FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

Implementation and Evaluation of Recurrence Equation Solvers on GPGPU systems
using Rearrangement of Array Configurations

Akiyoshi Wakatarii
* Faculty of Intelligence and Informatics
Konan University
Higashinada, Kobe, 658-8501, Japan
wakatani@konan-u.ac.jp

Abstract—The recurrence equation solver is used in many
numerical applications and other general-purpose applications,
but it is inherently a sequential algorithm, so it is difficult
to implement the parallel program for it. Recently, GPGPU
(General Purpose computing on Graphic Processing Unit)
attracts a great deal of attention, which is used for general-
purpose computations like numerical calculations as well as
graphic processing. In this paper, we implement a parallel
and scalable algorithm for solving recurrence equations on
GPUs by using CUDA (Compute Unified Device Architecture)
and evaluate its effectiveness. The algorithm was originally
implemented for MIMD parallel computers like a PC cluster
and an SMP system by the authors and we modify the
algorithm suitable for the GPGPU system by rearranging
arrays configurations.

In this paper, we modify the parallel algorithm of recur-
rence equations “P-scheme” suitable for GPGPU system and
we evaluate the performance comparison of our methods on
GPU and CPU. Note that P-scheme has been developed for
distributed memory computers by the authors [2].

The rest of this paper is organized as follows: Section 2
presents the P-scheme algorithm and Section 3 summarizes
the prior arts related to our method. Section 4 presents the
experimental method and discusses the results and Section
5 concludes this paper with a summary.

Il. RECURRENCE EQUATIONS
A. Tridiagonal system of equations

Keywordsmultithreading; tridiagonal solver; GPU; multi-

P-scheme is an algorithm that solves a recurrence equation
core; CUDA

in parallel. Our purpose is to parallelize a solver for the
following tridiagonal system of equations Afx x = c where
A is a tridiagonal matrix withN x N elements anc andc

Recently, the peak performance of GPU (Graphic Processgre vectors withN elements. The system is given by
ing Unit) has increased very much and outperforms that of

general-purpose processors. Since past GPUs consisted of
special-purpose hardware, they were used only for graphic —bj-X_1+a-%—b %11 = G(1<i<N-2) (2)
processing and image processing. However, recent GPUs ON_1 3)
like GeForce 8 type of NVIDIA are composed of general-
purpose unified shaders, so by using CUDA (Computeavhere arraysa andb are elements of matriR and arrayc
Unified Device Architecture) [1], they are used for general-iS given in advance, array is an unknown variable and
purpose processing like numerical calculations as well a8 the number of elements of the arrays.
graphic processing. . . B. P-scheme
Parallel applications having less data dependencies can . i

be easily implemented on GPGPU systems, but complicated tiS known that the system given by Equations (1), (2) and
data dependencies prevent an optimal implementation 0(f3>)_can b_g determlnlstl_c_ally solved by Gaussian elimination,
applications on GPGPU systems because we must carefullfyhich utilizes two auxiliary arrayp andq.
select which data should be kept in a small but fast mem-
ory. Linear first-order recurrence equations are expressed - 0 _ 4

. Po , 0o = Co (4)
as w =5 x W1 +t, but these cannot be parallelized bi G +bi-gi1
straightforwardly by dividing domains because the value of P = a—bpi q = a—bp1 (5)
w; is determined by using;_1. The recurrence equations are 1 DG)
used frequently on many applications like Gauss elimination, X+ PG
the tridiagonal matrix solver and DPCM (Differential Pulse- The above procedure consists of a forward substitution
Code Modulation) codec, so it is very important to imple- (Equation (5)) and a backward substitution (Equation (6)).
ment the recurrence equation solver on GPGPU systems iHowever, on parallel computers, the procedure cannot be
order to achieve a high performance [11], [12]. straightforwardly parallelized due to the data dependency

I. INTRODUCTION

X0 = 1)

AN-1 =

X =

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2 32

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

that resides on both the forward and backward substitutiongphase. After that, processor 0 can directly determipge
Suppose that the number of processoPjsN =P«M+2 from po, Bu, ¥iv anddy and sendpy to processor 1. After
and arrays are block-distributed. Proceds@ <k <P—1) receiving it, processor 1 can directly determipgy from

is in charge ofM elements of arrays fronk«M +1 to pwm, Bu, ¥v anddy and sendgz.v to processor 2 and then
k+M + M, thus pwme1 can be calculated on processor processor 2 can directly determipg.y from receivedpz.m

k only after pj_1).m+m is calculated on processér—1. and its auxiliary arrays and sengs.v to processor 3 and
Meanwhile,x.m+m €an be calculated on procesdoonly so on. This is calleghropagationphase. It should be noted
afterx,.1).m+1 is calculated on processkr-1. These data- that processok can determing i, 1).m Without calculating
dependencies completely diminish the possibility of parallelpx.v-i (1 <i<M—1). Finally, all processors can determine

computing. Premi (1 <i<M—1) by using received datpy.m. This is
We have proposed a parallel and scalable algorithm, calledalled determinationphase.
“P-schemé&[2], [3], [4] O We focus on arrayp on Equation The pre-computation and determination phases can be

(5) and explain how P-scheme works for it. Note that thecompletely parallelized. Meanwhile the propagation phase is
equation for arrayp is a non-linear recurrence equation still sequential but the data to be exchanged is very slight,
and the equations for arraysand x are linear recurrence like just one data, so the communication cost is also expected
equations. So, our method can be easily extended to th® be very slight. The cost of the propagation phase is
equationsg andx. Then we assume thgi_j and p; can be in proportion to the number of processors. Thus the total

expressed by the following equation: execution time is estimated bQ(X) +O(P) + O(R). It is
Bi+vi-p _ general thatO(P) is absolutely less tha®(N), becauseP
715, +]p- = (-D)-pj (J>0), (7) is supposed to be much less thisn
] i

Although the pre-computation and determination phases
where Bj, y; and ; are auxiliary arrays that are defined can be parallelized, the computational complexity is larger
below. By substituting Equation (5) to Equation (7), thethan the original substitution given by Equation (5). Since
following relation can be found. the original contains 1 multiplication, 1 division, 1 addition,
3 loads and 1 store and P-scheme contains 4 multiplications,
S+ sl ag(—1)itt Aoy, 3 divisions, 3 additions, 6 loads and 4 stores, P-scheme must
— —— - p carry out over twice more computation than the original
B o substitution. Execution times of the original substitution
yi TP and P-scheme on PC (Pentium Il (1 GHz), 1GB memory,
= (-1)*t. Pi—(j+1) (8) GCCA4.1.1 with O3) are shown in Figure 1. The graph shows

. . that the execution time of P-scheme is about twice slower
Thus, Bj, y; and §; can be determined by the following -1 that of the original substitution.

system of equations:

Yi + Yi

a _. 1000
i (%]
= Lyn=—+,6=0 9 g 100 /’
B = Ln=-p. & (©) E ¥ x
1 . aj_i € 1 7?;;
. — (& (—itt. 2o B =
B = yj(5’+(b bi_j Ai) (10) g 0061 o —e original
1 ; aj_j 8 ‘ —&—P-scheme
Vi = —(A+ (=)t =Ly (11) = S LSS S
Yi bi_j w AESHR SRS
5 Bi T
i+ = 7] (12) Array size
It should be noted thaB;, y; and §; are independent of Figure 1. Comparison of execution times
pj. Hencep; can be determined by using ony as follows:
=B+ (-1)"po- &
Vi B (13) IIl. RELATED WORKS
Therefore, if3;, i and & are calculated in advance; It is known that the first-order recurrence equation cannot
can be directly determined just aftps is determined. be parallelized straightforwardly since th¢h element can

By using the above relation, we proposed a scheme callebe determined by using thé - 1)-th element. CR (Cyclic
P-scheme(Pre-Propagation schemehich consists of three Reduction) and RD (Recursive Doubling) are recurrence
phases. First of all, every processor simultaneously starts itsquation solvers which can be directly applied on parallel
calculation off;, y and &. This is calledpre-computation computers [5], [6], [7], [8], [9]-

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2 33

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

A tridiagonal matrix can be solved by using recurrence In order to cope with this difficulty, array elements that
equations and several tridiagonal matrix solvers have beeare accessed simultaneously should be rearranged so that
implemented on GPUs. Kass et al. used ADI method fortthey are adjacent to each other.
an approximate depth-of-view computation and solved the /
tridiagonal matrix by using CR method on a GPU [10]. Wisp-+j

Zhang et al. applied four methods (CR, parallel CR, RDyhere s = N. Namely, this rearrangement is equal to the

and hybrid) to the tridiagonal matrix solver on the GPUtransposition of & x s two-dimensional array into ax P
and evaluated the performances to find that the hybridyo_dimensional array.

method achieved the best performance [11]. Goddeke and Figure 2 shows an example of the rearrangement of

Strzodka proposed mixed precision iterative solvers using, 4y configurations. Suppose that the size of an array is
CR method and implemented it on the GPU. They foundg ang the array should be divided into three parts. In an
that the resultmg_rr_nxed precision schemes are always faSt?Irdinary parallel computer like a PC cluster or an SMP
than double precision alone schemes, and outperform tun%Q/stem, the array should be just divided simply, so thread
CPU solvers [12]. o . 0 is in charge of array elements 0, 1 and 2, thread 1
When the size of the matrix il x N, the computational is iy charge of array elements 3, 4 and 5, and thread 2
complexity of CR isO(N) but it requires 2logN syn- s in charge of array elements 6, 7 and 8, because this
chronizations between processors. Meanwhile, parallel CRonfigyration (configuration 1) can enhance the locality of
requires only logN synchronizations but its total computa- memory accesses and the efficiency of the cache memory.
tional complexity isO(N x1og, N). On the other hand, since op the other hand, in a GPGPU system having NVIDIAS
the sequential algorlt.hm (Gaussian ellmlqatlpn) consists ofpys, the array should be rearranged (configuration 2) in
two recurrence equations (a forward substitution and a backsger to utilize the coalesced communication, that is, thread
ward substitution) and both of the recurrence equations caj is in charge of array elements 0, 3 and 6, thread 1 is in
be parallelized by using our method, those computationalparge of array elements 1, 4 and 7, and thread 2 is in charge
complexities aréO(N/P), O(P) and O(N/P), respectively. of grray elements 2, 5 and 8. So, at the first step, the threads
Our method also requires only two synchronizations for each-cegs array elements 0, 1 and 2, and at the second step, the
recurrence equation. Then, we implement our method Ofyreads access array elements 3, 4 and 5, and so on. Thus

recurrence equations on GPUs and evaluate the parallelisfreads can always coalesce their memory accesses into one
and the effectiveness of the rearrangement of array Conf'%emory request

urations in order to utilize the coalesced communication. In the following subsections, we will evaluate the effec-

IV. REARRANGEMENT OF ARRAY CONFIGURATIONS tiveness of the rearrangement of arrays empirically by using
the experiments.

= Wjsti (0<i<s-10<j<P-1)

linear address

OOOROVEEO®

multi-threading

V. EXPERIMENT AND DISCUSSION
A. Experimental environment
configuration-1 configuration-2 Our experiments are carried out on the GPGPU system

0 ® @G o) ® 66 that consists of AMD Phenom Il X4 945 (3.0 GHz), 4.0
@ ®© @j@ q @ @@ @@ q GB memory and Tesla C1060 GPU (30 MPs and compute
thread-0 thread-1 thread-2 thread-0 thread-1 thread-2 .))
capability 1.3) under Windows 7 Ultimate and CUDA 3.0.
Figure 2. Rearrangement of array configurations In order to evaluate our approach on the GPGPU system,
we focus on the following linear recurrence equation:

As mentioned before, the pre-computation and determina- wg = C
tion phases can be completely parallelized between threads,
but the global memory accesses are done in either the coa-
lesced communication or the non-coalesced communicationyhere C, scale and of fset are constant. The value of
which depends on the array assignment. On the P-schenig set to 28 (small arrays) and? (large arrays), and we
algorithm for distributed memory computers, thh thread construciG thread blocks having threads and execute them
is in charge of the computations between, /) and in parallel on GPUs, that is, the total number of threads is
Wit+1)x(N/P)—1 Whenw; is distributed intoP threads. On P=T xG.

GPGPU systemsio. .k, W(N/p)+ks Wa«(N/P)+ks Wax(N/P)+k " The elements of arrays are fetched from the global mem-
are concurrently accessed at thh step since calculations ory to registers of SPs and the results are directly stored
on GPUs are in principle SIMD calculations. However, theseto the global memory, so the shared memory is not used
are accessed using the non-coalesced communication, so thecause no data is repeatedly used in our method. Therefore
access cost is very large. we do not care the bank conflict of the shared memory. The

w; = scalexw_i+offset(1<i<N)

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2 34

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

_ 6 5
.E. 5K .g, 4 .\
o 4 [}
_g 3 —&—precomp g 3 —&—precomp
§ 2 —B- propagate § 2 —B- propagate
r_% 1 -4~ determin E' 1 - -4~ determin
“ --a--a--F" “olm-—m- &=
0 ‘ ‘ —e—total 1 —e—total
16 32 64 128 256 512 16 32 64 128 256 512
No. of threads per block No. of threads per block
(a) G=4 (no rearrangement) (b) G=4 (w/ rearrangement)

_ _ 10
E E s
o v
_g —&—precomp g 6 —&—precomp
§ —B- propagate § 4 —B- propagate
'_n"' -A- determin l_% 2 = -4- determin
w w -

‘ ‘ —e—total 0 1 —e—total

16 32 64 128 256 512 16 32 64 128 256 512
No. of threads per block No. of threads per block
(c) G=32 (no rearrangement) (d) G=32 (w/ rearrangement)

Figure 3. Results oN = 256K (= 218)

global synchronization is implemented by invoking different phases are in inverse proportion By they decrease when
kernels. Since our method consists of three phases, only twb and G increase. However, the execution time of the
global synchronizations are required between the phases. Smopagation phase increases wh&nand G increase, so
since the overhead of the synchronization is quite small, ithe total execution time may be worsen. Therefore, one of
does not affect the total performance. purposes of our experiments is to confirm the contribution

B. Occupancy and threads of T andG to the execution time.

Occupancy is one of performance metrics that predic€C. Experiment 1 (small arrays)
the effective performance on GPU execution. As mentioned

earlier, one MP has 8 SPs and each SP executes one thread, 25

so the efficiency of the MP does not reach 100% unless L2 +g::rrangement
there are at least 8 threads. Due to the difference between g 15 —B- G=4No.

the clock frequencies of the SP (shader clock) and that of the g rearangs.
MP (core clock), at least 4 threads should be concurrently O'Z +ge_:r2rangement
executed on one SP in order to keep the instruction pipeline 16 32 64 128 256 512 —% G=32No.

Rearrange.

of the MP full. Therefore, it is recommended that at least No. of threads per block
32 threads should be placed on each MP and this size (32)
is called “warp.” Moreover, since the access latency to the
global memory is large, the large size of the thread group
is preferable for hiding the latency. The experimental results with the array size of R5&

In the CUDA execution environmen@ thread blocks are 2'8) are shown in Figure 3. In the figure, the execution
assigned to MPs and@l threads are assigned to SPs within times of the pre-computation, propagation and determination
each MP. As mentioned before, the number of SPs withirphases are illustrated whéh is 4 and 32 andr is varied
a MP is 8, but at least 32 threads, namely the size of thérom 16 to 512. It should be noted that the elapsed times of
warp, must be assigned to one MP in order to maintairthe pre-computation and the determination are same on the
the efficient execution. Moreover, more threads should bevhole, and thus these lines are almost overlapped.
assigned to each MP in order to improve the occupancy. For both cases with no rearrangement and with the re-
On the other hand, the GPGPU system that is used for ouarrangement of array configurations, the execution times of
experiment has 30 MPs, $bshould be around 30 but it may these phases decreasePamcreases. For example, whén
be less than 30 for the optimBlL SinceP is T x G and the is 4 and the rearrangement is used, the execution times of the
execution times of the pre-computation and determinatiorpre-computation phase with of 16, 32, 64 and 128 are 2.07

Figure 4. Speedups & = 256K (= 218)

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2 35

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

N
o

6

g 15 ~§-— 5
; o 4 2
E 10 —&—precomp g 3 \ 4 —&—precomp
§ .\\ —B- propagate § LA \ .ﬂ —B- propagate

5 —0
'_% :i S -4A- determin E' 1 = - —-4A- determin

0 —e—total 0 —e—total

16 32 64 128 256 512 16 32 64 128 256 512
No. of threads per block No. of threads per block
(a) Elapsed timeG=4) (b) Elapsed time©=16)

Figure 5. Results oN = 1M(= 2%0) (w/ rearrangement)

msec, 1.07 msec, 0.59 msec and 0.34 msec, respectivelargest speedup. For example, wh@nis 4, the maximum
When the rearrangement is not used, the execution timespeedup is 1.9 with the value df of 256. As mentioned
of the pre-computation phase with of 16, 32, 64 and below, G x T is constant when the combination Gfand T
128 are 2.69 msec, 1.92 msec, 1.18 msec and 0.9 mseesults in the maximum speedup.
respectively. WherT is 64 and the rearrangement is used, Moreover, whenG and T are large, the value of the
the execution times of the pre-computation phase W@th speedup using the rearrangement is almost identical to that
of 4 and 32 are 0.59 msec and 0.13 msec, respectivelyithout the rearrangement. For example, this is true when
When the rearrangement is not used, the execution timeS=32 T =128 256 512. The reason is that the propagation
of the pre-computation phase with of 4 and 32 are 1.18 phase is dominant among three phases wBeand T are
msec and 0.59 msec, respectively. Rsncreases, the area large. But there is no difference between the execution time
where each thread is in charge is getting smaller, so theasing the coalesced communication and that using the non-
overhead like a thread creation increases relatively. Noteoalesced communication, since the propagation phase is
that the speedup seems to be flat wheis over 8, because carried out on one SP.
the number of SPs per MP is 8, but, &sincreases, the)
occupancy increases until the number of threads reachdd Experiment 2 (large arrays)
the warp size (The occupancy is 1.0 when a MP of Tesla A part of the experimental results with the array size of
C1060 has 128 threads). Therefore, by increaSiigver 8), 1 M (= 22°) are shown in Figure 5. The results of this case
the performance can be improved. It should be also notedre almost equal to those of the case with the size of 256
that, by rearranging the array configuration and using the. Namely, asP increases, the execution times of the pre-
coalesced communication, the performance can be enhancedmputation and the determination phases decrease. It is also
from 2 to 10 times, which depends on the valueGof found that the performance can be enhanced from 2 to 10
On the other hand, aP increases, the execution time times by using the rearrangement of array configurations
of the propagation phase increases. For example, véhen and reducing the access cost to the global memory. As
is 4 and the rearrangement is used, the execution timeR increases, the execution time of the propagation phase
of the pre-computation phase with of 16, 32, 64 and increases. The difference from the case with the size of 256
128 are 0.25 msec, 0.38 msec, 0.69 msec and 1.21 msd€,is that the absolute time of the pre-computation and the
respectively. Since the propagation phase is carried out ofletermination phases increases due to the increase of the
one SP, there is no difference between the execution timarray size and then the execution time of the propagation
using the rearrangement and that without the rearrangementhase is relatively smaller than the 256 K case. Therefore,
The comparisons of the speedups with a variety of pathe optimal value of is larger than the 256 K case.
rameter settings based on the execution time of the CPU are

shown in Figure 4. i ——G=4

On the whole, the speedups using the rearrangement 2, | Rearrangement
outperform those without the rearrangement. When the re- §2 - f;‘:g‘;'ge,
arrangement is used, the difference of the speedups is small 7 ——G=16
since the change of the value ®f does not result in the o & — Rearrangement
difference of the execution time so much. However, when the 16 32 64 128 256 512 ~®OROe.
rearrangement is used, the valueTofand P decide whose No- of threads per block
phase should be dominant among the execution times of Figure 6. Speedups & — 1M (= 229)

three phases, so an optimal valueTofand P results in the

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2 36

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

25 5 448

4.176

, 193 . A~
S iﬁi 313 N
S1s 1245120 g3 M R.658
E-] B n
1 131 132 o _ 1 N -
& 1 0.74 PCR(G=32) a2 \1.568 e ——PCR(G=32)
038 -B- P-scheme(G=32) ooy A0 s T -mpescheme(s=32)
N0 .
05 o2 w0197 020 037 125 W
- 0.79
0] 0 T]
16 32 64 128 256 512 16 32 64 128 256 512
No. of threads per block No. of threads per block
(a) N=256K (b) N=1M

Figure 7. Comparison with PCR (Parallel Cyclic Reduction)

The comparisons of the speedups with a variety of pais 4 times slower than the shader clock, we assume the
rameter settings based on the execution time of the CPU ammputational complexities of all the phases as follows:
also shown in Figures 5 and 6 .

The trend of the results of the speedups are also similar a:fry = 1:4:1 17
to th_at of the 256 K_case except that the valuer dor the The parallelism is in proportion t& when G increases
maximum speedup is smaller than the 256 K case. until the number of MPs, but it is almost flat whe is
E. Comparison with PCR over the number of MPs. Since Tesla C1060 has 30 MPs,
pve evaluate the cases with the valueGbf up to 32 in our
experiments. Each MP has 8 SPs, so the parallelism is in
roportion toT until T reaches 8 and it is in quasi-proportion

We compare the performance of our methods with PC
(parallel cyclic reduction) method [11] and show the ex-
perimental results in Figure 7. The maximum speedup of _ _ .
the P-scheme is larger than that of the PCR method fof® T until the warp size (32). Whef is more than 32,
both cases because the computational complexities of tH€ occupancy is getting close to 1.0 but the increase of

PCR method and the P-scheme @@\ -logN) and O(N), the pargllelism is almost flgt. Therefore, in ord.er to a_chieve
e maximum speedup by increasiRgthe following policy

respectively. However, the speedup depends on the size HL T -)
the thread block very much, so the tuning parameter fopould be applied: 155 should be maximized first and 2)

GPGPU programs must be carefully selected in order t&he optimaIT ShOP'd be selected. L
achieve the maximum speedup. By using Equations (14), (15) and (16), the execution time

t and the optimal parallelisrR,: are determined as follows:
F. Discussion

We discuss the optimal combination @fand T when the t = a- g +B-P+y- g
coalesced communication is used. The speedups using the
rearrangement of array configurations wheiis 256 K and Popt = (@+y)N _ \/ﬁ (18)
1 M are shown in Figure 8, \ B 2

As shown in previous sections, the execution times of all

the phases are estimated as follows: WhenN is 1 M, Py is nearly equal to 720, sb should be

180, 90, 45 and 22.5 for the cases with the valu&alf 4,
(14) 8, 16 and 32, respectively. According to Figure 8-®)for

the maximum speedup is 256, 128, 64 and 32 wBés 4, 8,
(15) 16 and 32. Thus, the estimation and the experimental results
(16) are identical. Moreover, WheN is 256 K, Pyt is nearly

equal to 360, sd@ should be 90, 45, 22.5 and 11.25 for the
where a, B and y are the execution costs per data for cases with the value d& of 4, 8, 16 and 32, respectively.
the pre-computation phase, the propagation phase and tiecording to Figure 8-(a)T for the maximum speedup is
determination phase, respectively. 256, 64, 32 and 16 whe is 4, 8, 16 and 32. Thus, the

The computational complexities of these three phases amstimation and the experimental results are almost identical

almost identical. However, while both the pre-computationfor this case as well.
phase and the determination phase are executddtbreads Therefore, the maximum speedup is achieved wBes
(over 1 warp) within thread blocks, the propagation phase i82. So it is indicated that the optimization policy described
carried out only on one thread. Thus, since the core cloclabove is rational. Namely should be maximized first and

pre—comp =
propagation =

determination =

< ® 2
TVIZTglz

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2 37

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

then the optimall should be selected in order to achieve [3]
the maximum speedup.

It should be noted thap is \/g and thus%pt is v/2N.
Therefore the computational complexity of the propagation [4]
phase i90(P,pt) = O(v/N) and it is not larger than the com-
putational complexities of other phas&(f -) = O(VN)).

N
opt

(5]

[-%
3 15 ——G=4 [6]
g 1
& -B- G=8
05 -4- G=16
0 T T ——G=32
16 32 64 128 256 512 [7]
No. of threads per block
(a) N=256K
8]
5
4
Qo
23 ——G=4
a2 -B-G=8 (9]
1 -A- G=16
0 ——G=32
16 32 64 128 256 512
No. of threads per block
[10]
(b) N=1M
Figure 8. Comparison of speedups [11]
VI. CONCLUSION
We implemented a parallel recurrence equation solveft?!

on GPGPU systems by using CUDA and evaluated the
effectiveness of the rearrangement of array configuration
in order to utilize the coalesced communication. We also
proposed a policy to decide the optimal number of threads
per thread block and the optimal number of thread blocks
in order to maximize the efficiency of parallelism.

In the near future, we will apply the recurrence equation
solver to real applications. We will also try to implement
our approach using OpenCL that recently attracts a lot of
attention.

ACKNOWLEDGMENT
This work was supported in part by MEXT, Japan.

REFERENCES

[1] D. Kirk, and W. Hwu, Programming Massively Parallel
Processors: A Hands-on Approach. Morgan Kaufmann, Mas-
sachusetts, 2010.

[2] A. Wakatani, “A Parallel and Scalable Algorithm for ADI

Method with Pre-propagation and Message Vectorization,”
Parallel Computing, vol. 30, pp. 1345-1359, 2004.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2

A. Wakatani, “A Parallel Scheme for Solving a Tridiagonal
Matrix with Pre-propagation,” Proc. 10th Euro PVM/MPI
Conference, Venice, 2003, pp. 222-226.

A. Wakatani, “A Parallel and Scalable Algorithm for Calculat-

ing Linear and Non-linear Recurrence Equations,” Proc. Int'l
Conf. Parallel and Distributed Computing and Networks, Las
Vegas, 2004, pp. 446-451.

R. Hockney and C. Jesshope, Parallel Computer 2. Taylor &
Francis, London, 1988.

J. Lopez and E. Zapata, “Unified Architecture for Divide and
Conquer Based Tridiagonal System Solver,” IEEE Transac-
tions on Computer, vol. 43, pp. 1413-1425, 1994.

O. Hecidjlu, et al., “A Recursive Doubling Algorithm for
Solution of Tridiagonal Systems on Hypercube Multiproces-
sors, ” J. of Comput. and Applied Mathematics, vol. 27, pp.
95-108, 1989.

E. Dekker and L. Dekker, “Parallel Minimal Norm Method
for Tridiagonal Linear Systems,” IEEE Transactions on Com-
puter, vol. 44, pp. 942-946, 1995.

D. Lee and W. Sung, “Multi-core and SIMD architecture

based implementation of recursive digital filtering algorithms,
" Proc. IEEE International Conference on Acoustics Speech
and Signal Processing (ICASSP), 2010, pp. 1550-1553.

M. Kass, A. Lefohn and J.D. Owens, “Interactive Depth of
Field Using Diffusion,” Technical report 0601,Pixar Anima-
tion Studios, 2006, pp. 1-8.

Y. Zhang, L. Cohen and J.D. Owens, “Fast Tridiagonal
Solvers on the GPU,” Proc. PPoPP 2010, Bangalore, 2010,
10 pages.

D. Goddeke and R. Strzodka, “Cyclic Reduction Tridiagonal
Solvers on GPUs Applied to [Mixed Precision Multigrid,”
IEEE Transactions on Parallel and Distributed Systems, vol.
22, pp. 22-32, 2011.

38

