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Abstract—The research paper deals with a step-by-step 

methodology for the automatic modeling of geospatial 

environmental data. The methodology proposed is based on 

general regression neural networks (GRNN) and probabilistic 

neural networks (PNN) as modeling tools. GRNN and PNN are 

nonparametric nonlinear models suitable for the automatic 

analysis, modeling, and spatial predictions of complex 

environmental data. The simulated and real data case studies 
illustrating the methodology are considered and discussed.  
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I.  INTRODUCTION 

The problem of automatic environmental data modeling 
becomes more and more important taking into account the 
volume of data available from different sources: 
measurements, automatic monitoring networks, remote 
sensing, GIS (Geographical Information Systems), etc. These 
data are widely used to calibrate science-based models (e.g., 
in meteorology, climate, pollution dispersion), to estimate 
environmental risks and natural hazards (landslides, 
avalanches, forest fires etc.), and to estimate renewable 
resources. Most of environmental data bases contain 
extremes and outliers and data are highly variable at several 
spatial scales. Moreover, the environmental phenomena are 
nonlinear and in many cases should be considered in a high 
dimensional feature spaces composed of 3d geographical 
coordinates and additional characteristics derived, for 
example, from digital elevation models [1][2][3].  

A classical approach to analyze environmental geospatial 
data is based on geostatistical models [4][5]. Most of 
geostatistical models explicitly take into account the 
anisotropic spatial correlations analyzed and modeled by an 
application of variography. In general, geostatistics is a 
powerful and well established data modeling tool in a low 
dimensional space.  

Recently, an intercomparison of models suitable for 
automatic two dimensional interpolations in a geographical 
space was carried out and the results are presented in a report 
[6]. A wide variety of methods was used – from traditional 
geostatistical kriging models to advanced neural networks. 
The general regression neural network produced very good 
results in terms of testing error and other global statistics 
usually used to quantify the quality of modeling.  

The present study generalizes the ideas proposed in 
[2][7][8][9] for modeling and predictions of high 

dimensional complex spatial environmental data. In the 
following section, a description of a general problem is given 
and an operational and efficient methodology for automatic 
geospatial data analysis and modeling is considered step-by-
step with a short discussion of real and simulated data case 
studies. The paper is completed with a brief discussion and 
some conclusions for the future research.  

II. THE METHODOLOGY AND CASE STUDIES 

In general, the problem considered is the following: 
having environmental data embedded in a high dimensional 
space, develop a model that 1) explains the phenomena 
under study without overfitting of data and 2) is good 
enough (the criteria should be defined) for the generalization 
and spatial predictions, often called mapping. Moreover, it is 
necessary to justify the quality of the results obtained by 
using some general criteria and to quantify the uncertainties 
of the predictions.  

Environmental phenomena are nonlinear and their data 
modeling should be considered in a high dimensional space 
(dimension d>3) that is composed of geographical 
coordinates and some additional variables (features), for 
example, produced from digital elevation models (e.g., 
slopes, curvatures, variability at different scales, etc.). 
Moreover, only some of features could be relevant for the 
analysis and predictions, and some of them can be just a 
noise.  Therefore, the problem of relevant automatic features 
selection or features extraction during an automatic analysis 
can be important.  

Taking into account the comments and demands given 
above, the following generic methodology can be proposed 
for the spatial environmental data analysis and modeling 
(from exploratory analysis to spatial predictions and 
decision-oriented mapping):  

1. Preparing of an input/feature space (a collection of 
independent variables). In principle, the library of 
input features should be quite general to cover a 
wide range of possible scenarios.  

2. Analysis of monitoring networks and data 
clustering taking into account the validity domains 
of raw data and a prediction grid. Monitoring 
network analysis also helps to understand the 
representativeness of data and their spatial 
topology. It improves the decision on data splitting 
and declustering procedures, and, if necessary, in a 
monitoring network optimization (redesign) [5][10].  
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3.  Exploratory spatial analysis of data (ESDA) using 
visualization (geo-visual analytics), (geo)statistical 
tools [4][5], and machine learning algorithms 
(MLA) [8]. At this important stage of the analysis, 
MLA can help to detect potential patterns in a high 
dimensional feature space. Data pre-processing and 
data transformations. 

4. Splitting of data into training (development of the 
model), validation (fitting or calibration of the user-
defined hyper-parameters), and testing (assessment 
of the generalization) subsets. Different criteria can 
be used: random splitting, spatial declustering, etc.  

5. Detection of the available patterns/structures in a 
high dimensional data. The discrimination between 
white non-structured noise and spatially structured 
information. In geostatistics usually the variography 
is used. In a more general case, MLA can be 
efficient as well.  

6. Training (optimization, calibration) of the models. 
Modeling of the observed structured information.  

7. Iterative application of the feature selection 
algorithms - either the features are weighted 
according to their importance or the group of the 
most relevant features for the prediction is selected 
[1][2][3][8]. These techniques can also be applied at 
the steps 1, 5 and 6.  

8. Analysis of the training residuals using 
visualization, (geo)statistical and machine learning 
tools. Analysis of the residual patterns. The same 
procedure as in 5 is applied: the residuals should 
have no spatial structure and should be normally 
distributed. Moreover, an overfitting of the training 
data should be avoided. One of the possibilities is to 
estimate a noise level in data, for example, using an 
estimate of a nugget in a high dimensional feature 
space. Then, the variance of a noise can be used as a 
stopping criterion.  

9. Testing of the models. Application of the developed 
models to testing data subset. Analysis of the testing 
residuals and their spatial structure. Again, retrained 
GRNN can be used to perform an exploratory 
spatial analysis of the testing residuals. 

10. Application of the validated and tested models for 
the spatial predictions (mapping in high 
dimensional spaces).  

11. Quantification of the modeling quality: confidence 
and prediction intervals.  

12. Decision–oriented mapping. At this phase GIS can 
be widely applied. 

Current version of the methodology does not include the 
recommendations on the monitoring network optimization 
(MNO). This is a separate but closely related problem. The 
contemporary reviews on MNO approaches along with 
space-time environmental data case studies are given in [10].  

Recently, the application of general regression neural 
networks (GRNN) for the regression and the probabilistic 
neural networks (PNN) for the classification were 
reconsidered taking into account their properties of patterns 
detection and adaptivity in the feature selection problems 

[2][6][7][8]. For example, GRNN is an efficient tool to 
discriminate noise from structured information. This 
property can be used both for the original data and for the 
analysis of the residuals to estimate the quality of modeling. 
As it was mentioned above, “good” residuals should be 
white spatially non-structured noise. Basic GRNN model has 
no hyper-parameters and is easy to train. Therefore, GRNN 
is attractive model for the automatic data processing.   

Anisotropic GRNN can automatically neglect highly noisy 
features and takes into account only the relevant ones [2][7]. 
Anisotropic GRNN (when Gaussian kernel is used) means 
that different kernel bandwidths are used for different 
features (independent variables). This version of GRNN is 
sometimes called an adaptive GRNN [2].  

It is important to note, that non-parametric statistics is a 
solid theoretical background both for GRNN and PNN. 
Therefore, these models can produce also extended results 
including the characterization of the uncertainties. This is 
extremely important in a real decision–oriented mapping 
process when the uncertainties can be even more important 
than the predictions themselves.  

The GRNN/PNN training procedure applied in this 
research (training = selection of the optimal kernel 
bandwidths by applying optimization algorithms) is based on 
a cross-validation error cost function. Either a leave-one-out 
or a leave-k-out error functions are considered, depending on 
the number of available training data. In case of too many 
data a validation data set can be used to train the model. It 
accelerates the training procedure and reduces the 
computational time.  

The test data set is used only to estimate the generalization 
properties of the models, i.e., their abilities to predict 
independent data never seen during the training.  

In the present research GRNN was used with an 
anisotropic Gaussian kernel. In a more general setting a 
complete Mahalanobis distance can be applied. More 
theoretical details about the models and their implementation 
can be found in [8].  

The PNN has the same kind of properties and can be used 
for the classification problems when working with 
categorical data – discrete classes. 

In the present research, the methodology is illustrated 
using the simulated and real data case studies. Simulated data 
were produced by adding to the real data several noisy 
artificial features in order to test the ability of GRNN to 
neglect the non-relevant information. Artificial additional 
features were generated using a shuffling procedure, i.e., by 
randomizing the raw variables. In this case, the original 
global distributions are preserved but the spatial structures, 
even if present, are destroyed. The following case studies 
were considered:  

- real data case study. Topo-climatic modeling of the 
monthly temperature and precipitation in 
mountainous regions. These are typically three 
dimensional problems.  

- simulated data case study. Three new artificial 
features were generated either by shuffling of X, Y 
and Z geographical coordinates or by noise injection 
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with different variance. Finally, the problem was 
considered in a six dimensional space [7].  

During the case studies all phases of the methodology 
were applied. The homogeneity of monitoring network was 
studied using topological, statistical and fractal measures. 
Exploratory analysis was carried out using statistical and 
geostatistical (variography) tools. Measurements were split 
into training and testing subsets using spatial declustering 
procedure. Validation subset was not necessary because of 
the cross-validation (leave-one-out) training technique was 
applied.  

Below the modeling results are discussed briefly. In real 
data case studies the kernel bandwidths for geographical 
coordinates reflect spatial 3d anisotropy of the phenomena: 
for longitude X and latitude Y they are of order 10 km and 
for altitude Z few hundred meters. The results were 
compared with a geostatistical model – kriging with external 
drift [4][8].  

In the simulated data case study, noise features after 
training have very large kernel bandwidths, exceeding the 
variability of these features. In this case the corresponding 
part of the Gaussian kernel equals almost to one and these 
features do not influence the solution. Then, according to the 
methodology, adaptive GRNN was applied for the 
exploratory spatial analysis of the training residuals. No 
spatial structures were detected. At the end, both 3d and 6d 
(3d+noise) solutions were very similar.  

Finally, the models developed were evaluated using 
testing data subset and good generalization errors were 
obtained.  

More powerful and much more computationally intensive 
approach is based on a complete analysis of all possible 
models, i.e. on all possible combinations of features. In a d 
dimensional input space the number of possible models is 
(2d-1). In this case GRNN is applied both as a modeling and 
as a feature selection tool. Using a cross-validation error, all 
models can be sorted and the best one with a minimum error 
can be selected for the predictions. Such approach was also 
applied for both case studies. Important result is that the best 
selected models did not include noise features.  

III. DISCUSSION AND CONCLUSIONS 

A basic methodology for spatial data processing was 
proposed. The methodology includes the analysis of input 
space structure (monitoring networks), comprehensive 
exploratory analysis of data and the residuals, detection and 
modeling of structured information using nonlinear 
nonparametric models. As an efficient and operational tool 
adaptive GRNN for the regression problems and adaptive 
PNN for the classification problems were proposed. Training 
of models was based on cross-validation procedures. The 
modeling results were evaluated by using independent 
testing subsets and by analyzing the testing residuals.  

One of the important and useful conclusion from the 
study is that an application of machine learning algorithms at 
all phases of the data analysis and modeling is strongly 
recommended [8][9]. In many cases, it helps to reveal 
complex hidden patterns and structures in data that improves 

the selection and calibration of models, even if other 
modeling approaches finally are applied.  

The potential extension of the methodology and models 
can be guided into the following directions: scaling of 
models with the dimension of space and number of 
measurements, robustness of the approach, more elaborated 
assessment of the uncertainties, extension of MLA modeling 
tools and adaptive kernels [8]. An important future research 
will be in developing multi-scale multivariate models. For 
the clustered monitoring networks, kernels can be not only 
feature-adapted but space-adapted as well.  

Only two basic problems of learning from data were 
considered – classification and regression. The third one and 
the most difficult – modeling of spatially distributed 
probability density functions, is still an open question.  

Finally, the same kind of methodology can/should be 
generalized and adapted for the modeling and predictions of 
spatial-temporal environmental data.  
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