita-
tional many-body simulation. In the simulation, gravitational
forces from all point masses (hereafter we denote them “j-
particle”) are evaluated at the location of all point masses
(“i-particle”) by a naive O(N2) algorithm. In parallel runs,
i-particles are split into fractions, and each of them are sent
to one CUDA device, while all j-particles are sent to all
devices.

Figure 6 shows the results. Calculation speeds (defined as
the number of pairwise interactions between two particles
calculated per second) are plotted against the number of
devices, Ngpu. The results with N = 128k shows fairly good
scalability for up to 8 devices. Those with N ≤ 32k scales
only up to a few devices, in which case the locally installed
1–4 devices would be a better choice than DS-CUDA.

We should note that in production runs, fast algorithms
such as the Barnes-Hut treecode [16] of O(N logN) and
the FMM [17] of O(N) are often used, whose performance
exceed that of O(N2) algorithm at large N , say ≥ 105.
According to our preliminary result with a serial treecode,
reasonable balance is achieved when one CUDA device is
assigned to one CPU core. In that case the workload on the
device is roughly equivalent to that of the O(N2) algorithm
with N/Ngpu i-particles and 10k j-particles. Using the
O(N2) parallel code, we measured the performance at that
workload and found it scales well at least up to Ngpu = 8.

D. Molecular Dynamics Simulation with Redundancy

We performed a molecular dynamics simulation of a NaCl
system. Figure 7 shows the temperature against time. We
used 512 atoms, and Tosi-Fumi potential [18] is used for
the interaction between atoms. The initial temperature is set
to 300 K and atom positions are integrated with a Leap-
Frog method with a time-step of 0.5 fs for 2 ps (40,000
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Figure 6. Performance of gravitational many-body simulations. The
number of pairwise interactions between two particles calculated per second
is plotted against the number of CUDA devices, Ngpu, for various number
of particles in the system, N .

steps). Solid curves show the correct result, while dashed
curves show the result including artificial errors. The error
is artificially generated with a special DS-CUDA server.
It randomly injects a bit error every 6 Mbyte in the data
transferred from the server to the client. Using this technique
we are able to emulate a faulty GPU. As shown in the right
panel in Figure 7, the error causes different behavior of the
temperature. Note that a single bit error may cause different
results after a long simulation. If a bit error is critical, the
simulation may stop immediately.

In our prototype system, we constructed a 2-way redun-
dant device, that consists of a normal DS-CUDA server and
an error-prone one. When we performed the simulation using
our redundant device, we were able to obtain the correct
results. The point is that the application program is not
changed at all, and reliable calculation with redundant oper-
ation is achieved with the DS-CUDA system automatically.

IV. CONCLUSION AND FUTURE WORK

We proposed DS-CUDA, a middleware to virtualize GPU
clusters as a distributed shared GPU system. It simplifies
the development of code on multiple GPUs on a distributed
memory system.

Performances of two applications were measured on a 64-
GPU system, where good scalability is confirmed. Also, the
usefulness of the redundant calculation mechanism is shown,
which distinguishes this work from other related work.

In the following part, we will discuss some issues under
investigation.

A. Hybrid Programs with DS-CUDA

In some applications, time spent on the CPU cores, or
communication between the cluster nodes and GPUs, can
be the bottleneck of the overall calculation time. In such
cases, DS-CUDA alone cannot offer much improvement in
speed. However, combining with MPI parallelization, it may
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Figure 7. Temperature of a system from a molecular dynamics simulation
is plotted against time (pico second). Middle and right panels are a close-
up of the left one. Solid curves (Normal) show the correct result, while
dashed curves (Error) show the result including errors.
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Figure 8. Communication region in the cell-index method. The left panel
shows the communication without DS-CUDA, while the right panel shows
the communication with DS-CUDA. The thick hatched region is the part
a node has to manage, and thin hatched region is the region that it has to
communicate among surrounding nodes. The granularity of communication
and calculation becomes larger when DS-CUDA is used. Therefore, both
the communication and calculation would be accelerated.

offer better performance than what can be achieved by MPI
only. In the following, cell-index method [19] is discussed
as example of such an application.

The cell-index method is a method to reduce the cal-
culation cost of many-body interactions, such as gravity,
Coulomb, and van der Waals forces. In this method, a
cutoff length of interaction between two particles, rcut is
defined, and particles do not interact beyond this length.
When interactions are calculated on a cluster of nodes,
spatial domain decomposition is used and communication
is needed only among neighboring nodes.

Consider a simulation space that is composed of 8× 8×
8 = 512 cells and the cutoff length rcut is double the cell
size. The simulation is performed using a cluster of 512
nodes, each equipped with one GPU, and one MPI process
is running on each cluster node.

A node is responsible for calculation of forces on the
particles inside one cell. Each node requires data from the
surrounding 124 (=53 − 1) cells to perform the calculation
(recall that rcut is double of the cell size). The left panel of
Figure 8 illustrates a two dimensional slice of the simulation
space. In order to calculate the forces on particles inside the
thick-hatched cell, data must be transferred from the thin-
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hatched cells.
For example, if 8 nodes are handled by one DS-CUDA

node, the corresponding 8 cells, instead of a cell, are taken
care by one MPI process with 8 GPUs. In this case, the
number of MPI processes in total is reduced to 64, and each
has to communicate with 26 (= 33 − 1) nodes, as shown in
the right panel of Figure 8.

By using DS-CUDA, the performance and the pro-
grammability are improved in the following sense: (1) the
number of MPI process is reduced to 1/8; (2) the total
amount of communication among cluster nodes are reduced.
In the right panel of Figure 8, the thick-hatched 8 cells
communicate with 208 (= 63−23) cells. These 8 cells need
to communicate with 992 (= 8 × (53 − 1)) cells, if DS-
CUDA is not used; (3) load imbalance among MPI processes
becomes smaller, since the number of particles handled by
one node increases 8 times on average.

B. DS-CUDA as a Cloud

A GPU cluster virtualized using DS-CUDA can be seen as
a cloud, that offers flexibility, power saving, and reliability.
The flexibility means that an arbitrary amount of GPU
resource can be derived on request. The power saving means
that some part of the cluster nodes can be suspended while
there are no running jobs on the GPU. The reliability means
that calculation errors can be recovered by the automated
redundancy mechanism described in Section II-E.

If we could implement a function to dynamically migrate
GPU resources between different nodes, and combining
it with the redundant mechanism, a fault-tolerant system
can be constructed. For example, if an unrecoverable error
occurred on a server node, the malfunctioning node could
automatically be retired and a new one could be joined,
without stopping the simulation.
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