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Abstract— Excessive power consumption affects the reliability of 
cores, requires expensive cooling mechanisms, reduces battery 
lifetime, and causes extensive damage to the device. Hence, 
managing the power consumption and performance of cores is an 
important aspect of chip design. This research aims to achieve 
efficient multicore power monitoring and control via operating 
system based power-aware task scheduling. The main objectives 
of power-aware scheduling are: 1) lowering core’s power 
consumption level, 2) maintaining the system within an allowable 
power envelope, and 3) balancing the power consumption across 
cores; without significant impact on time performance. In 
previous research we have explored power-aware task scheduling 
at the single core level referred to as intra-core scheduling. This 
paper reports on a research on a power-aware form of inter-core 
scheduling policy referred to as work stealing. Work stealing is a 
special case of task migration, where a “starving” core attempts 
to steal tasks from a “victim”, i.e., a “loaded” core. We have 
performed experiments with ten variants of the work stealing 
that consider both the power and the performance attributes of 
the system in the process of selecting a victim core.  The 
experiments conducted show that the power-aware inter-core 
stealing policies have high potential for power efficient task 
scheduling with tolerable effect on performance.  
 

Keywords-task scheduling; task migration; work stealing; 
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  INTRODUCTION I.
Power consumption is a  dominant obstacle for performance 

improvements in the very large scale integration (VLSI) 
technology. Excessive power consumption affects the 
reliability o f cores. High power d issipation results in high heat 
generation. This in  turn, requires costly cooling mechanisms, 
affects battery lifetime, and causes damage to semi-conductor 
devices. Hence monitoring the power consumption is of high  
importance in the semiconductor industry [1]-[5]. Th is study 
aims to address power management issues by concentrating on 
scheduling techniques available at the Operating System (OS) 
level [6]-[10].  

Task scheduling in a mult icore system is composed of three 
components: task matching, intra-core task scheduling, and 
inter-core task migrat ion. Task matching is the assignment of 
new tasks to cores.  Intra-core task scheduling policies 
concentrate on selecting a ready task for execution at the 
single core level while inter-core task migrat ion policies focus 
on moving ready tasks between cores. Work stealing, a  
specific type of task migration, is a multicore scheduling 
algorithm that can improve performance and achieve efficient  

dynamic load-balancing [3][5]. In the classical work-stealing  
environment, cores that are executing tasks are referred  to as 
workers while idle cores are potential thieves (or stealers). 
Depending on the state (working or idle) cores make choices 
with regard to available tasks.  Each worker must choose the 
next task to be executed. If an id le core becomes a thief, it  
must choose the victim core and the task to steal [3]-[5][12]-
[19]. 

Maintaining a homogeneous multicore system within an  
allowable power envelope and/or balancing the power 
consumption across cores without drastically affecting  
performance are the main problems addressed in this paper. 
The main object ive is to devise an efficient power-aware 
multicore OS task scheduler so that both execution and power 
consumption of the task are taken into consideration. In 
addition, this study aims to find mechanisms to lower a core’s 
power consumption and support hot-spot elimination. These 
objectives are achieved by integrating power characteristics 
into inter-core work stealing policies. 

There is significant amount of research on scheduling 
algorithms involving execution time as the optimization  
criteria, focusing on real-time applications, and interacting 
with hardware [1][2][9]-[11]. However, research on power-
aware task scheduling strategies that focus on power 
consumption issues and integrate power and performance 
metrics in the scheduling optimization criteria has 
considerable opportunities for extension. This study 
incorporates both execution time and power considerations 
into the OS based task scheduling on homogeneous mult icore  
systems. 

The main contribution of this study is the introduction of 
power efficient inter-core work stealing policies that 
significantly reduce the energy consumption variance across 
cores and produce a noticeable improvement in the completion  
time for different workload scenarios. 

This paper is organized in the following way. Section II  
provides a brief overview of relevant background information. 
Section III provides details concerning work stealing  
mechanis ms and Section IV includes a review of literature 
related to research conducted. The literature survey shows that 
significant research is yet to be done and provokes studies 
seeking cost-effective power efficient OS task scheduling 
policies for single and multicore systems. Section V provides 
details on the experimental setup used to evaluate the devised 
power efficient policies. Section VI presents details of the set 
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of experiments conducted. Section VII includes evaluation of 
the experimental results. Finally, Section VIII provides 
conclusions and proposals for future research. 

 TASK SCHEDULING II.
In general, task scheduling in mult icore systems is done by 

the OS. On the other hand power management, mainly  
through scaling of the frequency of cores via Dynamic 
Voltage and Frequency Scaling (DVFS), is done by firmware. 
Moreover, there is a significant amount of in formation  
concerning execution parameters and power perfo rmance that 
is readily available at the firmware-level, but is not readily 
available to the OS. Hence, there is semantic gap between the 
OS and the firmware. Figure 1 shows an ideal situation where 
the OS and the firmware have extensive hand-shaking utilized  
for power-aware scheduling and management by the OS. The 
hand shaking enables the OS to change the working frequency 
and states of cores. Furthermore, firmware-level execution  
informat ion is used by the OS for improved scheduling 
decisions.   

Many of the terms related to task matching and scheduling 
are overloaded. To remove ambiguity, we define the fo llowing  
terms [5]: Task Matching is the process of assigning incoming  
tasks to processing cores in order to optimize a g iven metric 
such as throughput (other terms for this operation are: task 
scheduling, task mapping,  and task distribution).  Intra-core 
task scheduling refers to the scheduling of tasks assigned to a 
core on that core. Task migrat ion means moving tasks from 
the ready queue of one core to the ready queue of another core 
(e.g., work stealing). Often, task migrat ion is referred to  as 
task redistribution. 

The Energy Delay Product (EDP) is a perfo rmance measure 
that takes execution time and power into account. The EDP is 
defined to be 𝐸𝐷𝑃 = 𝑇 × 𝐸 = 𝑇2 × 𝑃 , where 𝑇 denotes the 
execution time of a task, 𝐸 is the energy, and 𝑃 is the average 
power consumed by the task throughout the execution [1]-[5]. 

The Highest Response Ratio Next (HRRN) is an intra-core  
scheduling measure that ranks tasks based on the 
equation  𝐻𝑅𝑅𝑁 = 𝑤+𝑠

𝑠
. In this formula, 𝑠  denotes the 

remain ing task service time, and 𝑤 is defined to be the amount 
of time the specific task has been waiting in any system queue. 

The Highest Energy-delay-product based Cost Function 
(HECN) is a power-aware heuristic developed by our research 
team. It integrates the HRRN scheduling policy and EDP into 
the scheduling selection criteria. Several versions of the 
heuristics are used in our experiments. In this research we use 
the following version: 𝐻𝐸𝐶𝑁 = 𝑤+𝐸𝐷𝑃

𝐸𝐷𝑃
= 𝑤+𝑠2𝑃

𝑠2𝑃
.  Hence, the 

remain ing EDP replaces the remaining execution time. 
Although, in our general matching, scheduling, and task 
migrat ion framework, HECN is also used for intra-core task 
scheduling and task matching, this paper concentrates on task 
migrat ion via work stealing. Task matching and task 
scheduling are not elaborated upon further. The reader is 
referred to [5] for further details on these topics.  The HECN 
heuristics involves elements of different physical dimensions. 
Nevertheless, being a heuristic, this does not pose an issue. 

Figure 2 shows the research and simulation framework  
through a snapshot of an exploratory simulator developed in 
this research. Figure 3 shows potential patterns of task 
generation (arrival). These topics are detailed in Sect ion IV. 
The main components of the framework are described here.  

A. Task Matching 
Optimal task matching is an assignment of newly  

generated tasks to available cores that optimizes a cost 
function such as performance, power consumption, and 
thermal envelope [1][2][4]. Task matching is an NP complete 
problem [4]. Hence, numerous heuristics have been developed 
for finding a sub-optimal solution for the problem. Generally, 
these heuristics are referred to as matching polices. This topic 
is out of the scope of the current paper. 

B. Intra-core Task Scheduling  
Intra-core task scheduling is a  scheduling component of single 
core and multicore systems. The process involves selecting the 
next  task to be executed on a core from the current tasks 
allocate to  that core. Numerous methods addressing different  
scenarios in preemptive and non preemtive operating systems, 
including round robin, first come first serve, and HRRN have 
been explored and implemented [1]-[3][5][9]-[13].  In  
previous research we have identified the HRRN and its power-
aware heuristic variant HECN as the most promising approach 
for intra-core scheduling [3][5]. Again, this topic is out of the 
scope of the current paper which concentrates on task 
migrat ion. Nevertheless, in our simulations, it is assumed that 
HECN is used for intra-core scheduling. Additionally, HRRN 
and HECN are used in work stealing decisions. 

C. Inter-core Task Migration  
Task migration occurs if the system is in extreme 

imbalance and certain cores experience an extremely high  
peak in a given parameter while other cores experience an  
extremely low peak in that parameter. 

Under task migration policies, tasks are reallocated to 
cores. Classification of task migrat ion policies includes 5 main  
parameters: 1) the trigger for reallocation, 2) the reallocation  
source core (or cores), 3) the destination core(s), 4) task 
selection criteria (which affects the set of tasks that are 
candidates for reallocation) and the set of tasks that are 
eventually migrated, and 5) the amount of available 
knowledge concerning the system’s state.  Work stealing, 
detailed in  Section III, is a special form of task migration. In  
this case, the trigger for reallocation is the starvation of one or 
more cores, the source cores are cores that are considered to 
be loaded (see Section III) and the destination cores are the 
starving cores. Several core/task selection policies can be 
considered. 

D. Core State Control  
The firmware can control the state of a core and place it  

in several sleep-modes. Additionally, the firmware can control 
the frequency of cores. The current trend is to equip the OS 
with this type of control capabilit ies and this is reflected in our 
simulation framework depicted in Figure 2. 
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Figure 1.  Desired OS and hardware interaction. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 2.  A snapshot of the research and simulation framework developed in this project. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Task arrival modes (a) early saturation mode (b) Steady state task arrival modes 
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 POWER-AWARE WORK STEALING III.
In a multicore system, task migrat ion refers to moving 

tasks from the ready queue of one core to the ready queue of 
another core in order to improve performance metrics. This 
paper concentrates on one type of migration referred to as 
work stealing [3].  

Cores that experience extreme (h igh or low) imbalance 
values of a g iven parameter might in itiate a task migrat ion 
transaction. In  this study, the ready queue size is considered 
as the parameter that indicates imbalance. A core is 
considered as starved if the number of tasks in its ready 
queue falls below a threshold 𝑇𝑠. On the other hand, a core 
is considered as loaded if the number of tasks in  the ready 
queue is above a threshold 𝑇𝑙 . A core is considered as 
normal if it is neither starving nor loaded. This type of core 
does not participate in work stealing. 

A starving core is a potential stealer and a loaded core 
is a potential victim of stealing. A stealer initiates the 
stealing process by seeking a v ictim. The stealer identifies a 
victim. The v ictim volunteers a task to be stolen. The stealer 
steals this task by migrating it to its own ready queue. This 
process is referred to as work stealing. In a homogeneous 
multicore system, there is no architecture difference 
between cores. Hence, all the stealers and all the potential 
victims can only be distinguished based on execution 
parameters and not on architecture parameters. This 
research report concentrates on homogeneous multicore  
systems.  

The process of work stealing involves three steps. The 
first step is identify ing starving and loaded cores. Next, a  
specific victim has to be selected from the loaded cores. 
Finally, a specific task to be migrated from the vict im to the 
stealer has to be identified. There are numerous variants and 
options related to each of these steps. One consideration is 
the amount of knowledge availab le to cores. Under the local 
knowledge model, each core is only aware of its own 
current status [3][5]. In the global knowledge model, there is 
an entity (e.g., the OS) that has and utilizes knowledge 
about the status of each core [15]-[20]. The selection of the 
victim core and the migrated task can be done in a way that 
optimizes performance objectives. For example, if there is 
more than one potential victim, the OS might choose the 
most loaded core as the victim and the task with the highest 
wait time in the ready queue of that core as the task for 
migration. 

Traditionally, work stealing has been applied under 
performance optimization criterion. For example, the 
stealing decisions (choosing the victim core and the task to 
be migrated) might attempt to optimize wall to wall t ime of 
an entire workload. In this research, the stealing decisions 
incorporate power and performance objectives. Three main  
objectives were considered 1) lowering a core’s power 
consumption level, 2) maintain ing the system within an 
allowable power envelope, and 3) balancing the power 
consumption across cores; without significant impact on 

time performance.  In each set of experiments, one or more 
of these goals was used in the process of victim and 
migrated task selection. For example, in order to achieve 
balance in power consumption, the loaded core that has 
consumed the most amount of energy in the last 𝐾  time 
slices is most likely  to be selected as one of the victims. 
Additional considerations include the amount of global 
knowledge assumed, affin ity between tasks and cores (e.g., 
due to recent use of the core cache), and the power 
consumption characteristics of the tasks in the ready queue 
of potential victims. 

 LITERATURE REVIEW IV.
This section discusses the relevant research availab le on  

single and mult icore task scheduling policies that consider 
the energy consumption of cores.  

Kashif et al. and Kim et al. propose a Priority-based 
Multi-level Feedback Queue Scheduler (PMLFQS) for 
mobile devices [11][12]. Their papers, however, focus on 
the firmware role rather than the OS role in power 
management. 

Wu et al. propose Low Thermal Early Deadline First 
(LTEDF), a  temperature-aware task scheduling algorithm 
for real-time multicore systems [13]. If cores are thermally  
saturated, task migrat ion is performed to alleviate the 
saturation. The paper is focused on real-t ime systems and on 
lowering the peak power and temperature consumptions. 
Our study, however, concentrates on general applications. 
Moreover, rather than limit ing the consideration to peak 
power, this research considers balancing the power 
consumption across cores in the system. 

Zhou et al. propose an algorithm referred to as 
THRESHHOT [14]. At each step, THRESHHOT selects the 
hottest task that does not exceed  the thermal threshold using 
an online temperature estimator, leveraging the performance 
counter-based power estimation. The paper, however, 
focuses on batch processes on a single core and is intended 
to lower final core temperature. Our study aims to consider 
varying type of processes (beyond batch processes) on a 
multicore system. 

Quintin et  al. detail the Classic Work Stealing Algorithm. 
[15]. In addit ion, they propose the idea of grouping cores as 
Leaders or Slaves and restricting the stealing according to 
the grouping. In our research, stealing policies are devised 
for a homogeneous system such that all cores (that have 
load imbalance) can part icipate in stealing with the help of 
one efficient central unit. 

Guo  et al. propose two policies that fit  high granular 
parallel processing environment [16]. Our work aims at 
developing power-aware policies for all types of workload 
including high and low granularity parallelism workloads. 

Agarwal et al. propose a Central Task Scheduler that can 
maintain informat ion of all the cores in the system [17]. 
Sudarshan et al. discuss a similar policy that main ly consists 
of a d ispatcher and nodes [18]. Our research considers 
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several levels o f information sharing from local to global 
knowledge sharing. 

Robison et al. propose considering task to core affin ity as 
a part of the task matching. They use a “Mailbox” and FIFO 
mechanis m to handle the affin ity [19]. Our research 
involves affin ity at all levels of scheduling, not only at the 
matching stage. 

Faxén et al. suggest Sampling Victim selection where a 
thief samples several potential victims and selects the one 
with the task that is closest to the root of the computation 
[20]. In addition, they propose a Set Based Victim selection 
where each thief only attempts to steal from a subset of the 
other workers. We have implemented their methods in 
addition to other policies reported below. 

 EXPERIMENTAL SETUP V.
An exploratory software simulator (see Figure 2) is 

developed to rapidly assess the utility of d ifferent matching 
and scheduling procedures. The simulator is a t ime based 
simulator which uses two important “atomic” time units. 
The operating system atomic unit is referred to as a slice. A 
typical slice time is 1 – 30 milliseconds. Scheduling 
decisions are performed on a slice boundary. In addition, the 
simulator employs an atomic t ime unit referred to as a tick. 
System updates occur on a tick boundary. To mimic a 
realistic scenario we assume that a slice time is 20 
milliseconds; we further assume that a tick represents 100 
microseconds hence there are 200 ticks per slice.  Other 
configurations have been used as well. 

The simulator can be easily altered to evaluate a 
number of d ifferent configurations and task parameters.  
The overall system environment is equally flexib le.  
Variables like the number of cores, power consumption per 
core, core frequencies, idle power consumption, slice t ime 
(in t icks), intra-core scheduling algorithms, stealing policies, 
and termination conditions can all be changed for individual 
experimental runs.  Additional parameters include:             
1) thresholds for the starvation/loaded status, 2) workload 
size, 3) task arrival rate, which in general fo llows a Poisson 
distribution, 4) task serving time, which in general follows 
an exponential distribution, and 5) task power consumption 
per tick, which is assumed to have a uniform d istribution. 
These parameters have been selected based on discussion 
with experts from leading chip design companies.  

The simulat ions are performed for all the formulated 
stealing policies. Each simulat ion is repeated several times 
with d ifferent random number generation seeds. Every  
simulation provides performance figures on a slice time 
basis for all the cores. Data is gathered on slice boundaries 
for each simulation of each stealing policy. 

We report on two sets of experiments: Experiment 1: 
task scheduling with high init ial rate of task generation, and 
Experiment 2: task scheduling with a steady arrival rate. 
The first scenario is typical of highly  parallel loads, where 
in the first steps of computation many tasks are being 
generated. Initially, the system is saturated with new tasks, 

but after a while the system completes the processing of all 
the tasks in the current load. We refer to this scenario as the 
parallel workload scenario. The second mode is typical to 
communicat ion and networking scenarios where tasks are 
generated at a more or less fixed rate and the system is 
usually in a steady state where the rate of processing tasks is 
about the same as the rate of task generation. This is 
referred to as the steady state scenario. Figure 3 illustrates 
the two scenarios via the size of the ready queue per slice 
time. 

As noted, the work stealing procedure requires 
identifying a potential victim and selecting a task to be 
migrated. For the victim selection we have taken into 
account the amount of global knowledge, the set of potential 
victims, and the specific power perfo rmance goal. In  terms 
of selecting the migrated task, it  makes sense to assume that 
a victim core would like to volunteer its “worst” task as the 
task to be migrated. In this sense, we have identified HRRN 
as the most promising criteria for power agnostic work 
stealing. The v ictim is volunteering the task with the 
minimal HRRN for stealing.  The HECN which takes into 
account EDP rather than expected execution t ime has been 
used as the basis for selecting the task to be migrated for the 
power-aware policies. In this case, the victim is 
volunteering the task with  the minimum HECN as the task 
to be stolen. 

A. Stealling Policies, Legend and Avbbreviations. 
The following legend is used in the text and figures for 

the Power-aware (PAW) variants of the work stealing 
policies where HECN is used to determine the task to be 
volunteered by the victim core. 
 
Random_MinHECN_Task; the stealer chooses a random 
core as a potential victim without knowledge of the core’s 
load. If that randomly chosen core is not loaded, then no 
stealing occurs. Otherwise, this victim core volunteers a task 
with the lowest HECN. 
MaxLoaded_MinHECN_Task; the stealer identifies a 
loaded core with the largest ready queue as a victim. This 
victim core volunteers a task with the lowest HECN. 
MaxMin_ HECN_Task; each loaded core (a potential 
victim) volunteers a task with lowest HECN. The stealer 
considers the tasks volunteered by all potential v ictims and 
finds a task with the highest HECN among all volunteered 
tasks. Hence the name MaxMin, implies that the MaxHECN 
task is selected from the available MinHECN tasks. 
MaxRemainingService_MinHECN_Task; the service 
time of tasks remaining in the ready queue can be used to 
estimate the remaining core execution time and the energy 
that might be consumed. Therefore, the stealer p icks the 
core with a ready queue that has the maximum remain ing 
task service or execution time. The victim core volunteers a 
task with the lowest HECN. 
MaxRemainingEnergy; the energy of tasks remain ing in 
the ready queue indicates the energy that the core might 
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consume. Hence, the stealer selects the core with a ready 
queue that has the maximum remaining task energy. In this 
case the victim has two options for volunteering tasks:       
1) MinHECN_Task; the victim core volunteers a task with 
the lowest HECN. 2) MaxEnergyTask; the victim core 
volunteers a task with maximum energy. 
MaxEnergyInLastKSlices; the stealer chooses a core that 
has consumed the maximum amount of energy in the last k 
slices of the simulation.  Again, can choose between the: 
MinHECN_Task or the MaxEnergyTask. 
MaxEnergyConsumed; the stealer opts for a core that has 
consumed the maximum energy so far in the simulat ion, and 
the victim has the same two options as in the previous 
policies: MinHECN_Task or MaxEnergyTask.  

The PAG version of the above inter-core work stealing  
policies uses the HRRN ratio in place of the HECN to 
determine the task to volunteer. 

  EXPERIMENTS AND RESULTS VI.
This section reports the two types of experiments with 

work stealing conducted as part of this study and provides 
the results of these experiments.   

A. Experiment 1 - Multicore Task Scheduling for a Parallel 
Workload Scenario. 
In this set of experiments, a fixed workload simulation is 

performed in a system having a fast task arrival rate 
(parallel workload). These experiments are intended to 
study the behavior of the formulated policies and identify  
the policy that performs  the best under this specific 
scenario. The four main perfo rmance figures provided from 
this experiment are the energy consumption variance, the 
average turnaround time, the peak ready-queue length, and 
the complet ion time of all the policies.  The parallel 
workload scenario is depicted in Figure 3(a). According to 
the figure, the ready queue length is rapidly increasing in the 
first few time slices of the simulat ion and then gradually 
decreasing as the simulat ion progresses. Figure 4 shows the 
cores’ energy consumption variance. This is used as an 
indicator of load balancing.   It can be observed that, work 
stealing provides a reduction of about 18% in variance 
compared to PAG_NoSteal policy. The 
PAW_MaxMin_HECN_Task is the best stealing policy. 
The power-aware policies provide a marginally better power 
performance than the power agnostic method.  

Figure 5 d isplays the turnaround time. In this case, the 
PAW_NoSteal policy has a lower turnaround time than 
PAG_NoSteal policy. This implies that power-aware intra-
core task scheduling, without any stealing, lowers 
turnaround time by about 4%. By including stealing, the 
PAW_MaxMin_ HECN_Task is the best stealing policy and 
it improves (reduces) turnaround time further by 
approximately  31% compared  to PAG_NoSteal policy. This 
shows that in the process of trying to  gain power efficiency, 
the time factor is improved as well. This can be due to the 
fact that the EDP metric used in the selection criteria 

considers time along with power attributes. Again, power-
aware is slightly better than power agnostic.  

An experiment that measured the maximal size of the 
ready queues in each simulation of each stealing procedure 
has shown that the ready queues had reasonable sizes (up to 
40 tasks per queue). Another experiment performed  
measured the task complet ion time. In this case, 
PAW_NoSteal policy increases the total completion by 
about 3.5%. This can be attributed to the fact that power-
aware scheduling may increase task wait time and there is 
no stealing to help reduce wait time. On the other hand, 
stealing significantly reduces the completion t ime with 
PAW_MaxMin_ HECN_Task policy being the best stealer 
as it reduces the completion time by about 17%.  Further 
experimental results are reported in [5]. 

From all of the results of this experiment, it can be seen 
that the PAW_MaxMin_ HECN_Task is the best stealing 
policy fo r a fast task arrival rate scenario. It significantly 
improves three important metrics, namely, energy 
consumption variance, turnaround time, and complet ion 
time.  

B. Experiment 2 - Multicore Task Scheduling for a Steady 
State Workload Scenario.  
For this test, a fixed workload simulat ion is performed in  

a system having a moderate task arrival rate. This emulates 
a steady state workload scenario as illustrated in Figure 
3(b). In the first few t ime slices of the simulat ion, the ready 
queue length gradually increases. Then as the simulat ion 
progresses, the queue length remains steady for several 
slices thereby simulating a steady state workload scenario. 

Figure 6 shows the cores’ energy consumption variance. 
It is noticed that PAW_NoSteal policy performs slightly 
better than PAG_NoSteal policy by lowering the energy 
consumption variance by about 2%. By including stealing, 
the PAW_MaxEnergyInKSlices_MaxEnergyTask is seen as 
the best power-aware stealing policy. This policy further 
reduces the variance by 5% compared to PAG_NoSteal 
policy.  
The PAG_MaxEnergyConsumed_MinHRRN work stealing 
policy provides a marginally better power performance than 
the PAW_MaxEnergyInKSlices_MaxEnergyTask method 
but it is not considered significant since it does not perform 
as well for the turnaround time metric discussed next. 

Figure 7 d isplays the turnaround time. Again, 
PAW_NoSteal policy is better than PAG_NoSteal policy  by 
almost 13%. The power-aware intra-core task scheduling 
coupled with inter-core work stealing further improves the 
turnaround time. The policy  
PAW_MaxEnergyInKSlices_MaxEnergyTask is again the 
best stealing policy with approximately 17% lower 
turnaround time compared to PAG_NoSteal policy. The 
power-aware policies are noticeably better than the power 
agnostic policies. 

As in the case of parallel load, an experiment that 
measured the maximal size of the ready queues in each 
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simulation of each stealing procedure has been performed. 
The result shows that the ready queues had reasonable sizes 
(up to 20 tasks per queue). Another experiment performed  
measured the task completion time. In this case, an 
important difference was noted compared to the previous 
experiment. The PAW_NoSteal policy is better than 

PAG_NoSteal policy with a 3% lower complet ion 
Furthermore, the best power-aware stealer of this 
experiment is again the 
PAW_MaxEnergyInKSlices_MaxEnergyTask policy with 
about 8% reduction in completion time compared to 
PAG_NoSteal policy.  

 

 
Figure 4.  Energy Consumption Variance of the parallel load experiment 

 

Figure 5.  Average Turnaround time of the parallel load experiment 
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Figure 6.  Energy Consumption Variance of the steady state load experiment 

 

 

Figure 7.  Average Turnaround time of the steady state load experiment 

The PAG_MaxMin_HRRN_Task policy shows slightly 
better complet ion time compared  to the 
PAW_MaxEnergyInKSlices_MaxEnergyTask policy, but 
it has a disadvantage since it fails to be the best in terms 
of efficiency in the energy consumption variance and 
turnaround time metrics. 

 RESULT EVALUATION VII.
According to the data gathered, in every experiment, 

a power-aware policy emerges as the policy that 
successfully reduces energy consumption variance, 
turnaround time and completion time. In addition to 
accomplishing energy efficiency, the performance t ime 
has been improved as well. The PAW_MaxMin_ 
HECN_Task  policy shows the highest potential with 18% 
reduction in energy consumption variance, 31% 
improvement in turnaround time, and 17% more 

efficiency in completion time compared to the 
PAG_NoSteal policy. 

Furthermore, the key po ints noted from the combined 
results of all the experiments are as follows. 
1. The PAW_MaxMin_ HECN_Task policy emerges as 
the best policy in Experiment 1. The reason for this might 
be because the MaxMin policy is the only policy that 
directly  selects a task to steal by choosing the least power 
consuming task among the high power consuming tasks 
of all potential victim cores. All the other stealing 
policies, first select a potential victim core and then select 
a task from that chosen core. Therefore, a stealing policy 
that considers all the tasks in the system such as the 
MaxMin policy outperforms other policies.  
2. PAW_MaxEnergyConsumedInKSlices_MaxEnergy_ 
Task policy is the most efficient policy in Experiment 2. 
This can be best explained by the following analysis. 
Excluding the MaxMin policy, all the stealing policies 
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first consider the power properties related to a core to 
determine a victim. Most properties are related to the 
number of tasks or type of tasks in the ready queue but 
only two of the policies consider the h istory of the core, 
namely, the MaxEnergyConsumedInKSlices policy  which 
uses recent past data and the MaxEnergyConsumed policy 
which uses all the past data. Hence, a policy that 
considers properties related to the recent history of 
potential victim cores might have advantage over policies 
that ignore this information. 
3. Based on the experiment results, the 
PAW_MaxMin_HECN_Task procedure is the policy with 
the overall most potential for power efficiency even if the 
task arrival rate is unknown. It is observed that this policy 
performs the best for cases with fast task arrival rate and 
also performs reasonably well in situations with steady 
task arrival rate. 
4. In  all the experiments, there is no significant difference 
in perfo rmance amongst many of the stealing policies. 
This could be attributed to the fact that the variations in 
work stealing are very minute and have subtle differences.  
5. The turnaround time is improved much more than the 
power efficiency level in all the experiments. This implies 
that the EDP metric integrated into the HECN policy 
might be giv ing more consideration to the task time rather 
than to the task power. 
  

 CONCLUSIONS AND PROPOSALS FOR FURTHER VIII.
RESEARCH 

The primary goal of this research work is to develop 
efficient power-aware work stealing policies. In an 
attempt to achieve the desired goal, the fo llowing steps 
have been implemented. First, based on previous research 
[3][5], we have selected the HRRN as the benchmark for 
intra-core task scheduling and the derived  HECN cost 
function that extends the HRRN policy to include power 
characteristics of tasks in the system.  

Next, build ing on the new intra-core HECN policy, 
various inter-core work stealing policies have been 
explored. Several d ifferent power-aware variations of 
work stealing that consider power features of the cores 
and its tasks before identifying the task to steal have been 
formulated. Finally, an in-house exploratory simulator has 
been developed solely to evaluate the potential of the 
policies devised.  

Extensive multicore experiments with work stealing 
policies have been performed. The outcome suggests that 
several power-aware policies have p romising results 
where power efficiency is being attained along with a 
minimal effect on performance.  

We plan to extend the reported research in several 
ways: first, we plan to examine the utility of additional 
heuristic evaluation functions. Next, we plan to consider 
affinity between tasks and cores (e.g., due to recent use of 
cache) in the stealing decisions. Additionally, we p lan to 

connect our simulator to a vendor mult icore board and use 
parameters of power and performance available at the 
hardware/firmware in the process of making scheduling 
decisions (as per the model depicted in  Figure 1). This 
will enable fast and realistic exp loratory simulations.  
Finally, we plan to incorporate DVFS policies and 
changing core states (e.g., shutting down cores) as a part 
of the scheduling decisions. 
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