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Abstract— There is currently an increasing availability of large 

spatiotemporal datasets. Sequences of spatiotemporal data or 

paths, also known as trajectories, can be captured by modern 

technology and stored in moving-object databases (MOD) or a 

trajectory data warehouse. It is a common challenge for 

knowledge discovery within MODs to query proximities and 

distances, e.g. in clustering trajectories. Previously adopted 

distance measures focus on the complexity of geometric and/or 

mathematical models of trajectories, while ignoring several 

aspects common to all spatiotemporal trajectories, e.g. 

direction, distance covered, and duration. This research 

introduces a more comprehensive approach for trajectory 

distance measurement in spatiotemporal applications. The 

approach is simplified, yet novel, introducing a new set of 

dimensional variables, therefore called the Multi-Dimensional 

Trajectory Distance Measure (MTDM). The accuracy and 

relevance of MTDM is evaluated in experiments using multiple 

proximity metrics, for example MTDM based on Euclidean 

proximity calculation. A geospatial data analysis framework is 

utilized in the experiments. Efficiency evaluation of MTDM 

showed the feasibility of applying the measure to various 

trajectory datasets. 

Keywords-distance measurement; geospatial data analysis; 

moving-object databases; spatiotemporal data; trajectory data 

mining. 

I.  INTRODUCTION 

There is currently an increasing availability of large 
spatiotemporal datasets. Data about movements and 
trajectories of objects are commonly captured using 
technology like Global Positioning System (GPS), Radio 
Frequency Identification (RFID) and Global System for 
Mobile communications (GSM) [8, 17]. The trend of 
increasing spatiotemporal data has been also supported by 
the advances in database management systems (DBMS) 
which support such kind of data. This can be seen with the 
increasing adoption of geospatial and temporal capabilities in 
DBMS which can support Mobile Objects Databases (MOD) 
[10, 14, 15]. 

Spatiotemporal data consists of a collection of points 
which have location and temporal references. Temporal 
references of spatiotemporal data are commonly denoted by 
a date and an instance on the world time system (like GMT). 
Meanwhile, location references from spatiotemporal points 
are commonly stored as spatial references (X and Y 
references on the Cartesian coordinate system), or as 
geospatial references consisting of a location on Earth 
referenced by a geodetic system like the World Geodetic 
System (standard format for GPS location references). 

A trajectory is a path consisting of an ordered set of 
spatiotemporal points [8, 16]. This can be defined for any 
trajectory „T‟ which can be seen as an ordered set of 
spatiotemporal points consisting of 3 dimensions: location in 
terms of x-coordinate „x‟, y-coordinate „y‟ and temporal 
dimension in terms of time „t‟. This is formally defined as 
   *(        ) (        )   (        )+  and can be 
seen in Figure 1. 

 

 

Figure 1.  Formal representation of a trajectory consisting of „n‟ points. 

After storing trajectories in MODs, or a trajectory data 
warehouse (TDW), data mining is frequently used to analyse 
and to find knowledge within this data. Data mining involves 
multiple techniques like clustering, association rules and 
outlier detection.  For techniques like clustering, proximity 
measurements are frequently used [8, 13, 16]. Proximity 
measurements can be also used to find outliers in datasets 
[4]. Examples of outliers include fraudulent transactions in e-
commerce. Proximity measurements can also be used for 
classification using the nearest neighbour techniques [18] 
and trajectory similarity [14]. 

The aim of this paper is to develop a novel measurement 
of distance (proximity) between trajectories for 
spatiotemporal applications, and to test this distance 
measurement within a geospatial data analysis framework. 
The paper is organised as follows: in Section II a background 
about the research problem and proximity measures is 
provided, in Section III the Multi-Dimensional Trajectory 
Distance Measure (MTDM) is introduced, Section IV 
analyses the efficiency of our algorithms, Section V tests our 
approach in a series of experiments utilising the geospatial 
framework followed by a discussion in Section VI, and 
finally Section VII concludes the research study and advises 
on future research. 

II. PROBLEM STATEMENT 

Proximity (or similarity) can be defined as the degree of 
how close, or alike, are two instances [4]. Similarity 
coefficients measure the relationship between two individual 
items based on a number of variables. Distance, on the other 
hand, is seen as the degree of differences between instances 
based on specific dimensions or variables [16]. Different 
proximity metrics exist to calculate the distances between 
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different instances under study. This includes Euclidean [12, 
p. 21], City Block [12, p. 21], Canberra [12, p. 21], and 
Chebyshev [11].  

When calculating proximity between all instances the 
result is summarised in a proximity matrix [4]. The 
proximity matrix is a symmetric matrix with the diagonal 
equal to 0 when it is a distance measure. The number of 
unique elements for the matrix „N‟ (which need to be 
calculated on one side from the diagonal; the other side is 
neglected as it is a mirror of the same values -similar to any 
symmetric matrix) is given by equation 1, where „n‟ is the 
number of instances [4]. The proximity matrix compares all 
instances with each other. For distances the proximity matrix 
of trajectories is defined by the matrix in Figure 2. 

   
 (   )

 
 

     (1) 
Previously researched measurements of trajectory 

distances include: the Euclidean distance, the Longest 
Common Sub-Sequences (LCSS) distance, Dynamic Time 
Warping (DTW) and edit distances like real sequences 
(EDR) and real penalty (EDP) [6, 8, 9, 13, 15]. 
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Figure 2.  Trajectory distance proximity matrix. 

Previously researched measurements focus on the time-
series approaches and geometric complexities similar to [5]. 
These measurements consider the trajectory as a time-series 
of spatiotemporal points which puts the burden of some 
limitations like time-shift complexities (related to trajectory 
distance measurement at different segments, or sub-
trajectories, and for different temporal windows between the 
trajectories segments compared). Another limitation can be 
the duration of the trajectories to be compared. If they are not 
equal it also puts some complexities on the algorithms. This 
can be seen in [5] where the efficiency of such algorithms for 
non-equal time-windows can have high complexities. 

Simple Euclidean distance is also a frequently utilised 
distance function. An example can be seen in the MINDIST 
Euclidean function used for trajectory queries in [10]. 
Distance measures like DTW and simple Euclidean distance 
do not allow for some points in a trajectory to be unmatched, 
however other approaches like LCSS allow for this [9]. On 
the other hand, algorithms based on Euclidean approaches 
similar to that of [19] require trajectories to have equal 
length. 

Edit distance algorithms like EDP measure the cost of 
transforming one of the compared trajectories to the other. 
EDP utilises real spatial distances [13]. Both of EDR and 
LCSS focus on the matching or non-matching characteristic 
of comparison points in two trajectories. A match is 

considered so compared to a user-defined threshold for the 
distance measurement [13]. EDR returns the number of 
transformations required to match the trajectories being 
compared [13]. The LCSS algorithm also returns a non-
metric distance measurement [17]. 

Other unique distance measures were also proposed. For 
example, spatial distance between trajectories can be a 
function of the area of the two-dimensional regions between 
trajectory intersections. This approach is called Locality In-
between Polylines (LIP) [15]. This has an advantage that it 
calculates sub-sequence similarity between trajectories. 
However, the approach is limited by assumptions of 
directional similarities and intersections between trajectories 
requiring additional workarounds [15]. 

Other trajectory distance measures also include [8] which 
allow calculating distances for non-overlapping trajectories 
in terms of temporal aspects. Their approach is a modified 
Euclidean distance of the spatial dimensions, where the 
modifications consist of temporal aspects of the trajectories. 
However, their approach only considers spatiotemporal 
aspects related to privacy preservation. The work of [9] 
integrates temporal aspects of the trajectories compared into 
the distance measurement too. The shape of trajectories was 
also the focal interest of approaches like [19]. 

The majority of the state-of-the-art approaches consider 
(dis)similarities of geometric movements and proximity. The 
focus of those approaches is on the complexity of geometric 
and/or mathematical models of trajectories, which ignores 
several aspects common to all spatiotemporal applications 
like total distance covered by trajectories, duration of 
trajectories, minimum/maximum distances between 
trajectories, etc. In our research, we tackle the problem of 
finding trajectory proximities in geospatial space and taking 
the overall characteristics of trajectories into account. This 
approach was recommended for future research by multiple 
research studies like [5] which recommend using non-
geometric and non-time-series approaches to find proximity 
between trajectories. 

III. THE MULTI-DIMENSIONAL TRAJECTORY 

DISTANCE MEASURE (MTDM) 

Most of the trajectory distance measurements analysed 
trajectory similarities based on matching sub-sequences of 
the trajectories in a manner similar to time-series mining 
approaches. Such approaches assume that trajectories are a 
series of fluctuations in space and over time. For example, 
[5] uses average Euclidean distance at specific time-windows 
to find proximity between trajectories. [7] can be referred to 
for a more detailed discussion about the time-series 
approaches.  In addition, many of those approaches only 
consider sub-trajectories (segments of trajectories) instead of 
complete trajectories [5]. 

We argue that attention for the sub-sequence matching 
approaches from the time-series literature and which focus 
on the geometric (shapes) and mathematical (time-series 
theories) aspects neglect the specific properties of moving-
object trajectories which are relevant to spatiotemporal 
applications. This includes properties like the duration of 
movement, the direction of movement, the locations of 
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movements, etc. Therefore our approach will adopt the latter 
multidimensional approach examining moving-object 
trajectories. This was previously introduced by similar 
research studies which adopt the concept of applying 
trajectory properties to distance measures, for example [15] 
which introduced the speed and direction dimensions. 

In our distance measurement we will apply this approach 
which uses distance metrics, like Euclidean and City Block, 
and which can handle the different data types of trajectory 
data. Multiple dimensions and factors of trajectories were 
recommended for computing proximities, such as spatial 
distance, trajectories‟ start and end points proximities, 
geometric movement patterns, and movement dynamics (like 
speed) [15, 16]. Such combination and special considerations 
was recommended by [16] and will therefore be considered 
in our approach. 

The aim of our approach is to measure the distance 
between all trajectories in an MOD via an approximate, yet 
accurate, approach which focuses on the characteristics of 
trajectories. Approximation can be seen, for example, in that 
our approach does not consider the exact shape of the 
trajectories (only considers the overall occurrences of 
directionality, like northbound movement occurrences, 
relaxing the geometric assumptions) and the sequence of 
points does not matter too (relaxing the assumptions of time-
series theories).  

Approximation of trajectory distances is not a new 
concept and has been studied in previous research. For 
example, similar directional approximation based on the 
geographic orientations was also utilised in the study of [15]. 
Such approximation can improve the efficiency of the 
distance operators utilised in the algorithms without 
neglecting parts of the whole trajectory (similar to methods 
related to sub-trajectory distance measurements, like [5], 
which only seeks to find distance between trajectory 
segments and not the whole trajectory and which have some 
limitations concerning efficiency of the algorithms.) The 
sequence of points can be relaxed as the interest is not in the 
sequence patterns but rather on the complete trajectory 
proximity (with the shape dimension being captured by total 
directionality of the trajectory rather than the local 
directionality within trajectory segments or sequences). 

Our approach will be called Multi-Dimensional 
Trajectory Distance Measure (MTDM) as it will involve a 
more comprehensive approach for trajectory distance 
measurement and which takes into account multiple 
characteristics of trajectories. MTDM can be defined for two 
trajectories Ti and Tj as a simplified function of the multiple 
dimensions as in equation 2. The MTDM distance function 
consists of multiple variables as described in Table 1. 

            
   (                   

                      
                        
                       ) 

(2) 
MTDM can be described as follows:- 
1. Within each trajectory T, compare each point of the 

trajectory with the point succeeding it in order to calculate 

the direction of movement (see Figure 3), the duration of 
movement and the distance covered between both points. 
The output of this step is stored in a trajectory spatiotemporal 
table (see Trajectory_ST in the data model depicted in Figure 
4.). In this table, each point in a trajectory is assigned an ID 
(ID_COL), an identifier of the object being traced 
(Object_id), identifier for the trajectory (trajectory_id), and 
the date, time and geospatial location (mov_Date, mov_time, 
geo_location respectively). The calculated distance of 
movement, duration of movement, and direction of 
movement are stored as geo_distance, duration and 
geo_direction respectively. 

TABLE I.  MTDM DIMENSIONS DESCRIPTION. 

MTDM 

Dimension 

Description Detailed Step(s) 

GeoDist Average geographic 

distance measurement 

between two 

trajectories. 

1. Find the smallest distance 

between each point of 

trajectory Ti with all points 

in Tj (and vice versa). 

2. Average all the geographic 

distances calculated from 

step 1 and for each of the 

two trajectories. 

3. GeoDist is finally assigned 

as the smallest average 

from the two calculated in 

step 2 

Distance∆ The difference 

between the total 

distances covered 

between the two 

trajectories. 

 Find the absolute difference 

between total distances 

covered by the two 

trajectories 

Direction∆ The difference in 

directional 

movements between 

the two trajectories 

 Find the absolute difference 

in directional counts for 

each of the 8 directions: N/ 

NE /E / SE /S/ SW/ W/ NW 

Duration∆ The difference 

between the total 

durations between the 

two trajectories. 

 Find the absolute difference 

between durations of the 

two trajectories 

Min_GeoDist The minimum 

geographic distances 

between points in Ti 

and Tj 

 Find the smallest distance 

between any point of 

trajectory Ti with any point 

in Tj (and vice versa). 

Max_GeoDist The maximum 

geographic distances 

between points in Ti 

and Tj 

 Find the largest distance 

between any point of 

trajectory Ti with any point 

in Tj (and vice versa). 

Min_ExtDist The minimum 

geographic distances 

between the extreme 

(first and last) points 

of the trajectories.  

1. Find the distance between 

the first and last point of 

trajectory Ti with the first 

and last point in Tj (and 

vice versa). 

2. Assign Min_ExtDist as the 

smallest distance from step 

1.  

Max_ExtDist The maximum 

geographic distances 

between the extreme 

(first and last) points 

of the trajectories 

1. Find the distance between 

the first and last point of 

trajectory Ti with the first 

and last point in Tj (and 

vice versa). 

2. Assign Max_ExtDist as the 

largest distance from step 1. 

 

2.  Calculate the sum of all distances and durations for 
each trajectory and store it into the Trajectory_Info table (see 
the data model in Figure 4) as distance and duration 
respectively. Count the number of occurrences for each 
direction and store it into the Trajectory_Info table (count the 
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directional orientation N/NE/SE/S/SW/W/NW for each 
trajectory.). The total number of points in the trajectory is 
also stored as “trajectory points number”. 

 
Figure 3.  Calculating the direction of travel between each point and the 

point after it in a trajectory. For example, there is a positive change in both 

the x-axis and the y-axis between points 2 and 3 of the trajectory resulting 
in a direction of NE. 

 

Figure 4.  Trajectory MTDM data model. 

3. Convert the direction counts of the trajectories (in 
table Trajectory_Info) into percentages by dividing the 
counts by the total number of points and multiplying by 
100%. This normalises the directional counts relevant to the 
number of points in each trajectory so that trajectories with 
different number of points can be compared. 

4. The differences between the trajectories‟ 
characteristics (described in Table 1) are then calculated and 
stored in the Trajectory_Difference table (Figure 4). Figure 5 
depicts the Min_ExtDist and Max_ExtDist dimensions. The 
geographical distances between points of trajectory Ti and 
trajectory Tj is calculated using the geospatial function 
ST_SphericalDistance (which calculates spherical geospatial 
distance, see [2] for a description of the function). 

 
Figure 5.  The first (trajectory start position) and last point (trajectory end 

position) of each trajectory is compared with the first and last point of the 

second trajectory. Four total comparisons (dotted-lines) are calculated. 

5. Finally, standardise all the distance measurements 
„Xi‟ in the Trajectory_Difference table by rescaling them 
between 1 and 100 using equation 3.  Standardization to the 
distance measures is done by rescaling in order to make sure 
that there is no single (large) dimension dominating the 
distance measurement. This procedure is recommended so 
that the distance between two trajectories is invariant to 
spatial scaling and shifting. 

        (  )    
((      ( ))  (     ))

(   ( )      ( ))
 

(3) 
After completing the MTDM procedures and calculating 

specific characteristics and proximities between trajectories, 
the overall proximity can be calculated using multiple 
proximity metrics. The five proximity metrics we are going 
to use are modified Euclidean, City Block, Canberra, 
Chebychev, and an average proximity metric. The average 
proximity metric will also consider all of the dimensions as 
shown in equation 4. Average proximity metrics, like 
average Euclidean distance, was used in other trajectory 
similarity measures too [5]. 

             

                   
                                      

                                           

 
  

(4) 

IV. EFFICIENCY EVALUATION 

MTDM can be decomposed into two main algorithms. 
Algorithm 1 is used to calculate the distance, duration and 
direction between each point and the point after it for all 
points in each trajectory (step 1 of MTDM in Section III); 
and Algorithm 2 is used to calculate the differences between 
all trajectories (step 4 of MTDM in Section III). Algorithm 1 
runs in linear time O(   ) where n is the number of points in 
each trajectory and t is the number of trajectories. Algorithm 

2 runs in the polynomial time ( 
 (   )

 
     ). The efficiency 

of algorithm 2 is based on comparing all trajectories together 
as expressed by equation 1, and within the comparison of 
every pair of trajectories there are quadratic steps executed 
on the points from both trajectories as described in step 4 of 
the MTDM approach (including finding the minimum, 
maximum and average distances between the trajectories- in 
Section III).  

The overall big-O-notation is therefore O(n
2
). The 

efficiency of MTDM is therefore comparable with other 
trajectory distance measures which run in O(n

2
) polynomial 

time (with the exception of simple Euclidean distance which 
runs in O(n) linear time under the assumption that 
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trajectories compared have equal number of points). The 
efficiencies of other algorithms from the time-series 
literature are: O(n

2
) for both EDP and DTW [13]. LCSS and 

EDR are non-metric and compare all points in the 
trajectories resulting into an efficiency of O(n

2
) too [13]. 

V. EXPERIMENTS 

In order to evaluate MTDM and its effectiveness with 
spatiotemporal applications a number of experiments are 
conducted. The first experiment tests the effectiveness of 
MTDM on a real dataset of spatiotemporal trajectories. In 
addition, experiment 1 compares MTDM with the simple 
Euclidean distance measurement as a benchmark. The simple 
Euclidean distance was calculated for two trajectories Ti and 
Tj as described in equation 5. The „x‟ and „y‟ are the 
coordinates of the i‟th point of the trajectory (or j‟th point of 
trajectory 2) retrieved using the standard ST_X and ST_Y 
methods in spatial databases and applied on the geo_location 
of each point from the Trajectory_ST table (Figure 4) –see 
[2]. The distance and duration are retrieved from the 
Trajectory_Info table and are used with the simple Euclidean 
distance in order to make it comparable with the MTDM 
approach (which also includes the duration and distance 
covered for trajectories. The simple Euclidean approach 
must also include those factors in-order to keep the 
evaluation non-biased towards the approach with the more 
representable variables). 
 

√∑
(     )

 
  (     )

 
 (                   )

 

  (                   )
 

 

     
 

(5) 
 We will not compare our MTDM approach with 

other time-series based approaches (like DTW or LCSS) 
because the shapes and geometric matching of trajectories is 
relaxed as described earlier in this paper. The main focus 
therefore is to assess the degree of relevance of the MTDM 
dimensions for assessing dissimilarity of trajectories in 
spatiotemporal applications.  

Another experiment was conducted to test the accuracy 
of the MTDM distance measure as compared to simple 
Euclidean distance in experiment 2. Experiment 2 introduces 
a new technique for evaluating proximity measures which 
better differentiates the different measures and metrics 
evaluated as compared to experiment 1 (which uses classical 
evaluation techniques from previous literature). 

For both experiments, we have used a subset of the 
trajectories dataset which consisted of 145 spatiotemporal 
trajectory traces from 2 school buses (moving-objects) 
transporting students within in the vicinity of the Athens 
metropolitan area, Greece (See [10] for more details about 
the dataset). The dataset was retrieved from [3].  

The approach used in the experiments to execute the 
distance measurement on the sample datasets consisted of 
multiple steps and tools as summarized in the framework 
diagram (see Figure 6). First, the data is loaded into the 
Teradata TDW using Extract, Load and Transform (ELT) 
techniques. The original data was in the WGS 84 projection 

utilised in GPS. This format and multiple other projections 
are supported with Teradata Geospatial. To load 
spatiotemporal maps/GIS data from GIS/Map formats into 
the TDW we have used the TDGeoImport tool. The tool 
automatically converts the different spatiotemporal formats 
into the standard Teradata ST_Geometry format stored in the 
Teradata MOD / TDW. This allows for Teradata Geospatial 
functions to be used on the spatiotemporal data, which can 
also be combined with non-spatial data allowing for deeper 
and richer analytics. This data can also be visualized using 
data visualization tools by using the GeoServer geospatial 
data integration tool [1] or by direct SQL-querying over the 
ST_Geometry fields. 

The distance measurement calculation then takes place 
using the Teradata Stored Procedures. The programming 
language used in implementing the algorithms and distance 
functions was in standard Teradata Database Stored 
Procedures (V13.0). 

 Following this, visualization takes place on Google 
Earth. There are two alternatives to achieve this goal (and 
both techniques were used). The first alternative uses 
GeoServer [1] middleware between the Teradata TDW and 
the Google Earth interface. GeoServer uses the Web Map 
Service (WMS) protocol. WMS is a standard protocol for 
serving geo-referenced map images over the Internet that are 
generated by a map server using data from a GIS database. 
GeoServer supports the Teradata Database (MOD).  In this 
situation, GeoServer acts as the geospatial middleware 
connecting the client (Google Earth application) to the maps 
or geospatial data stored in the TDW. Alternatively, the data 
to be visualized can be exported by the TDGeoExport tool. 
This allows exporting the data to the Google Earth KML 
format, which can then be visualized. 

A. Experiment 1: Classification accuracy 

In the first experiment we test the alternative distance 
metrics applied within MTDM and compare it with the 
simple Euclidean distance. We use the “leave-one-out” 
approach which was used before in previous literature like 
[7] and [6]. In this approach the trajectories are already 
assigned to clusters and labelled. Using the distance measure 
to be evaluated, the nearest trajectory to each of the 
trajectories is found and the class label of the former 
trajectory is assigned to the latter trajectory. This is similar to 
the 1-nearest-neighbour classification approach which 
classifies an object to the same class-label as its nearest 
neighbour. If the assigned class matches the real (actual) 
class then it is a hit (accurate), otherwise it is a miss 
(inaccurate). The accuracy rate is then calculated as in 
equation 6. 

For this experiment 78 trajectories were sampled from 
the original dataset and which consisted of 5850 points (75 
points in each trajectory). The trajectories retrieved were 
selected so that they belong to one of 4 clusters (visualized in 
Figure 7): cluster 1 consisting of medium to long trajectories 
at areas remotely located from Athens city centre and shorter 
trajectories closer to the centre or NE area but with more 
jagged shapes (blue), cluster 2 consisting of trajectories of 
small to medium length trajectories with close proximity to 

129Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-251-6

GEOProcessing 2013 : The Fifth International Conference on Advanced Geographic Information Systems, Applications, and Services



Athens city centre but with less jagged shapes (red), cluster 3 
consisting of trajectories lying NE of Athens city centre and 
of small to medium length trajectories (green), and finally 
cluster 4 consisting of all longer trajectories located in 
remote regions around Athens (purple).  

 

 

Figure 6.  The Geospatial Data Analysis Architecture. 

This experiment resulted into absolute accuracy of 100% 
for all measures including the MTDM implementations 
(Euclidean, City Block, Canberra, Chebyshev, and average 
proximity metrics) and the simple Euclidean distance. In 
order to distinguish between the different measures another 
experiment was conducted which evaluates the accuracy of 
the distance measures on domain-expert labelled data (See 
experiment 2). 

               
          

                       
 

(6) 

B. Experiment 2: Apriori-knowledge validation 

In the second experiment we compare the accuracy of the 
different proximity metrics utilised within MTDM and 
compare it to the simple Euclidean distance measurement. 
For this experiment the original dataset was sampled for 
1386 points making up all 11 trajectories from two days (9

th
 

and 12th of February 2001) and resulting into 55 trajectory 
comparisons (as calculated for „n‟ trajectories by equation 1). 
The duration of a trajectory was considered as a calendar day 
(trajectories were divided into sub-trajectories covering a 
single day). Those trajectories are depicted in Figure 8 (each 
individual trajectory visualized with a unique colour). 

 

 
Figure 7.  Visualization of the 4 trajectories‟ clusters used in experiment 1. 

  
Figure 8.  Visualization of the trajectories used in experiment 2. 

We introduce a new approach for testing alternative 
distance measures based on expert apriori-knowledge 
evaluation. To test the accuracy of our approach, each of the 
distance measures was validated against a repository of pre-
evaluated trajectory distance assigned by data mining 
experts. For our experiment we had 3 repositories of apriori-
knowledge from 3 different data mining experts. The 
repositories identify the distance between two trajectories on 
a scale of four degrees of similarity {A, B, C, D}. Similarity 
of A would mean the two trajectories compared (from the 
expert‟s point-of-view) are most similar and similarity of D 
would mean least similarity.  On the other hand, to convert 
the numerical MTDM / simple Euclidean distances „d‟ to 
similar categories (as assigned in the knowledge repositories) 
we used the following conversions for the different ranges: 
(1 ≤d ≤ 25  A), (26 ≤d ≤ 50  B), (51 ≤d ≤ 75  C), (76 
≤d <∞  D). 

The analysis and interpretation of human analysts is 
recommended to use in order to capture the embedded 
meanings within the data [16]. Human cognition is suitable 
for such classification problems because human knowledge 
and common-sense are utilised to capture what seems to be 
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correct to human interpretation [16]. This apriori-knowledge 
testing-set will be used to evaluate the classification accuracy 
of MTDM using multiple alternative proximity metrics as 
compared to the simple Euclidean distance. 

For each of the proximity measures we constructed a 
proximity matrix which compares all trajectories together 
similar to Figure 2. This totalled to 55 comparisons from the 
11 trajectories as calculated by equation 1.The proximity 
measures were then converted to categories {A, B, C, D} 
similar to the approach used within the apriori-knowledge 
repositories. To validate the accuracy of each proximity 
measure with the benchmark of the human experts we 
constructed a confusion matrix which evaluates the degree of 
agreement in assigning (dis)similarity between two 
trajectories (see Figure 9). Full-agreement classifications are 
across the diagonal, namely AA, BB, CC, and DD. Those 
were assigned a coefficient of 100% accuracy. Partial 
agreement of a single degree difference (like classifying a 
distance between two trajectories as C instead of B) was 
assigned 66.67% classification accuracy. Two degree 
difference in classification agreement was assigned 33.33% 
accuracy while a three degree difference in classification 
agreement was assigned 0% accuracy. 

 MTDM utilising the alternative five proximity 
metrics was then evaluated along with the simple Euclidean 
distance. The resulting accuracy of the proximity measures 
(calculated for each proximity measure from its confusion 
matrix as in Figure 9) are summarised in Table 2 (in order of 
descending accuracy rates). 
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Figure 9.  Confusion matrix for evaluating the trajectory distance 

measures in our experiments. 

VI. DISCUSSION 

The In this paper, multiple proximity metrics and 
different combinations of dimensions from MTDM were 
tested in a spatiotemporal application. The results explain the 
capability of MTDM in accurately estimating the distance 
between trajectories. This was shown with its capability to 
correctly classify 100% of the instances in experiment 1 and 
by the overall accuracy rate ranging between 72.12% (with 
the MTDM Canberra metric) and 80.61% (with the MTDM 
Euclidean metric) in experiment 2.  It must be noted that the 
top scoring proximity measures in experiment 2 were based 
on the MTDM approach which outperformed the simple 
Euclidean approach. The best MTDM distance metric was 
Euclidean as expected from the literature [7]. The average 
metric came second which can mean that all of the MTDM 
dimensions proposed had equal weights in the evaluation of 
trajectory distance and are all important as validated against 

the apriori-knowledge repositories. This was equally 
followed by the City Block MTDM implementation which 
had the same accuracy rate as the average MTDM 
implementation. 

On the other hand, the Chebychev implementation of 
MTDM didn‟t perform as well as the Euclidean, City Block 
and average implementations because it takes the maximum 
distance making it highly sensitive to noise (or peaks in the 
variables) [7]. The Canberra implementation didn‟t perform 
as well as the other implementations of MTDM too. This is 
probably due to the high dimensionality of MTDM which 
can affect the Canberra distance. This is mainly because the 
Canberra distance assumes there is an origin (of expected 
values) and with values scattered around the origin. This was 
not the case for our trajectories experiment. In our 
experiments, the trajectories had random movements not 
scattered around a specific origin. 

As for the simple Euclidean measurement, it came 
lagging behind all the MTDM implementations. This 
indicates the inadequacy of the simple Euclidean approach to 
estimate proximity of trajectories as human experts would 
expect. Alternatively, the MTDM implementations had 
considerable improvements in approximating the proximities 
of trajectories indicating the importance of the dimensions 
proposed in MTDM. Overall, the experiments indicate that 
the best proximity metric to use with MTDM is the 
Euclidean measure. 

Concerning the correlation between the dimensions in 
MTDM, it was observed (using the dataset in experiment 1) 
that the absolute Pearson correlation coefficients between 
variables are negligible/small as they range between 0.0026 
and 0.2192. The exception was the distance metrics relying 
on geospatial distance (GeoDist and ExtDist distances) 
which have high correlation ranging between 0.9536 and 
0.9984 (as expected because they use the geospatial distance 
as a common base-metric). It was decided to keep all 
geospatial distance metrics for the experiments to maintain a 
comprehensive approach for MTDM, however, alternatively 
the variables relying on geospatial distance metrics can be 
used interchangeably according to application requirements. 

There were some limitations with our approach and 
experiments. As for the approach, the approximation of the 
directional properties to the 8 compass directions could be 
considered as a limitation, however, we consider it an 
advantage which saves calculation costs of computing exact 
degree-based differences. Concerning the experiments, the 
accuracy rates were estimated but they could be largely 
affected by the reliability of the human approximations (for 
experiment 2). 

VII. CONCLUSION 

This research paper introduced a more comprehensive 

approach for trajectory distance measurement in 

spatiotemporal applications called MTDM. The approach is 

simplified, yet novel, introducing a new set of dimensional 

variables. MTDM can be used in trajectory data mining 

techniques requiring trajectory proximity measurement like 

trajectory clustering or similar trajectory querying. 
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TABLE II.  THE ACCURACY RATES OF THE PROXIMITY MEASURES IN 

EXPERIMENT 2. 

Proximity Measure Accuracy Rate 

MTDM (Euclidean based) 80.61% 

MTDM (Average based) 75.15% 

MTDM (City Block based) 75.15% 

MTDM (Chebychev based) 72.73% 

MTDM (Canberra based) 72.12% 

Simple Euclidean 58.18% 

MTDM is a specialised trajectory distance measure for 

spatiotemporal (geospatial) applications which does not 

hold presumptions about the relationship between compared 

trajectories. This gives the approach its flexibility towards 

comparing all sorts of spatiotemporal trajectories (mainly 

involving geospatial types). MTDM also has multiple 

advantages including: capability to adapt the distance 

measurement to the relative scale of the problem (using the 

standardisation steps of the approach) and the capability to 

approximate trajectory distance in a comprehensive 

approach (utilising the multiple MTDM dimensions). 

MTDM can also compare different length trajectories and is 

not limited by the requirement to have equal number of 

points within the trajectories compared. Efficiency 

evaluation of MTDM showed the feasibility of applying the 

measure to various trajectory datasets as was tested in this 

research paper. 

To test MTDM, a geospatial data analysis framework was 

utilised. This led to the effective visualization of geospatial 

data (moving-object trajectories) for the data mining experts 

as was required for the apriori-knowledge validation 

experiments. 

For future research, improvement to the efficiency of the 

algorithms with spatial indexes can be tested. In addition, 

the robustness of the algorithm to noise can be tested as it is 

expected for the MTDM approach to behave well under 

“noisy” conditions. Testing alternative weighting of the 

dimensions of MTDM can also contribute to the theoretical 

foundation as this paper assumed equal weights of the 

dimensions. Integrating semantics from different 

spatiotemporal applications into the multi-dimensional 

distance measure can also be analysed in case-studies which 

can demonstrate the capabilities of MTDM in handling 

multiple spatiotemporal domains. 
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