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Abstract—Mobile smart devices are advancing with stronger
demands of high energy efficiency and longer battery life.
Utilizing energy-efficient microcontroller units (MCU) in a mobile
device for always-on functionalities is proved to be an effective
solution. MCUs have the ability to switch between different
running modes dynamically enabling them to have outstanding
low power performance while performing real-time sensing tasks.
Besides hardware optimization, balancing energy efficiency and
quality of service on a MCU lies within a well designed scheduling
algorithm. In this paper, we formally define, model and derive
a proper scheduling algorithm that guarantees that the task set
is schedulable and minimizes power consumption. Our findings
open up additional research of optimizing real-time scheduling
algorithms with less energy consumption on an MCU while
guaranteeing the quality of service, i.e., the schedulability of the
given real-time task set.

Keywords–Mobile device; embedded system; energy effi-
ciency; real-time scheduling

I. INTRODUCTION

Battery life is one of the most important features for
mobile smart devices. To improve the energy efficiency, mo-
bile smart devices introduced low-power processors, such as
microcontroller unit (MCU) based sensor fusion core [1], to
perform non-critical control and calculation tasks with lower
power consumption due to its special design. Placing a MCU
into ”shutdown” mode, i.e., turn off the MCU, can stop the
power consumption. However, shutting down and rebooting
the MCU not only introduces extra energy consumption, but
also causes execution delay that may affect the tasks’ real-
time requirements. On the other hand, keeping the MCU in
the standby and idle mode continuously consumes energy,
however it guarantees tasks can be executed without delay.
schedule the shutdown and reboot on a MCU with the goal of
1) guaranteeing the schedulability of hard real-time tasks and
2) minimizing the energy consumption is a big challenge.

In terms of saving energy by changing the processor into
different modes, Dynamic Voltage and Frequency Scaling
(DVFS) and Dynamic Power Management (DPM) are two
popular research areas [2]–[4]. Most existing DVFS-related
work focuses on minimizing the energy consumption while
optimizing the quality of service [5]–[7]. Also, assumptions
such that resources are always available during performance
change [8], or the performance can be switched immediately to

any level between the low and maximal performance [9] make
existing real-time scheduling analyses with DVFS-enabled
resource compliment to our case. While DVFS requires the
resource to be always available, DPM-based solutions allow
the system to shutdown the resource [3]. DPM solutions can
also be implemented with DVFS (if the hardware allows) [3]
to further reduce the energy consumption. However, most
existing work on DPM targets on minimizing the task set’s
makespan or maximizing the system’s throughput while opti-
mizing the energy consumption. To the best of our knowledge,
scheduling hard real-time tasks on a MCU and maximizing the
MCU’s energy efficiency is still a challenge yet to be solved.

Inspired by the existing work on DVFS and DPM schedul-
ing issues, we investigate, discuss and analyze the challenges
of deploying hard real-time tasks on MCU in an energy
efficient way, given MCU’s ability to switching running mode
between standby and shutdown. In particular, we provide the
energy-saving condition under which shutting down the MCU
saves more energy than leaving it in standby mode and idle.
Without creating an impact to the performance, we require the
shutdowns should not break the schedulability of the given
task set. We have further studied three possible approaches to
specifically schedule shutdown time and duration for a MCU
to guarantee the task set’s schedulability while minimizing the
overall energy consumption.

The rest of paper is organized as follows. In Section II,
we propose the task model, the resource assumptions and the
research goal. Section III proposes and analyzes our three
possible solutions in detail. In Section IV, we conclude our
current work and propose future extensions.

II. MODELING AND PROBLEM FORMULATION

In this section, we define the task and resource models,
respectively, and provide the formal problem formulation.

A. Task Model

We use the task model defined in [10] which makes the
following assumptions: 1. Tasks are periodically available with
a fixed period; 2. Each task requires a fixed amount of time to
finish; 3. Each task’s relative deadline (with respect to the time
that it becomes available) is the task’s period. Specifically,
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Figure 1. Shutdown time requirement

a task is defined as τ(e, p) where e is the longest possible
execution time, p is the period.

B. MCU Resource Assumptions

For a MCU resource, it may have several running modes.
In this work, we assume that a MCU resource has two modes:
standby mode that can execute jobs immediately, but consumes
power even when idle; shutdown mode that cannot execute
jobs and does not consume power.

We further assume that a switch between the two modes
has time overhead and consumes extra energy.

As the resource model varies in different possible solutions,
we define the resource models in each solution individually.

C. Problem Formulation

For a given task set and a MCU resource, schedule the
switch of resource modes between standby mode and shut-
down mode to: 1) Guarantee that each job of a task in
the task set meets its deadline, and 2) Minimize the power
consumption.

III. POSSIBLE SOLUTIONS

In this section, we first calculate the minimal shutdown
duration requirement such that a shutdown behavior: 1) Is
practical for a MCU to perform from a hardware perspective
and 2) Does save power compared to leaving the MCU idle.
Then, we provide three possible solutions, as well as our
preliminary research results, of how to schedule the shutdown
for a MCU with running real-time task sets. For the first
solution, we have finished the theoretical analysis for tasks
under Earliest Deadline First scheduler. For the Rate Mono-
tonic scheduler case, as well as the remaining two possible
solutions, they are work in progress and we will research them
in our future work.

A. The minimal shutdown duration requirement

As illustrated in Figure 1, to perform a shutting down, the
MCU stops providing computing services to the tasks first (at
time d1). Before cutting the power (at time point d2), the MCU
needs to backup its runtime status, i.e, values in registers or
data in the RAM, into storage in state ts. During time interval
td, the MCU is in shutdown mode. At time point u1, the MCU
starts the rebooting procedure during tu and is completed at
u2. In the following sections, we call the MCU as a computing
resource and formally define the resource model of MCU in
the following definition.

Definition 1. A MCU resource R is defined as a quad notated
as R(ts, tu, Ci, Ce) where ts is the time duration of switching
from running mode to shutdown mode and tu is the time
duration of switching from shutdown mode to running mode.
Ci and Ce are the current drains when the MCU is idle or is
calculating, respectively.

As the MCU’s shutdown and reboot procedure needs time
and extra energy, we derive the minimal shutdown time in the
following lemma.

Lemma 1. For a given MCU resource R(ts, tu, Ci, Ce), the
minimal shutdown time Ts that saves energy is determined as:

Ts >
(ts + tu) · Ce

Ci
(1)

Proof. As Figure 1 illustrates, the time interval that the MCU
is unavailable to execute tasks starts at time point d1 and ends
at u2, i.e., Ts = u2 − d1. If the resource is in idle time,
it consumes (u2 − d1) · Ci power during this time period.
On the other hand, if the MCU is shut down, during ts it
consumes ts · Ce power and during tu it consumes tu · Ce
power. Compared to leaving the MCU idle, shutting down
the MCU saves more energy when the following condition is
satisfied.

(u2 − d1) · Ci > (ts + tu) · Ce
Hence

Ts >
(ts + tu) · Ce

Ci
(2)

Obviously, Ts should also be longer than ts+tu to have enough
time to shutdown and then reboot the MCU. Since Ce > Ci,
(2) also implies Ts > ts + tu.

B. Handle the System Shutdown: When the Mode Switch is
periodic

The first approach is to shutdown the MCU periodically. As
illustrated in Figure 3, a periodic shutdown is performed with
the period and duration of 5 and 2 time units, respectively,
i.e., S(2, 5). As a comparison, the case of scheduling on
regular resource is illustrated in Figure 2. The advantage
of this approach is obvious. To implement this approach,
the scheduler only needs a timer, therefore this approach
consumes minimal CPU resource compared to the approach
we will study in the next section. The major challenge is to
determine the shutdown duration time and the shutdown period
that guarantees the schedulability of the given task set while
minimizes the overall power consumption.

Figure 2. Regular resource

Figure 3. Periodic resource
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Figure 4. Resource with shutdown task insertion

Under this approach, the resource’s properties match the
definition of a periodic resource [11]–[13], with respect to
the task set, as it switches periodically between available and
unavailable. More specifically, this resource is categorized to a
fixed-pattern periodic resource in [12] and [13]. Compared to
the existing scheduling research work on periodic resources,
the challenges of our current problem is to determine both
the shutdown frequency and the shutdown duration which are
assumed to be given in the existing work.

In our work, we calculate these two parameters to guarantee
the task set’s schedulability (if schedulable on a resource
without shutting down) while minimizing the energy consump-
tion. Specifically, we leverage the schedulability analyses in
[12] and [13], change the resource period and downtime into
variables, determine their solution domains with respect to the
task set’s schedulability and then find the optimal (or near
optimal) solution in the solution domain that minimizes the
power consumption.

A possible approach to find the optimal solution is to
derive the schedulability condition from periodic resource
bounds [11]. From the necessary schedulability bound, we can
derive the dependency between the shutdown period and its
duration under the schedulability requirement. Then, based on
this dependency, we further use heuristic ways (to deliver a
near optimal solution) to search the optimal pair of period and
duration values.

To perform the theoretical analysis, the pessimistic way is to
first calculate the bound, and use the bound to further calculate
the θ parameters. Following Lemmas and theorems provide the
shutdown time bound for the EDF scheduler. For convenience,
we reuse the MCU notation R and redefine the resource model
in the following definition for schedulability analysis pruposes.

Definition 2. A MCU resource with periodic sleep is defined
as a tuple and is denoted as R(θ, π) where θ is the resource
available time, with respect to the task set, and π is the system
sleep period.

Note that both ts and tu time duration is not counted in θ as
tasks are not able to be executed during these two durations.

Lemma 2. For a given resource R(θ, π) and a task set T =
{τ1, ..., τn} where τi represents a independent task τi(ei, pi).
The minimal task period in T is denoted as pmin. With Earliest
Deadline First scheduler, T is guaranteed to be schedulable
if the following relation is valid: π < pmin·(θ−UT )+θ2

θ , where
UT is the total utilization rate of T , i.e., UT =

∑n
i−1

ei
pi

.

Proof. We first introduce the linear demand bound function
ldbf(t) = UT · t for EDF from [14], [15]. This function
describes that for any time interval with given length t, the
overall resource demand, such like the overall CPU cycles
needed, will not acceed ldbf(t).

We then calculate in the worst case, at least how much
resource can be offered by the MCU with periodic shutdown
in a given time length t, which is calculated as the supply
bound function sbf(t). Obviously, for any time interval with
same length, the worst case is that this time interval starts with
a shutting down, as illustrated in Figure 5.

Figure 5. Demand and supply bound functions

Specifically, from time 0 to time θ, the job receives no
resource. At time θ to the end of this resource period, the
MCU is up and running and executes the job. As the MCU
periodically turns on and off, this procedure repeats in each
MCU period. We formalize this periodic procedure as:

sbf(t) ={
0, if t < π − θ,
b tπ c · θ +max(0, (t mod π − (π − θ))), otherwise

(3)

In (3), if the time interval is shorter than π − θ, then in
the worst case, the MCU is shut down during the entire time
interval and hence there is zero resource provided by the MCU
in this time interval. In the case that t ≥ π−θ, we first calculate
how many complete MCU peirods are in this interval, i.e.,
b tπ c. Since for one complete MCU period, MCU provides θ
executable time, this parts contributes b tπ c · θ executable time.
For the remaining part, i.e., t mod π, it is shorter than a period.
If it’s also shorter than the shutdown time, in the worst case
this part contributes no executable time, otherwise it provides
t mod (π − θ) executable time.

Since (3) is a step-function which is difficult to conduct
further proof, we further derivate the linear supply bound
function lsbf(t) = θ

π · t− θ +
θ2

π .
The green dot line in Figure 5 illustrates the intuition of

lsbf(t).
To guarantee the schedulability of a task set, the following

condition should be satisfied [15], [16], i.e., when the length
of a time interval is equal or longer than pmin, then lsbf(t) ≥
ldbf(t). With this condition, we derive the final conclusion.
First, with (3), ldbf(t) and lsbf(t) ≥ ldbf(t) we have

θ

π
· t− θ + θ2

π
> UT · t → t ≥ πθ − θ2

θ − UT
As illustrated in Figure 5, we denote the time point πθ−θ2

θ−U
as Ti. The intuition of Ti is that if a time interval is longer than
Ti, then the minimal resource supply is guaranteed to be larger
than the maximal possible resource demand. To guarantee the
schedulability of the task set, we only need to guarantee that
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for a time interval with length pmin, the resource supply is no
less than the demand, therefore we have:

t ≥ πθ − θ2

θ − U
→ pmin ≥

πθ − θ2

θ − U

→ π <
pmin · (θ − UT ) + θ2

θ

(4)

With Lemma 1, we now have the relation between π and θ.

Theorem 1. For a given resource R(θ, π) and a task set
T = {τ1, ..., τn} where τi represents a independent task
τi(ei, pi). The minimal task period in T is denoted as pmin.
With Earliest Deadline First scheduler, T is guaranteed to be
schedulable if the following relation is valid:{

π < pmin·(θ−UT )+θ2

θ

θ > (ts+tu)·Cm

Ci

(5)

where UT is the total utilization rate of T , i.e., u =
∑n
i−1

ei
pi

.
With Theorem 1, we create the solution domain for π and θ.

If there is no solution in this domain, then the task set is non-
schedulable even without a MCU shutdown. If this domain is
non-empty, the next step is to find the optimal solution ,i.e.
(π, θ) value pair that can minimize the power consumption in
a T ’s hyperperiod. The approach could be either theoretical
or heuristic searching approaches, we will further study in our
future work.

C. Handle the System Shutdown: Treat the Shutdown as a
Special Task

Aside from turning down the MCU periodically, another
possible solution is to treat the turning down as a special task.
As illustrated in Figure 4, a periodic shutdown S(2, 5), i.e.,
shutdown two time units for every five time units, is treated
as a regular task. Specifically, we first determine the shutdown
duration e and shutdown period p and insert the shutdown into
the original task set as a special task. We then use the original
scheduler to schedule both the new task set with the special
task. This solution is applicable for the classical schedulers,
such as RM or EDF, without changing the original system
too much. Also, comparing to the periodic shutdown, the
shutdown is more flexible, i.e., the shutdown can be arranged
to strart from anytime within its perioid, therefore it should
have both higher system utilization rate and energy efficiency
compared to the periodic shutdown approach.

This solution has two challenges. First, the shutdown task
is non-preemptive. Second, we still need to determine the e′

and p′ of the shutdown task to 1) guarantee the task set’s
schedulability and 2) minimize p′ while maximizing e′.

For the first challenge, one possible approach is to align the
shutdown task’s period p′ to a certain task and extends the
chosen task’s execution time. For example, when using a Rate
Monotonic scheduler, if we align the shutdown task to the task
with shortest period (i.e., highest priority) τ1(e1, p1), then we
have a new τ ′1 where e′1 = e1 + e′. After this transition, the
number of tasks remains unchanged and the shutdown task is
non-preemptive as it is always accompanied by the execution

of τ1 which is non-preemptive to all other tasks. Then, the
problem changes to determine the longest e′i that can still
guarantee the task set’s schedulability.

This approach may guarantee the schedulability and handle
the non-preemptive property of the shutdown task, however
the second challenge is still unsolved.

D. Handle the System Shutdown: New Scheduling Algorithm

The third possible approach is to design a new algorithm
which can dynamically switch the MCU into sleep mode. This
approach has the highest effect with respect to the energy
efficiency as it can utilize all possible chances to put the
MCU into sleep mode. However, it also has the most difficult
challenges.

For this approach, the immediate problem is for the sched-
uler to know whether an incoming idle time is long enough
to switch the MCU into sleep mode and then switch back
before the release of the next job. As current schedulers only
handle resource conflicts, i.e, when more jobs are ready to run
but only less resources are available, a scheduler determines
which jobs to run. Under this context, a scheduler is not able
to be aware of the incoming job running situations. Therefore,
new improvements are required for the scheduling algorithms
to further determine the MCU’s running modes.

The implementation of this approach is most likely to be
heuristic as it is essentially an integrated linear programming
solution and it is expensive resource wise. The basic approach
of our solution could be to find the optimal schedule first
using an integrated linear solution, and then gradually release
the conditions to reach a near optimal solution, which balances
both the scheduling overhead and the energy efficiency.

IV. CONCLUSION AND FUTURE WORK

In this work, we formally formulated the scheduling prob-
lems of deploying periodic hard real-time tasks on a MCU
that has multiple running modes. To achieve the goal of 1)
Guaranteeing the task set’s schedulability and 2) Maximiz-
ing the energy efficiency, we further provided analyses of
three possible solutions, i.e., 1) Periodic shutdown, 2) Treat
shutdown as a special task, and 3) Design a new scheduling
algorithm. In our future work, we will continually study
each of these three possible solutions and find the optimal
ones that save the maximal energy while guaranteeing the
schedulability.
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