
Power-aware Work Stealing in Homogeneous Multicore Systems

Shwetha Shankar
Intel Corporation

Austin, Texas, USA
shwetha.shankar@intel.com

Greg LaKomski, Claudia Alvarado, Richard Hay,
Christopher Hyatt, Dan Tamir, and Apan Qasem

Department of Computer Science,
Texas State University,

San Marcos, Texas, USA
{gl082,ca1015,rh1375,ch1662,dt19,apan}@txstate.edu

Abstract— Excessive power consumption affects the reliability of
cores, requires expensive cooling mechanisms, reduces battery
lifetime, and causes extensive damage to the device. Hence,
managing the power consumption and performance of cores is an
important aspect of chip design. This research aims to achieve
efficient multicore power monitoring and control via operating
system based power-aware task scheduling. The main objectives
of power-aware scheduling are: 1) lowering core’s power
consumption level, 2) maintaining the system within an allowable
power envelope, and 3) balancing the power consumption across
cores; without significant impact on time performance. In
previous research we have explored power-aware task scheduling
at the single core level referred to as intra-core scheduling. This
paper reports on a research on a power-aware form of inter-core
scheduling policy referred to as work stealing. Work stealing is a
special case of task migration, where a “starving” core attempts
to steal tasks from a “victim”, i.e., a “loaded” core. We have
performed experiments with ten variants of the work stealing
that consider both the power and the performance attributes of
the system in the process of selecting a victim core. The
experiments conducted show that the power-aware inter-core
stealing policies have high potential for power efficient task
scheduling with tolerable effect on performance.

Keywords-task scheduling; task migration; work stealing;
power-aware task scheduling; energy delay product

 INTRODUCTION I.
Power consumption is a dominant obstacle for performance

improvements in the very large scale integration (VLSI)
technology. Excessive power consumption affects the
reliability o f cores. High power d issipation results in high heat
generation. This in turn, requires costly cooling mechanisms,
affects battery lifetime, and causes damage to semi-conductor
devices. Hence monitoring the power consumption is of high
importance in the semiconductor industry [1]-[5]. Th is study
aims to address power management issues by concentrating on
scheduling techniques available at the Operating System (OS)
level [6]-[10].

Task scheduling in a mult icore system is composed of three
components: task matching, intra-core task scheduling, and
inter-core task migrat ion. Task matching is the assignment of
new tasks to cores. Intra-core task scheduling policies
concentrate on selecting a ready task for execution at the
single core level while inter-core task migrat ion policies focus
on moving ready tasks between cores. Work stealing, a
specific type of task migration, is a multicore scheduling
algorithm that can improve performance and achieve efficient

dynamic load-balancing [3][5]. In the classical work-stealing
environment, cores that are executing tasks are referred to as
workers while idle cores are potential thieves (or stealers).
Depending on the state (working or idle) cores make choices
with regard to available tasks. Each worker must choose the
next task to be executed. If an id le core becomes a thief, it
must choose the victim core and the task to steal [3]-[5][12]-
[19].

Maintaining a homogeneous multicore system within an
allowable power envelope and/or balancing the power
consumption across cores without drastically affecting
performance are the main problems addressed in this paper.
The main object ive is to devise an efficient power-aware
multicore OS task scheduler so that both execution and power
consumption of the task are taken into consideration. In
addition, this study aims to find mechanisms to lower a core’s
power consumption and support hot-spot elimination. These
objectives are achieved by integrating power characteristics
into inter-core work stealing policies.

There is significant amount of research on scheduling
algorithms involving execution time as the optimization
criteria, focusing on real-time applications, and interacting
with hardware [1][2][9]-[11]. However, research on power-
aware task scheduling strategies that focus on power
consumption issues and integrate power and performance
metrics in the scheduling optimization criteria has
considerable opportunities for extension. This study
incorporates both execution time and power considerations
into the OS based task scheduling on homogeneous mult icore
systems.

The main contribution of this study is the introduction of
power efficient inter-core work stealing policies that
significantly reduce the energy consumption variance across
cores and produce a noticeable improvement in the completion
time for different workload scenarios.

This paper is organized in the following way. Section II
provides a brief overview of relevant background information.
Section III provides details concerning work stealing
mechanis ms and Section IV includes a review of literature
related to research conducted. The literature survey shows that
significant research is yet to be done and provokes studies
seeking cost-effective power efficient OS task scheduling
policies for single and multicore systems. Section V provides
details on the experimental setup used to evaluate the devised
power efficient policies. Section VI presents details of the set

40Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

of experiments conducted. Section VII includes evaluation of
the experimental results. Finally, Section VIII provides
conclusions and proposals for future research.

 TASK SCHEDULING II.
In general, task scheduling in mult icore systems is done by

the OS. On the other hand power management, mainly
through scaling of the frequency of cores via Dynamic
Voltage and Frequency Scaling (DVFS), is done by firmware.
Moreover, there is a significant amount of in formation
concerning execution parameters and power perfo rmance that
is readily available at the firmware-level, but is not readily
available to the OS. Hence, there is semantic gap between the
OS and the firmware. Figure 1 shows an ideal situation where
the OS and the firmware have extensive hand-shaking utilized
for power-aware scheduling and management by the OS. The
hand shaking enables the OS to change the working frequency
and states of cores. Furthermore, firmware-level execution
informat ion is used by the OS for improved scheduling
decisions.

Many of the terms related to task matching and scheduling
are overloaded. To remove ambiguity, we define the fo llowing
terms [5]: Task Matching is the process of assigning incoming
tasks to processing cores in order to optimize a g iven metric
such as throughput (other terms for this operation are: task
scheduling, task mapping, and task distribution). Intra-core
task scheduling refers to the scheduling of tasks assigned to a
core on that core. Task migrat ion means moving tasks from
the ready queue of one core to the ready queue of another core
(e.g., work stealing). Often, task migrat ion is referred to as
task redistribution.

The Energy Delay Product (EDP) is a perfo rmance measure
that takes execution time and power into account. The EDP is
defined to be 𝐸𝐷𝑃 = 𝑇 × 𝐸 = 𝑇2 × 𝑃 , where 𝑇 denotes the
execution time of a task, 𝐸 is the energy, and 𝑃 is the average
power consumed by the task throughout the execution [1]-[5].

The Highest Response Ratio Next (HRRN) is an intra-core
scheduling measure that ranks tasks based on the
equation 𝐻𝑅𝑅𝑁 = 𝑤+𝑠

𝑠
. In this formula, 𝑠 denotes the

remain ing task service time, and 𝑤 is defined to be the amount
of time the specific task has been waiting in any system queue.

The Highest Energy-delay-product based Cost Function
(HECN) is a power-aware heuristic developed by our research
team. It integrates the HRRN scheduling policy and EDP into
the scheduling selection criteria. Several versions of the
heuristics are used in our experiments. In this research we use
the following version: 𝐻𝐸𝐶𝑁 = 𝑤+𝐸𝐷𝑃

𝐸𝐷𝑃
= 𝑤+𝑠2𝑃

𝑠2𝑃
. Hence, the

remain ing EDP replaces the remaining execution time.
Although, in our general matching, scheduling, and task
migrat ion framework, HECN is also used for intra-core task
scheduling and task matching, this paper concentrates on task
migrat ion via work stealing. Task matching and task
scheduling are not elaborated upon further. The reader is
referred to [5] for further details on these topics. The HECN
heuristics involves elements of different physical dimensions.
Nevertheless, being a heuristic, this does not pose an issue.

Figure 2 shows the research and simulation framework
through a snapshot of an exploratory simulator developed in
this research. Figure 3 shows potential patterns of task
generation (arrival). These topics are detailed in Sect ion IV.
The main components of the framework are described here.

A. Task Matching
Optimal task matching is an assignment of newly

generated tasks to available cores that optimizes a cost
function such as performance, power consumption, and
thermal envelope [1][2][4]. Task matching is an NP complete
problem [4]. Hence, numerous heuristics have been developed
for finding a sub-optimal solution for the problem. Generally,
these heuristics are referred to as matching polices. This topic
is out of the scope of the current paper.

B. Intra-core Task Scheduling
Intra-core task scheduling is a scheduling component of single
core and multicore systems. The process involves selecting the
next task to be executed on a core from the current tasks
allocate to that core. Numerous methods addressing different
scenarios in preemptive and non preemtive operating systems,
including round robin, first come first serve, and HRRN have
been explored and implemented [1]-[3][5][9]-[13]. In
previous research we have identified the HRRN and its power-
aware heuristic variant HECN as the most promising approach
for intra-core scheduling [3][5]. Again, this topic is out of the
scope of the current paper which concentrates on task
migrat ion. Nevertheless, in our simulations, it is assumed that
HECN is used for intra-core scheduling. Additionally, HRRN
and HECN are used in work stealing decisions.

C. Inter-core Task Migration
Task migration occurs if the system is in extreme

imbalance and certain cores experience an extremely high
peak in a given parameter while other cores experience an
extremely low peak in that parameter.

Under task migration policies, tasks are reallocated to
cores. Classification of task migrat ion policies includes 5 main
parameters: 1) the trigger for reallocation, 2) the reallocation
source core (or cores), 3) the destination core(s), 4) task
selection criteria (which affects the set of tasks that are
candidates for reallocation) and the set of tasks that are
eventually migrated, and 5) the amount of available
knowledge concerning the system’s state. Work stealing,
detailed in Section III, is a special form of task migration. In
this case, the trigger for reallocation is the starvation of one or
more cores, the source cores are cores that are considered to
be loaded (see Section III) and the destination cores are the
starving cores. Several core/task selection policies can be
considered.

D. Core State Control
The firmware can control the state of a core and place it

in several sleep-modes. Additionally, the firmware can control
the frequency of cores. The current trend is to equip the OS
with this type of control capabilit ies and this is reflected in our
simulation framework depicted in Figure 2.

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

 Average Ready Queue Length of Processors

0

5

10

15

20

25

30

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286 301 316 331 346

SLICE NUMBER

Q
U

E
U

E
 S

IZ
E

Average Ready Queue Length of Processors

0

0.5

1

1.5

2

2.5

3

3.5

1 28 55 82 109 136 163 190 217 244 271 298 325 352 379 406 433 460 487 514 541 568 595 622

SLICE NUMBER

Q
U

E
U

E
 S

IZ
E

Figure 1. Desired OS and hardware interaction.

Figure 2. A snapshot of the research and simulation framework developed in this project.

Figure 3. Task arrival modes (a) early saturation mode (b) Steady state task arrival modes

42Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

 POWER-AWARE WORK STEALING III.
In a multicore system, task migrat ion refers to moving

tasks from the ready queue of one core to the ready queue of
another core in order to improve performance metrics. This
paper concentrates on one type of migration referred to as
work stealing [3].

Cores that experience extreme (h igh or low) imbalance
values of a g iven parameter might in itiate a task migrat ion
transaction. In this study, the ready queue size is considered
as the parameter that indicates imbalance. A core is
considered as starved if the number of tasks in its ready
queue falls below a threshold 𝑇𝑠. On the other hand, a core
is considered as loaded if the number of tasks in the ready
queue is above a threshold 𝑇𝑙 . A core is considered as
normal if it is neither starving nor loaded. This type of core
does not participate in work stealing.

A starving core is a potential stealer and a loaded core
is a potential victim of stealing. A stealer initiates the
stealing process by seeking a v ictim. The stealer identifies a
victim. The v ictim volunteers a task to be stolen. The stealer
steals this task by migrating it to its own ready queue. This
process is referred to as work stealing. In a homogeneous
multicore system, there is no architecture difference
between cores. Hence, all the stealers and all the potential
victims can only be distinguished based on execution
parameters and not on architecture parameters. This
research report concentrates on homogeneous multicore
systems.

The process of work stealing involves three steps. The
first step is identify ing starving and loaded cores. Next, a
specific victim has to be selected from the loaded cores.
Finally, a specific task to be migrated from the vict im to the
stealer has to be identified. There are numerous variants and
options related to each of these steps. One consideration is
the amount of knowledge availab le to cores. Under the local
knowledge model, each core is only aware of its own
current status [3][5]. In the global knowledge model, there is
an entity (e.g., the OS) that has and utilizes knowledge
about the status of each core [15]-[20]. The selection of the
victim core and the migrated task can be done in a way that
optimizes performance objectives. For example, if there is
more than one potential victim, the OS might choose the
most loaded core as the victim and the task with the highest
wait time in the ready queue of that core as the task for
migration.

Traditionally, work stealing has been applied under
performance optimization criterion. For example, the
stealing decisions (choosing the victim core and the task to
be migrated) might attempt to optimize wall to wall t ime of
an entire workload. In this research, the stealing decisions
incorporate power and performance objectives. Three main
objectives were considered 1) lowering a core’s power
consumption level, 2) maintain ing the system within an
allowable power envelope, and 3) balancing the power
consumption across cores; without significant impact on

time performance. In each set of experiments, one or more
of these goals was used in the process of victim and
migrated task selection. For example, in order to achieve
balance in power consumption, the loaded core that has
consumed the most amount of energy in the last 𝐾 time
slices is most likely to be selected as one of the victims.
Additional considerations include the amount of global
knowledge assumed, affin ity between tasks and cores (e.g.,
due to recent use of the core cache), and the power
consumption characteristics of the tasks in the ready queue
of potential victims.

 LITERATURE REVIEW IV.
This section discusses the relevant research availab le on

single and mult icore task scheduling policies that consider
the energy consumption of cores.

Kashif et al. and Kim et al. propose a Priority-based
Multi-level Feedback Queue Scheduler (PMLFQS) for
mobile devices [11][12]. Their papers, however, focus on
the firmware role rather than the OS role in power
management.

Wu et al. propose Low Thermal Early Deadline First
(LTEDF), a temperature-aware task scheduling algorithm
for real-time multicore systems [13]. If cores are thermally
saturated, task migrat ion is performed to alleviate the
saturation. The paper is focused on real-t ime systems and on
lowering the peak power and temperature consumptions.
Our study, however, concentrates on general applications.
Moreover, rather than limit ing the consideration to peak
power, this research considers balancing the power
consumption across cores in the system.

Zhou et al. propose an algorithm referred to as
THRESHHOT [14]. At each step, THRESHHOT selects the
hottest task that does not exceed the thermal threshold using
an online temperature estimator, leveraging the performance
counter-based power estimation. The paper, however,
focuses on batch processes on a single core and is intended
to lower final core temperature. Our study aims to consider
varying type of processes (beyond batch processes) on a
multicore system.

Quintin et al. detail the Classic Work Stealing Algorithm.
[15]. In addit ion, they propose the idea of grouping cores as
Leaders or Slaves and restricting the stealing according to
the grouping. In our research, stealing policies are devised
for a homogeneous system such that all cores (that have
load imbalance) can part icipate in stealing with the help of
one efficient central unit.

Guo et al. propose two policies that fit high granular
parallel processing environment [16]. Our work aims at
developing power-aware policies for all types of workload
including high and low granularity parallelism workloads.

Agarwal et al. propose a Central Task Scheduler that can
maintain informat ion of all the cores in the system [17].
Sudarshan et al. discuss a similar policy that main ly consists
of a d ispatcher and nodes [18]. Our research considers

43Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

several levels o f information sharing from local to global
knowledge sharing.

Robison et al. propose considering task to core affin ity as
a part of the task matching. They use a “Mailbox” and FIFO
mechanis m to handle the affin ity [19]. Our research
involves affin ity at all levels of scheduling, not only at the
matching stage.

Faxén et al. suggest Sampling Victim selection where a
thief samples several potential victims and selects the one
with the task that is closest to the root of the computation
[20]. In addition, they propose a Set Based Victim selection
where each thief only attempts to steal from a subset of the
other workers. We have implemented their methods in
addition to other policies reported below.

 EXPERIMENTAL SETUP V.
An exploratory software simulator (see Figure 2) is

developed to rapidly assess the utility of d ifferent matching
and scheduling procedures. The simulator is a t ime based
simulator which uses two important “atomic” time units.
The operating system atomic unit is referred to as a slice. A
typical slice time is 1 – 30 milliseconds. Scheduling
decisions are performed on a slice boundary. In addition, the
simulator employs an atomic t ime unit referred to as a tick.
System updates occur on a tick boundary. To mimic a
realistic scenario we assume that a slice time is 20
milliseconds; we further assume that a tick represents 100
microseconds hence there are 200 ticks per slice. Other
configurations have been used as well.

The simulator can be easily altered to evaluate a
number of d ifferent configurations and task parameters.
The overall system environment is equally flexib le.
Variables like the number of cores, power consumption per
core, core frequencies, idle power consumption, slice t ime
(in t icks), intra-core scheduling algorithms, stealing policies,
and termination conditions can all be changed for individual
experimental runs. Additional parameters include:
1) thresholds for the starvation/loaded status, 2) workload
size, 3) task arrival rate, which in general fo llows a Poisson
distribution, 4) task serving time, which in general follows
an exponential distribution, and 5) task power consumption
per tick, which is assumed to have a uniform d istribution.
These parameters have been selected based on discussion
with experts from leading chip design companies.

The simulat ions are performed for all the formulated
stealing policies. Each simulat ion is repeated several times
with d ifferent random number generation seeds. Every
simulation provides performance figures on a slice time
basis for all the cores. Data is gathered on slice boundaries
for each simulation of each stealing policy.

We report on two sets of experiments: Experiment 1:
task scheduling with high init ial rate of task generation, and
Experiment 2: task scheduling with a steady arrival rate.
The first scenario is typical of highly parallel loads, where
in the first steps of computation many tasks are being
generated. Initially, the system is saturated with new tasks,

but after a while the system completes the processing of all
the tasks in the current load. We refer to this scenario as the
parallel workload scenario. The second mode is typical to
communicat ion and networking scenarios where tasks are
generated at a more or less fixed rate and the system is
usually in a steady state where the rate of processing tasks is
about the same as the rate of task generation. This is
referred to as the steady state scenario. Figure 3 illustrates
the two scenarios via the size of the ready queue per slice
time.

As noted, the work stealing procedure requires
identifying a potential victim and selecting a task to be
migrated. For the victim selection we have taken into
account the amount of global knowledge, the set of potential
victims, and the specific power perfo rmance goal. In terms
of selecting the migrated task, it makes sense to assume that
a victim core would like to volunteer its “worst” task as the
task to be migrated. In this sense, we have identified HRRN
as the most promising criteria for power agnostic work
stealing. The v ictim is volunteering the task with the
minimal HRRN for stealing. The HECN which takes into
account EDP rather than expected execution t ime has been
used as the basis for selecting the task to be migrated for the
power-aware policies. In this case, the victim is
volunteering the task with the minimum HECN as the task
to be stolen.

A. Stealling Policies, Legend and Avbbreviations.
The following legend is used in the text and figures for

the Power-aware (PAW) variants of the work stealing
policies where HECN is used to determine the task to be
volunteered by the victim core.

Random_MinHECN_Task; the stealer chooses a random
core as a potential victim without knowledge of the core’s
load. If that randomly chosen core is not loaded, then no
stealing occurs. Otherwise, this victim core volunteers a task
with the lowest HECN.
MaxLoaded_MinHECN_Task; the stealer identifies a
loaded core with the largest ready queue as a victim. This
victim core volunteers a task with the lowest HECN.
MaxMin_ HECN_Task; each loaded core (a potential
victim) volunteers a task with lowest HECN. The stealer
considers the tasks volunteered by all potential v ictims and
finds a task with the highest HECN among all volunteered
tasks. Hence the name MaxMin, implies that the MaxHECN
task is selected from the available MinHECN tasks.
MaxRemainingService_MinHECN_Task; the service
time of tasks remaining in the ready queue can be used to
estimate the remaining core execution time and the energy
that might be consumed. Therefore, the stealer p icks the
core with a ready queue that has the maximum remain ing
task service or execution time. The victim core volunteers a
task with the lowest HECN.
MaxRemainingEnergy; the energy of tasks remain ing in
the ready queue indicates the energy that the core might

44Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

consume. Hence, the stealer selects the core with a ready
queue that has the maximum remaining task energy. In this
case the victim has two options for volunteering tasks:
1) MinHECN_Task; the victim core volunteers a task with
the lowest HECN. 2) MaxEnergyTask; the victim core
volunteers a task with maximum energy.
MaxEnergyInLastKSlices; the stealer chooses a core that
has consumed the maximum amount of energy in the last k
slices of the simulation. Again, can choose between the:
MinHECN_Task or the MaxEnergyTask.
MaxEnergyConsumed; the stealer opts for a core that has
consumed the maximum energy so far in the simulat ion, and
the victim has the same two options as in the previous
policies: MinHECN_Task or MaxEnergyTask.

The PAG version of the above inter-core work stealing
policies uses the HRRN ratio in place of the HECN to
determine the task to volunteer.

 EXPERIMENTS AND RESULTS VI.
This section reports the two types of experiments with

work stealing conducted as part of this study and provides
the results of these experiments.

A. Experiment 1 - Multicore Task Scheduling for a Parallel
Workload Scenario.
In this set of experiments, a fixed workload simulation is

performed in a system having a fast task arrival rate
(parallel workload). These experiments are intended to
study the behavior of the formulated policies and identify
the policy that performs the best under this specific
scenario. The four main perfo rmance figures provided from
this experiment are the energy consumption variance, the
average turnaround time, the peak ready-queue length, and
the complet ion time of all the policies. The parallel
workload scenario is depicted in Figure 3(a). According to
the figure, the ready queue length is rapidly increasing in the
first few time slices of the simulat ion and then gradually
decreasing as the simulat ion progresses. Figure 4 shows the
cores’ energy consumption variance. This is used as an
indicator of load balancing. It can be observed that, work
stealing provides a reduction of about 18% in variance
compared to PAG_NoSteal policy. The
PAW_MaxMin_HECN_Task is the best stealing policy.
The power-aware policies provide a marginally better power
performance than the power agnostic method.

Figure 5 d isplays the turnaround time. In this case, the
PAW_NoSteal policy has a lower turnaround time than
PAG_NoSteal policy. This implies that power-aware intra-
core task scheduling, without any stealing, lowers
turnaround time by about 4%. By including stealing, the
PAW_MaxMin_ HECN_Task is the best stealing policy and
it improves (reduces) turnaround time further by
approximately 31% compared to PAG_NoSteal policy. This
shows that in the process of trying to gain power efficiency,
the time factor is improved as well. This can be due to the
fact that the EDP metric used in the selection criteria

considers time along with power attributes. Again, power-
aware is slightly better than power agnostic.

An experiment that measured the maximal size of the
ready queues in each simulation of each stealing procedure
has shown that the ready queues had reasonable sizes (up to
40 tasks per queue). Another experiment performed
measured the task complet ion time. In this case,
PAW_NoSteal policy increases the total completion by
about 3.5%. This can be attributed to the fact that power-
aware scheduling may increase task wait time and there is
no stealing to help reduce wait time. On the other hand,
stealing significantly reduces the completion t ime with
PAW_MaxMin_ HECN_Task policy being the best stealer
as it reduces the completion time by about 17%. Further
experimental results are reported in [5].

From all of the results of this experiment, it can be seen
that the PAW_MaxMin_ HECN_Task is the best stealing
policy fo r a fast task arrival rate scenario. It significantly
improves three important metrics, namely, energy
consumption variance, turnaround time, and complet ion
time.

B. Experiment 2 - Multicore Task Scheduling for a Steady
State Workload Scenario.
For this test, a fixed workload simulat ion is performed in

a system having a moderate task arrival rate. This emulates
a steady state workload scenario as illustrated in Figure
3(b). In the first few t ime slices of the simulat ion, the ready
queue length gradually increases. Then as the simulat ion
progresses, the queue length remains steady for several
slices thereby simulating a steady state workload scenario.

Figure 6 shows the cores’ energy consumption variance.
It is noticed that PAW_NoSteal policy performs slightly
better than PAG_NoSteal policy by lowering the energy
consumption variance by about 2%. By including stealing,
the PAW_MaxEnergyInKSlices_MaxEnergyTask is seen as
the best power-aware stealing policy. This policy further
reduces the variance by 5% compared to PAG_NoSteal
policy.
The PAG_MaxEnergyConsumed_MinHRRN work stealing
policy provides a marginally better power performance than
the PAW_MaxEnergyInKSlices_MaxEnergyTask method
but it is not considered significant since it does not perform
as well for the turnaround time metric discussed next.

Figure 7 d isplays the turnaround time. Again,
PAW_NoSteal policy is better than PAG_NoSteal policy by
almost 13%. The power-aware intra-core task scheduling
coupled with inter-core work stealing further improves the
turnaround time. The policy
PAW_MaxEnergyInKSlices_MaxEnergyTask is again the
best stealing policy with approximately 17% lower
turnaround time compared to PAG_NoSteal policy. The
power-aware policies are noticeably better than the power
agnostic policies.

As in the case of parallel load, an experiment that
measured the maximal size of the ready queues in each

45Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

simulation of each stealing procedure has been performed.
The result shows that the ready queues had reasonable sizes
(up to 20 tasks per queue). Another experiment performed
measured the task completion time. In this case, an
important difference was noted compared to the previous
experiment. The PAW_NoSteal policy is better than

PAG_NoSteal policy with a 3% lower complet ion
Furthermore, the best power-aware stealer of this
experiment is again the
PAW_MaxEnergyInKSlices_MaxEnergyTask policy with
about 8% reduction in completion time compared to
PAG_NoSteal policy.

Figure 4. Energy Consumption Variance of the parallel load experiment

Figure 5. Average Turnaround time of the parallel load experiment

Energy Consumption Variation

0

50

100

150

200

250

300

Stealing Policy

Va
ria

nc
e(

Jo
ul

es
)

PAW_NoSteal
PAW_Random_MinHECN_Task
PAW_MaxLoaded_MinHECN_Task
PAW_MaxMin_HECN_Task
PAW_MaxEnergyConsumed_MinHECN_Task
PAW_MaxRemainingEnergy_MinHECN_Task
PAW_MaxRemainingService_MinHECN_Task
PAW_MaxEnergyInKSlices_MinHECN_Task
PAW_MaxEnergyConsumed_MaxEnergyTask
PAW_MaxRemainingEnergy_MaxEnergyTask
PAW_MaxEnergyInKSlices_MaxEnergyTask
PAG_NoSteal
PAG_Random_MinHRRN_Task
PAG_MaxLoaded_MinHRRN_Task
PAG_MaxMin_HRRN_Task
PAG_MaxEnergyConsumed_MinHRRN_Task
PAG_MaxRemainingEnergy_MinHRRN_Task
PAG_MaxRemainingService_MinHRRN_Task
PAG_MaxEnergyInKSlices_MinHRRN_Task
PAG_MaxEnergyConsumed_MaxEnergyTask
PAG_MaxRemainingEnergy_MaxEnergyTask
PAG_MaxEnergyInKSlices_MaxEnergyTask

Average TurnAroundTime of WorkLoad

0

1000

2000

3000

4000

5000

6000

Stealing Policy

TI
M

E
(i

n
tic

ks
)

PAW_NoSteal
PAW_Random_MinHECN_Task
PAW_MaxLoaded_MinHECN_Task
PAW_MaxMin_HECN_Task
PAW_MaxEnergyConsumed_MinHECN_Task
PAW_MaxRemainingEnergy_MinHECN_Task
PAW_MaxRemainingService_MinHECN_Task
PAW_MaxEnergyInKSlices_MinHECN_Task
PAW_MaxEnergyConsumed_MaxEnergyTask
PAW_MaxRemainingEnergy_MaxEnergyTask
PAW_MaxEnergyInKSlices_MaxEnergyTask
PAG_NoSteal
PAG_Random_MinHRRN_Task
PAG_MaxLoaded_MinHRRN_Task
PAG_MaxMin_HRRN_Task
PAG_MaxEnergyConsumed_MinHRRN_Task
PAG_MaxRemainingEnergy_MinHRRN_Task
PAG_MaxRemainingService_MinHRRN_Task
PAG_MaxEnergyInKSlices_MinHRRN_Task
PAG_MaxEnergyConsumed_MaxEnergyTask
PAG_MaxRemainingEnergy_MaxEnergyTask
PAG_MaxEnergyInKSlices_MaxEnergyTask

46Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

Figure 6. Energy Consumption Variance of the steady state load experiment

Figure 7. Average Turnaround time of the steady state load experiment

The PAG_MaxMin_HRRN_Task policy shows slightly
better complet ion time compared to the
PAW_MaxEnergyInKSlices_MaxEnergyTask policy, but
it has a disadvantage since it fails to be the best in terms
of efficiency in the energy consumption variance and
turnaround time metrics.

 RESULT EVALUATION VII.
According to the data gathered, in every experiment,

a power-aware policy emerges as the policy that
successfully reduces energy consumption variance,
turnaround time and completion time. In addition to
accomplishing energy efficiency, the performance t ime
has been improved as well. The PAW_MaxMin_
HECN_Task policy shows the highest potential with 18%
reduction in energy consumption variance, 31%
improvement in turnaround time, and 17% more

efficiency in completion time compared to the
PAG_NoSteal policy.

Furthermore, the key po ints noted from the combined
results of all the experiments are as follows.
1. The PAW_MaxMin_ HECN_Task policy emerges as
the best policy in Experiment 1. The reason for this might
be because the MaxMin policy is the only policy that
directly selects a task to steal by choosing the least power
consuming task among the high power consuming tasks
of all potential victim cores. All the other stealing
policies, first select a potential victim core and then select
a task from that chosen core. Therefore, a stealing policy
that considers all the tasks in the system such as the
MaxMin policy outperforms other policies.
2. PAW_MaxEnergyConsumedInKSlices_MaxEnergy_
Task policy is the most efficient policy in Experiment 2.
This can be best explained by the following analysis.
Excluding the MaxMin policy, all the stealing policies

Energy Consumption Variance

320

325

330

335

340

345

350

355

Stealing Policy

Va
ria

nc
e

(in
 J

ou
le

s)

PAW_NoSteal
PAW_Random_MinHECN_Task
PAW_MaxLoaded_MinHECN_Task
PAW_MaxMin_HECN_Task
PAW_MaxEnergyConsumed_MinHECN_Task
PAW_MaxRemainingEnergy_MinHECN_Task
PAW_MaxRemainingService_MinHECN_Task
PAW_MaxEnergyInKSlices_MinHECN_Task
PAW_MaxEnergyConsumed_MaxEnergyTask
PAW_MaxRemainingEnergy_MaxEnergyTask
PAW_MaxEnergyInKSlices_MaxEnergyTask
PAG_NoSteal
PAG_Random_MinHRRN_Task
PAG_MaxLoaded_MinHRRN_Task
PAG_MaxMin_HRRN_Task
PAG_MaxEnergyConsumed_MinHRRN_Task
PAG_MaxRemainingEnergy_MinHRRN_Task
PAG_MaxRemainingService_MinHRRN_Task
PAG_MaxEnergyInKSlices_MinHRRN_Task
PAG_MaxEnergyConsumed_MaxEnergyTask
PAG_MaxRemainingEnergy_MaxEnergyTask
PAG_MaxEnergyInKSlices_MaxEnergyTask

Average Turnaround Time Of Workload

1500

1600

1700

1800

1900

2000

2100

Stealing Policy

Ti
m

e
(in

 T
ic

ks
)

PAW_NoSteal
PAW_Random_MinHECN_Task
PAW_MaxLoaded_MinHECN_Task
PAW_MaxMin_HECN_Task
PAW_MaxEnergyConsumed_MinHECN_Task
PAW_MaxRemainingEnergy_MinHECN_Task
PAW_MaxRemainingService_MinHECN_Task
PAW_MaxEnergyInKSlices_MinHECN_Task
PAW_MaxEnergyConsumed_MaxEnergyTask
PAW_MaxRemainingEnergy_MaxEnergyTask
PAW_MaxEnergyInKSlices_MaxEnergyTask
PAG_NoSteal
PAG_Random_MinHRRN_Task
PAG_MaxLoaded_MinHRRN_Task
PAG_MaxMin_HRRN_Task
PAG_MaxEnergyConsumed_MinHRRN_Task
PAG_MaxRemainingEnergy_MinHRRN_Task
PAG_MaxRemainingService_MinHRRN_Task
PAG_MaxEnergyInKSlices_MinHRRN_Task
PAG_MaxEnergyConsumed_MaxEnergyTask
PAG_MaxRemainingEnergy_MaxEnergyTask
PAG_MaxEnergyInKSlices_MaxEnergyTask

47Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

first consider the power properties related to a core to
determine a victim. Most properties are related to the
number of tasks or type of tasks in the ready queue but
only two of the policies consider the h istory of the core,
namely, the MaxEnergyConsumedInKSlices policy which
uses recent past data and the MaxEnergyConsumed policy
which uses all the past data. Hence, a policy that
considers properties related to the recent history of
potential victim cores might have advantage over policies
that ignore this information.
3. Based on the experiment results, the
PAW_MaxMin_HECN_Task procedure is the policy with
the overall most potential for power efficiency even if the
task arrival rate is unknown. It is observed that this policy
performs the best for cases with fast task arrival rate and
also performs reasonably well in situations with steady
task arrival rate.
4. In all the experiments, there is no significant difference
in perfo rmance amongst many of the stealing policies.
This could be attributed to the fact that the variations in
work stealing are very minute and have subtle differences.
5. The turnaround time is improved much more than the
power efficiency level in all the experiments. This implies
that the EDP metric integrated into the HECN policy
might be giv ing more consideration to the task time rather
than to the task power.

 CONCLUSIONS AND PROPOSALS FOR FURTHER VIII.
RESEARCH

The primary goal of this research work is to develop
efficient power-aware work stealing policies. In an
attempt to achieve the desired goal, the fo llowing steps
have been implemented. First, based on previous research
[3][5], we have selected the HRRN as the benchmark for
intra-core task scheduling and the derived HECN cost
function that extends the HRRN policy to include power
characteristics of tasks in the system.

Next, build ing on the new intra-core HECN policy,
various inter-core work stealing policies have been
explored. Several d ifferent power-aware variations of
work stealing that consider power features of the cores
and its tasks before identifying the task to steal have been
formulated. Finally, an in-house exploratory simulator has
been developed solely to evaluate the potential of the
policies devised.

Extensive multicore experiments with work stealing
policies have been performed. The outcome suggests that
several power-aware policies have p romising results
where power efficiency is being attained along with a
minimal effect on performance.

We plan to extend the reported research in several
ways: first, we plan to examine the utility of additional
heuristic evaluation functions. Next, we plan to consider
affinity between tasks and cores (e.g., due to recent use of
cache) in the stealing decisions. Additionally, we p lan to

connect our simulator to a vendor mult icore board and use
parameters of power and performance available at the
hardware/firmware in the process of making scheduling
decisions (as per the model depicted in Figure 1). This
will enable fast and realistic exp loratory simulations.
Finally, we plan to incorporate DVFS policies and
changing core states (e.g., shutting down cores) as a part
of the scheduling decisions.

ACKNOWLEDGMENT
This research was partially supported by a grant from the
Semiconductor Research Consortium. Additionally, this
work was partially supported by the NSF grants: NSF
CNS-1253292 and NSF CNS-1305302.

REFERENCES

[1] A. Merkel and F. Bellosa, “Balancing Power Consumption
In Multiprocessor Systems,” in Proceedings of the 1st
ACM SIGOPS/EuroSys European Conference on
Computer Systems, 2006, pp. 403-414.

[2] A. K. Coskun, R. Strong, D. M. Tullsen, and T.S. Rosing,
“Evaluating the Impact of Job Scheduling and Power
Management on Processor Lifetime for Chip
Multiprocessors,” in Proceedings Of The Eleventh
International Joint Conference on Measurement and
Modeling of Computer Systems, 2009, pp. 169-180.

[3] S. Shankar, D. E. Tamir, and A. Qasem, “Towards an OS-
centric Framework for Energy-Efficient Scheduling of
Parallel Workloads,” PPTDA-2013, the 2013 International
Conference on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, July, 2013, pp.
21-28.

[4] C. Hyatt, G. LaKomski, C. Alvarado, R. Hay, A. Qasem,
and D. E. Tamir, “Power-aware Task Matching and
Migration in Heterogeneous Processing Environments,” the
2014 International Conference on Computational Science
and Computational Intelligence, Las Vegas, US, 2014, pp.
3-8.

[5] S. Shankar, Power-aware Task Scheduling on Multicore
Systems – Thesis Report, Texas State University,
Computer Science, December, 2012.

[6] A. Silberschatz, P. B. Galvin, and G. Gagne, “CPU
Scheduling,” in Operating System Concepts,8th ed.,John
Wiley and Sons, 2008, pp.183-223.

[7] D. Tam, R. Azimi, and M. Stumm, “Thread Clustering:
Sharing-Aware Scheduling On SMP-CMP-SMT
Multiprocessors,” in Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer
Systems, 2007, pp. 47-58.

[8] S. Boyd-Wickizer, M. F. Kaashoek, and R. Morris,
“Reinventing Scheduling For Multicore Systems,” in
Proceedings of the 12th Conference on Hot topics in
Operating Systems, 2009, pp. 21-21.

[9] M. Rajagopalan, B. T. Lewis, and T. A. Anderson, “Thread
Scheduling For Multicore Platforms,” in Proceedings of the
11th USENIX Workshop on Hot Topics in Operating
Systems, 2007, pp. 35-44.

[10] J. Donald and M. Martonosi, “Techniques for Multicore
Thermal Management: Classification and New
Exploration,” in Proceedings of the 33rd International
Symposium on Computer Architecture, 2006, pp.78-88.

[11] M. Kashif, T. Helmy, and E. El-Sebakhy, “A Priority-
Based MLFQ Scheduler for CPU Power Saving,” in

48Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

Proceedings of the IEEE International Conference on
Computer Systems and Applications, 2006, pp.130-134.

[12] K. H. Kim, R. Buyya, and J. Kim, “Power-aware
Scheduling Of Bag-Oftasks Applications With Deadline
Constraints On DVS-Enabled Clusters,” in Proceedings of
the Seventh IEEE International Symposium on Cluster
Computing and the Grid, ser. CCGRID ’07, 2007, pp. 541-
548.

[13] G. Wu, Z. Xu, Q. Xia, J. Ren, and F. Xia, “Task Allocation
and Migration Algorithm for Temperature-constrained
Real-time Multicore Systems,” in Proceedings of the IEEE
International Conference on Cyber,Physical and Social
computing, 2010, pp.189-196.

[14] X. Zhou, J. Yang, M. Chrobak, and Y. Zhang,
“Performance-Aware Thermal Management via Task
Scheduling,” The Journal of ACM Transactions on
Architecture and Code Optimization, vol. 7 issue 1, April.
2010, pp. 5:1-5:31.

[15] J. Quintin and F. Wagner, “Hierarchical Work-Stealing,” in
EuroPar'10 Proceedings of the 16th International Euro-Par
Conference on Parallel Processing, 2010, pp. 217-229.

[16] Y. Guo, J. Zhao, V. Cave, and V. Sarkar, “SLAW: a
Scalable Locality-aware Adaptive Work-stealing
Scheduler,” in Proceedings of the IEEE International
Symposium on Parallel and Distributed Processing, 2010,
pp.1-12.

[17] S. Agarwal, G.K. Mehta, and Y. Li, “Performance- based
Scheduling with Work Stealing.” Internet:
http://www.cs.ucsb.edu/~gaurav_mehta/reports/cs290b.pdf,
2009 [retrieved: March, 2014].

[18] D. Sudarshan and D. Pooja, “LIBRA:Client Initiated
Algorithm for Load Balancing Using Work Stealing
Mechanism,” in Proceedings of 2nd International
Conference on Emerging Trends in Engineering and
Technology, 2009, pp. 636-638.

[19] A. Robison, M, Voss, and A. Kukanov, “Optimization via
Reflection on Work Stealing in TBB,” in Proceedings of
the IEEE International Symposium on Parallel and
Distributed Processing, 2008, pp.1-8.

[20] K. Faxén and J. Ardelius, “Manycore Work Stealing,”in
Proceedings of the 8th ACM International Conference on
Computing Frontiers ACM, 2011, pp. 10:1-10:3.

49Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

	I. Introduction
	II. Task Scheduling
	A. Task Matching
	B. Intra-core Task Scheduling
	C. Inter-core Task Migration
	D. Core State Control

	III. Power-aware Work Stealing
	IV. Literature Review
	V. Experimental Setup
	A. Stealling Policies, Legend and Avbbreviations.

	VI. Experiments and Results
	A. Experiment 1 - Multicore Task Scheduling for a Parallel Workload Scenario.
	B. Experiment 2 - Multicore Task Scheduling for a Steady State Workload Scenario.

	VII. Result Evaluation
	VIII. Conclusions and Proposals for Further Research
	Acknowledgment
	References

