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Abstract—This paper compares the performance of sparse
Matrix-vector multiplication paralleled by the conventional
Block-Cyclic distribution and its improved variant on parallel
computer with shared memory. The underlying idea is to ex-
change nonzero entries of matrix assigned to each thread with
block unit. Numerical results demonstrate that the proposed
distribution using exchange nonzero entries of matrix with block
unit gives or improves parallelism.
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I. INTRODUCTION

We consider the problem of efficient Matrix-vector mul-
tiplication on parallel computers. As you know well, Matrix-
vector multiplication appears often in solution of linear system
of equations, and its efficient computation is crucial. In partic-
ular, Matrix-vector multiplication has a large part of computa-
tion of solving linear system of equations on parallel computers
[10][11]. Many studies on fast computation of Matrix-vector
multiplication have been proposed [3][6][7][12][13]. Fast com-
putation depends greatly on evenly distributed nonzero entries
of matrix onto each thread or process. In general, Block Cyclic
(BC) distribution [8] is to be effective approach in order to
evenly distribute nonzero entries of matrix. However, in the BC
distribution, it is well known that parallel performance changes
greatly as treated number of blocks changes. Therefore, in the
BC distribution, it is not easy to decide optimum number of
blocks.

In this paper, we propose an intelligent approach which
distributes evenly nonzero entries of matrix to each thread by
means of blocking exchange. We refer to intelligent Blocking
Exchange for Evenly distributed nonzero entries of matrix
(iBEE) method. We adopt double strategies for the iBEE
method based on the conventional BC distribution. The first
strategy is to decide the number of blocks so as to be evenly
distributed for nonzero entries of matrix on each thread. The
second strategy is to adopt a blocking exchange technique for
refined and sufficiently even distribution. As a result, the iBEE
method makes nonzero entries able to be significantly evenly
distributed on each thread with the BC distribution.

The paper is organized as follows. In Section 2, we
introduce a brief outline of the conventional Block and BC
distributions. In Section 3, we describe our proposed iBEE
method in detail. The iBEE method includes double strategies

for the purpose of fast computation of the Matrix-vector
multiplication on parallel computers. Moreover, in Section
4, we evaluate effectiveness of the iBEE method through
numerical experiments. Finally, in Section 5, we will make
concluding remarks.

II. THE CONVENTIONAL DISTRIBUTION METHODS

We assume that nonzero entries are stored in Compressed
Row Storage (CRS) format [2] and the pseudo program of
computation of Matrix-vector multiplication is written in For-
tran 90 [1]. Here, matrix A is sparse. In this case, concerning
the conventional method for nonzero entries, the Block and
BC distributions exist as simple distribution. Below, we give
an outline of the Block and BC distributions. “ncol” means
dimension of matrix, and “rowptr”, “colind” and “val” mean
arrays for starting pointer of each row, column index of each
element and value of nonzero entries, respectively.

Pseudo program 1: Matrix-vector multiplication [2]

1. Do i = 1, ncol

2. temp = 0.0

3. Do j = rowptr(i), rowptr(i+ 1)− 1

4. temp = temp+ val(j) ∗ x(colind(j))
5. End Do

6. y(i) = temp

7. End Do

A. Block distribution

In block distribution, we divide nonzero entries into blocks
with the same number of threads. Moreover, we divide also
nonzero entries such that the number of matrix row in each
block is same each other.

In Fig.1 we show an example of two block distribution for
matrix with dimension of 8 and with nonzero entries of 19. In
this case, the difference of number of nonzero entries included
in each block is three. Here, we set the thread number as “nth”
and the number of blocks as “nblk”. In block distribution, we
get that nblk = nth.
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Fig.1 An example of block distribution in case of two
threads.

We exhibit pseudo program for production of array of bst
which stores the first row in each block.

Pseudo program 2: Production of array of bst [2]

1. bst(1) = 1

2. tmp1 = ncol/nblk

3. tmp2 = mod(ncol, nblk)

4. Do i = 1, tmp2

5. bst(i+ 1) = bst(i) + tmp1

6. End Do

7. Do i = tmp2 + 1, nblk

8. bst(i+ 1) = bst(i) + tmp1 + 1

9. End Do

B. Block Cyclic distribution

We store block-id which is assigned to a thread to an array
of asb (=assigned block). That is, we store block-id of the
jth of block, which is assigned to the ith thread, to array of
asb(i, j). We produce an array of asb in the BC distribution
as below.

Pseudo program 3: Production of array of asb in the BC
distribution [2]

1. Do i = 1, nth

2. Do j = 1, nblk/nth

3. asb(i, j) = i+ nth ∗ (j − 1)

4. End Do

5. End Do

Below, we present a parallel version of Matrix-vector
multiplication with the OpenMP library [4][9] in the BC

distribution. The array of bst stores row number on the
starting row of each block. “ncol” means dimension of matrix,
and “rowptr”, “colind” and “val” mean arrays for starting
pointer of each row, column index of each element and value
of nonzero entries, respectively. “omp parallel do” means a
directive for thread parallelism with the OpenMP library.

Pseudo program 4: Parallel version of Matrix-vector
multiplication with OpenMP.

1. !$omp parallel do private(i, j, k, l, tmp, temp)

2. Do i = 1, nth

3. Do j = 1, nblk/nth

4. tmp = asb(i, j)

5. Do k = bst(tmp), bst(tmp+ 1)− 1

6. temp = 0.0

7. Do l = rowptr(k), rowptr(k + 1)− 1

8. temp = temp+ val(l) ∗ x(colind(l))
9. End Do

10. y(k) = temp

11. End Do

12. End Do

13. End Do

We present an example of the BC distribution in case of
two threads in Fig.2. The number of nonzero entries in thread
1 is nine, and the number of nonzero entries in thread 2 is
ten. In this case, the difference of number of nonzero entries
included in each block is only one.
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Fig.2 An example of the BC distribution in case of two
threads.

III. INTELLIGENT BEE METHOD

In this section, we propose the iBEE method. The iBEE
means intelligent blocking exchange technique for evenly
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distributed nonzero entries of matrix. The iBEE method is
constructed based on the BC distribution, and adopts the
following two intelligent strategies.

1) To determine the number of blocks automatically.

2) To apportion nonzero entries evenly with block ex-
changing technique.

A. To determine automatically the number of blocks

In order to determine the number of blocks automatically,
we introduce indicator Wnnt (Width of nnt). Wnnt is defined
as follows:

Wnnt := maxi in thread(nnt(i))−min(nnt(i))

(1 ≤ i ≤ nth). (1)

Here, “nth” means the thread number and “nnt” means the
number of nonzero entries per thread.

Fig.3 (a) shows an algorithm to automatically compute
the number of blocks per thread. In Fig.3, “nblk” means the
number of blocks. At first, nblk is initialized to nth. Next, we
calculate indicator Wnnt, and check if Wnnt < tolerance
or not. If Wnnt < tolerance then nblk is determined to nth.
On the other hand, if Wnnt ≥ tolerance then increase nblk
by nth. Until Wnnt < tolerance, nblk is increased by nth.

Start Start

cnt 1

nblk =�nth

cnt=1

Calculate���Wnnt,�
Apportion�of�

entries�by�

blockrcyclic

id_max,��id_min

Exchange block

Calculate��Wnnt

Exchange��block

cnt=cnt+1

Wnnt <tol nblk=nblk

+nth

No
cnt>ulmt

No

Stop

Yes

+nth

Stop

Yes

p

(a)Determination of number of blocks (b)Exchanging blocks

Fig.3 Algorithm to automatically compute the number of
blocks per thread.

B. To apportion evenly nonzero entries with block exchanging
technique

Fig.3 (b) shows the algorithm of exchanging blocks. In
Fig.3 (b), “u lmt” means upper limit of the number of blocks
exchanging. “id max” means thread ID of the thread most
apportioned nonzero entries and “id min” means thread ID
of the thread least apportioned nonzero entries. In Fig.3 (b),
at first, cnt is initialized to one. Next, we calculate Wnnt
and id max, id min. Furthermore, the block apportioned to
id max and the block apportioned to id min are exchanged.

We increase cnt by one, and if cnt > u lmt then the block
exchange is finished.

IV. NUMERICAL EXPERIMENTS

In this section we discuss numerical experiments of the
BC distribution and the iBEE method. All computations were
carried out in double precision floating-point arithmetic on
FUJITSU PRIMEQUEST 580 (clock: 1.6GHz). FUJITSU op-
timized Intel Fortran Compiler90 and compile option “-Kfast,
OMP” were used. We implemented all programs with the
OpenMP library. The thread numbers are 1, 2, 4, 8, 16, 24,
32, 48 and 64. We set parameters of the iBEE method as
tolerance = 10000 and u lmt is the same as the thread
number. Four test matrices are taken from Florida Sparse
Matrix Collection [5]. The description of test matrices is shown
in Table I. In this Table, “nnz” means number of nonzero
entries, and “ave nnz” means number of nonzero entries per
single row. Moreover, “ave nnz8” means average number of
total nonzero entries per eight threads.

TABLE I. THE DESCRIPTION OF TEST MATRICES.

matrix dimension nnz ave nnz ave nnz8 analytic field
cage14 1,505,785 27,130,349 18.02 3,391,294 DNA electrophoresis
language 399,130 1,216,334 3.04 152,041 language processing
poisson3Db 85,623 2,374,949 27.74 296,869 structuralsme3Dc 42,930 3,148,656 73.34 393,582

Fig.4 shows the structure of four matrices. That is, Fig.4
plots nonzero entries of matrices. From Fig.4, we can see that
a lower row decreases the number of nonzero entries of matrix
language. Therefore, it is difficult to apportion sufficiently
nonzero entries of matrix language evenly when we adopt the
BC distribution. It is also difficult to apportion nonzero entries
of matrix cage14 because the number of nonzero entries of
matrix cage14 is very large.

(a)cage14 (b)language

(c)poisson3Db (d)sme3Dc
Fig.4 Pattern of nonzero entries of four matrices.

We present differences between minimum and maximum
of nonzero entries when the thread numbers are 8 and 64 in
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TABLE II. DIFFERENCE BETWEEN MINIMUM AND MAXIMUM OF
NONZERO ENTRIES WHEN THE THREAD NUMBERS ARE 8 AND 64.

number of matrix ave. nnz (a)diff. of (b)diff. of ratio
threads per thread BC iBEE (=(b)/(a))

8 cage14 3,391,294 303,593 (8.95%) 7,028 (0.21%) 1/42.6
language 152,041 35,626 (23.4%) 8,121 (5.34%) 1/4.38
poisson3Db 296,869 19,088 (6.43%) 1,511 (0.51%) 1/12.6
sme3Dc 393,582 89,719 (22.8%) 7,923 (2.01%) 1/11.3

64 cage14 423,911 173,813 (41.0%) 8,942 (2.11%) 1/19.4
language 19,005 13,099 (68.9%) 9,362 (49.3%) 1/1.40
poisson3Db 37,109 13,636 (36.7%) 9,654 (26.0%) 1/1.41
sme3Dc 49,198 61,864 (125.7%) 6,638 (13.5%) 1/9.32

Table II. We see that the difference of the iBEE method is
much smaller than that of the BC distribution at both 8 and
64 processors.

A. Computational cost of the iBEE method

We define D′ as a difference between minimum and max-
imum of nonzero entries after exchanging blocks. We denote
m as exchanging block-id included in minimum nonzero
entries and M as that included in maximum nonzero entries,
respectively. Moreover, we denote bnz(m) and bnz(M) as
number of nonzero entries with block-id of m and that of
nonzero entries with block-id of M , respectively. Then, the
difference D′ is written as

D′ = |Wnnt − 2(bnz(M)− bnz(m))|. (2)

That is, first we calculate the above difference of D′ to all
combinations of block exchanging, secondly we may exchange
blocks so as to be minimum nonzero entires for difference D′.
For example, when number of blocks included in each thread is
100, number of combination of block exchanging is estimated
as only 100×100 = 10, 000. Then, we may calculate the above
difference D′ at 10000 times. Therefore, we can do it quickly.
As a result, we can estimate that the cost of iBEE method is
not expensive at all, because there is no reordering of nonzero
entries of matrix.

We ran two experiments. The first experiment is perfor-
mance estimation of parallel Matrix-vector multiplication with
the BC distribution and the iBEE method.

B. Performance estimation of parallel Matrix-vector product
with block-cyclic distribution and the iBEE method

In this section, we show numerical results of parallel
Matrix-vector product with the BC distribution and the iBEE
method. We tested Matrix-vector multiplication at 1000 times.
Table III shows the performance of the iBEE method. In Table
III, “nth” means the thread number and “nblk” means the
number of blocks. Bold figures means minimum total time
among the BC distribution and the iBEE method.

From Table III, we can see that Wnnt of the iBEE method
is much smaller than that of the BC distribution, and time of
the iBEE method is shorter than that of the BC distribution
for all thread number. In particular, the iBEE method works
well when the thread number becomes larger than 32 threads.
Moreover, it is concluded that the iBEE method is very
effective for matrix sme3Dc.

TABLE III. COMPARISON OF PERFORMANCE OF PARALLELED
MATRIX-VECTOR MULTIPLICATION WITH THE BC DISTRIBUTION AND THE

iBEE METHOD.

(a)matrix: cage14

Wnnt time[s] speed-
method nth nblk ratio(%) Av-t total-t up

BC 1 1 0 - 184.598 184.598 1.0
iBEE

BC 2 10 1,233,727 100.0 101.987 101.987 1.81
iBEE 6,633 0.54 101.423 101.423 1.82

BC 4 28 745,785 100.0 71.941 71.941 2.56
iBEE 7,435 1.00 71.606 71.606 2.57

BC 8 104 303,593 100.0 38.499 38.499 4.79
iBEE 7,028 2.31 37.522 37.522 4.92

BC 16 96 438,366 100.0 26.635 26.635 6.93
iBEE 9,191 2.10 25.127 25.127 7.34

BC 24 120 321,120 100.0 18.538 18.538 9.95
iBEE 9,748 3.04 17.974 17.974 10.27

BC 32 224 251,881 100.0 11.688 11.688 15.79
iBEE 8,272 3.28 10.993 10.993 16.79

BC 48 288 193,305 100.0 3.863 3.863 47.78
iBEE 6,300 3.26 3.212 3.212 57.47

BC 64 256 173,813 100.0 2.340 2.340 78.88
iBEE 8,942 5.14 2.138 2.138 86.34

(b)matrix: language

Wnnt time[s] speed-
method nth nblk ratio(%) Av-t total-t up

BC 1 1 0 - 20.382 20.382 1.0
iBEE

BC 2 10 112,544 100.0 8.964 8.964 2.27
iBEE 2,078 1.85 8.793 8.793 2.31

BC 4 28 54,286 100.0 4.034 4.034 5.05
iBEE 4,147 7.64 4.008 4.008 5.08

BC 8 280 35,626 100.0 2.007 2.007 10.15
iBEE 8,121 22.80 1.964 1.965 10.37

BC 16 368 28,770 100.0 1.046 1.046 19.48
iBEE 9,623 33.45 1.012 1.013 20.12

BC 24 600 27,922 100.0 0.744 0.744 27.39
iBEE 9,453 33.86 0.702 0.703 28.99

BC 32 800 21,982 100.0 0.602 0.602 33.85
iBEE 9,802 44.59 0.554 0.556 36.65

BC 48 1008 15,896 100.0 0.449 0.449 45.39
iBEE 9,916 62.38 0.421 0.422 48.29

BC 64 1152 13,099 100.0 0.391 0.391 52.12
iBEE 9,362 71.47 0.354 0.355 57.41
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(c)matrix: poisson3Db

Wnnt time[s] speed-
method nth nblk ratio(%) Av-t total-t up

BC 1 1 0 - 14.921 14.921 1.0
iBEE

BC 2 14 10,581 100.0 6.853 6.853 2.17
iBEE 665 6.28 6.707 6.707 2.22

BC 4 64 21,988 100.0 3.036 3.036 4.91
iBEE 1,607 7.31 3.015 3.015 4.94

BC 8 128 19,088 100.0 1.527 1.527 9.77
iBEE 1,511 7.92 1.517 1.517 9.83

BC 16 144 33,619 100.0 0.833 0.833 17.91
iBEE 7,705 22.92 0.789 0.787 18.95

BC 24 216 21,758 100.0 0.573 0.573 26.04
iBEE 5,570 25.56 0.545 0.542 27.53

BC 32 256 11,863 100.0 0.434 0.435 34.30
iBEE 9,004 75.90 0.424 0.424 35.19

BC 48 384 8,781 100.0 0.318 0.318 46.92
iBEE 6,136 69.88 0.313 0.313 47.67

BC 64 384 13,636 100.0 0.296 0.296 50.40
iBEE 9,654 70.80 0.273 0.273 54.65

(d)matrix: sme3Dc

Wnnt time[s] speed-
method nth nblk ratio(%) Av-t total-t up

BC 1 1 0 - 13.335 13.335 1.0
iBEE

BC 2 8 76,358 100.0 6.719 6.719 1.98
iBEE 6,330 8.29 6.702 6.702 1.99

BC 4 20 80,777 100.0 2.680 2.680 4.97
iBEE 4,839 5.99 2.606 2.606 5.11

BC 8 40 89,719 100.0 1.344 1.344 9.92
iBEE 7,923 8.83 1.291 1.291 10.32

BC 16 112 41,814 100.0 0.720 0.720 18.52
iBEE 3,772 9.02 0.654 0.654 20.39

BC 24 168 28,798 100.0 0.496 0.496 26.88
iBEE 3,080 10.70 0.449 0.449 29.69

BC 32 224 24,769 100.0 0.386 0.386 34.54
iBEE 1,873 7.56 0.348 0.348 38.31

BC 48 336 16,990 100.0 0.292 0.292 45.66
iBEE 1,505 8.86 0.263 0.263 50.70

BC 64 384 61,864 100.0 0.334 0.334 39.92
iBEE 6,638 10.73 0.240 0.240 55.56

Fig.5 (a)-(d) plots the speed-up of parallel Matrix-vector
multiplication with the BC distribution and the iBEE method.
In Fig.5 (a)-(d), dashed line plots speed-up of the BC distribu-
tion and solid line plots that of the iBEE method. From Fig.5
(a)-(d), speed-up of the iBEE method is larger than that of the
BC distribution.
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Fig.5 Comparison of speed-up of paralleled Matrix-vector

multiplication with the BC distribution and the iBEE
method.

In Fig.6, we show the tendency of ratio (%) of Wnnt when
the thread number changes. We see that ratios of Wnnt are
very low for four matrices compared with the BC distribution.
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Fig.6 Tendency of ratio (%) of Wnnt when the thread
number changes.
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V. CONCLUDING REMARKS

We proposed an intelligent Blocking exchange technique
of Evenly distributed for nonzero Entries of matrix. More-
over, we evaluated the performance of parallel Matrix-vector
product using the iBEE method. As a result, it turned out
that the iBEE method can distribute nonzero entries of matrix
more evenly than the conventional BC distribution. Moreover,
parallel performance of Matrix-vector multiplication with the
iBEE method is faster than that with the BC distribution.
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