
Brokered Approach to Federating Data using Semantic Web Techniques

Jeremy Siao Him Fa∗, Geoff West†, David A. McMeekin‡ and Simon Moncrieff§
Cooperative Research Centre for Spatial Information

Department of Spatial Sciences, Curtin University, Bentley, Western Australia
Email: ∗jeremy.siao@live.com, †gawwwest@gmail.com ‡d.mcmeekin@curtin.edu.au §s.moncrieff@live.com

Abstract—There are many situations when spatial datasets that
have different data structures, schema, and format need to be
combined (e.g., to form a national road network from those
supplied by different regions). Current methods dealing with
combining independent data sources are manually intensive,
and time inefficient suggesting the need for a more automated,
efficient, and user centric approach. The main problem is due to
syntactic, schematic, and semantic heterogeneities as the same
domain data can be represented in different ways. Although
tools solving syntactic heterogeneities are numerous, there is still
a requirement to solve the underlying semantic problems. One
way to alleviate semantic issues is by sharing a global schema
for data providers to adhere to, but this method is unlikely to be
implemented in multi-governmental federated countries such as
Australia, as the data sets are owned by the different States and
Territories. An automated brokered approach is proposed in this
paper as a solution. This approach allows domain knowledge
sharing across existing and future data providers, making it
plausible where data sets are diverse and owned by different
parties.

Keywords–integration; semantic; wfs; federation; broker; owl-s.

I. INTRODUCTION

In this era of big data, data integration and interoperability
has become an important technical challenge to research.
The current methods dealing with interoperability issues have
been manually intensive and costly [1]. Furthermore, the same
datasets can be combined multiple times by different parties,
leading to duplicated effort and conflation issues. The need
for better and faster access to more user centric spatial data
is further enhanced as spatial information is becoming more
crucial to everyday life [2]. Such desires can be accomplished
by a more automated way to combine data from different
sources. This problem is most relevant for countries such as
Australia, where the unification of the datasets has to be done
at various governmental levels; Local Government Agencies
(LGAs), States and Territories, and Commonwealth levels.

Schematic, syntactic, and semantic heterogeneities occur
in datasets due to independent representation of the same
domain data [3][4], and a lack of communication regarding
the internal workings of organisations. An example of syntactic
heterogeneities would be organisations storing data in different
formats. As for schematic heterogeneity, a straight road can
be stored as two points, or as a starting point and, a length
and direction. As for an example of semantic heterogeneity,
an ‘aircraft’ in organisation A might be a small light aircraft,
while an ‘aircraft’ in organisation B might be an intermediate
aircraft.

In order to solve these issues, and facilitate access to
relevant information, interoperability at technical, syntactic,
schematic, and semantic levels is required [5]. From all these,

semantic interoperability is the underlying goal. Semantic het-
erogeneities occur because the same entity can have more than
one representation or meaning [5][6][7]. Dealing with semantic
problems requires domain knowledge sharing and common
vocabularies. Technical interoperability, on the other hand,
is already widely used; Hypertext Transfer Protocol (HTTP)
used on the Web allows multiple machines to communicate
via the same protocol. As for syntactic interoperability, the
use of same data formats (e.g., JavaScript Object Notation
(JSON), Extensible Markup Language (XML), shape files
[8], Resource Description Framework (RDF)) or seamlessly
transforming one data format to another are possible solutions.
Tools are already available for the latter task, such as Feature
Manipulation Engine (FME) [9].

Schematic or structural heterogeneities happen when there
is a difference in the data schema or structure [10][7]. This
is due to the datasets being developed independently, and
thus using different and varying structures for the same or
similar concepts [3]. Although the main consensus to solve
schematic heterogeneities is through standard schemas, it has
been shown that they are limited in success unless there are
strong incentives to use such standards [3]. Such an approach
can be observed in the Infrastructure for Spatial Information in
the European Community (INSPIRE) initiative in Europe [11].
This initiative requires the different data providers to change
their existing business model to adhere to a global schema, as
well as added legislations and policies to ensure data quality.
Data providers are further required to translate their data (new
and old) to the new format. The restrictions imposed could
also potentially lead to loss of information.

As such, a unifying process not requiring much change
from the data providers, and allowing them to keep their ex-
isting models would be preferable. Other possible approaches
include (1) point to point, (2) centralised, (3) aggregated,
and (4) brokered [5]. The point to point approach requires
the user to do all the unification without any intermediary
between them and the data providers. This approach is very
time consuming, manually intensive, and leads to duplicated
effort and conflation issues. The second approach happens
where all the data is stored, handled, and provided by a
single organisation, which is improbable to happen in federated
countries. The aggregated approach requires a data warehouse
to aggregate and store the datasets from the multiple data
sources. The cost of such a method scales as more data sources
are included, alongside the increased duplication of data. The
fourth approach is explored in this paper and will be discussed
in the next few paragraphs.

In Australia, where the datasets are owned by different
private agencies, and States and Territories, data aggregation
is the method currently used to share spatial data across the
different jurisdictions. This approach though does not provide

46Copyright (c) IARIA, 2016. ISBN: 978-1-61208-469-5

GEOProcessing 2016 : The Eighth International Conference on Advanced Geographic Information Systems, Applications, and Services

the most up to date information, being out of date anywhere
from three months to six months [12]. As such, to provide
the most up to date information, while not restricting data
providers, a broker approach is explored in this research.

A brokered approach makes use of a centralised mediator
to transform the data from multiple sources onto an agreed
schema [5]. Its aim is to deal with semantic heterogeneities
via translations of diverse conceptualisations [13]. Most of the
effort is put on the mediator, while the providers do not have to
change their existing business model as long as they publish
their schema and when they are updated. As no change in
business models is required, this pattern caters for both current
and future data providers. An Example of such an approach
can be found in EuroGEOSS [14] in Europe.

In this paper, we propose to use an automated brokered
approach to seamlessly unify different datasets from different
governmental levels. Using semantic web technologies, it dis-
covers data suppliers and adapts to their schemas dynamically.
Furthermore, it does not impose change in existing business
models, and gives the most up to date unified information from
multiple sources. The main outcome is to enable an easy way
to access specific distributed spatial information, and alleviate
users from manually translating datasets.

This paper first presents relevant background material in
Section 2. Related work is presented in Section 3, followed
by a description of the proposed automated brokering system
in Section 4. Section 5 details the current state of the project,
and is followed by conclusions and plans for future work in
Section 6.

II. BACKGROUND INFORMATION

A. Spatial Web Services
Web Feature Services (WFS) are popular to provide access

to spatial features. WFS is an Open Geospatial Consortium
(OGC) web standard interface to provide remote querying to a
collection of geographic features [15]. Although WFS provide
data interoperability by offering different data output format,
it is not designed to support schematic interoperability [16].

A WFS uses a multi layered approach to allow for querying
of its capabilities (GetCapabilities), the schema of a particular
feature (DescribeFeatureType), and the actual data set of a
feature (GetFeature).

B. Ontologies
Dealing with semantic heterogeneities with an automated

brokered approach requires ontologies to represent knowledge
so as to understand how to interpret semantic differences and
enable transformations. An ontology is defined as a concept
where domains of interest share their understanding with each
other [17][18][19]. In more technological usage, ontologies are
utilised for sharing, representing, and storing knowledge in the
form of data [20]. Essentially, an ontology is a graph that can
be traversed in order to find links between concepts of a given
domain’s knowledge. Ontologies can be serialised in multiple
text formats such as XML, Turtle (ttl), and Notation 3 (n3).
Any of these formats can be easily transformed to another,
making them syntactically interoperable.

A common semantic web language for ontologies is that
of the Web Ontology Language (OWL) [21]. OWL is a
World Wide Web Consortium (W3C) standard whose main

purpose is to provide formalisms and to allow for knowledge
representation. In this research, we make use of OWL-S [22],
which is based on OWL to describe web services.

OWL-S was primarily designed to describe any potential
web services, and thus was adapted to cater for WFS specifi-
cally. The modification follows the works of Stock et al. [23]
closely but as only a partial of their modified ontology was
available, many changes had to be extrapolated from their
work. The OWL-S ontology therefore, is an ontology that can
be adapted to describe WFS.

The OWL-S ontology is made up of three main components
[22]:

1) The service profile used to identify, advertise, and
discover web services. This is where a program can
find out if a particular web service is what is needed;

2) The process model explains how the service works,
the input, output, and processes for its different
functions. This is where a program finds out how to
use a particular service, what to input, and what is
received back after the process; and

3) The grounding provides details on how to interact
with the web service via messages.

The OWL-S ontology gives a strong foundation to describ-
ing web services due to it being a standard, allowing for future
planning, and for much shareability.

III. RELATED WORK

Work related to this research include various adaptations
of the OWL-S ontology, novel ways to approach the brokering
method, proposals to facilitate sharing of data, and attempts at
solving ambiguities regarding heterogeneous datasets.

An adaptation of OWL-S includes a cloud service broker
[24]. The authors define a cloud broker as ‘an entity that
manages the use, performance, and delivery of cloud services,
and negotiates relationships between cloud providers and cloud
consumers’. Their challenge is the heterogeneous nature of
multiple service providers. Cloud service specifications are not
standardised and promote semantic heterogeneity. By using
OWL-S, the cloud service broker is able to dynamically
discover complicated services whose attributes are constrained.
The constraints of the services are represented using the Se-
mantic Web Rule Language (SWRL). The cloud service broker
is able to solve varying tasks of different levels through multi-
ple case studies but requires the different service providers to
use a shared ontology. Ngan and Kanagasabai [24] state that
ontology alignment and learning (part of this research) can
address that issue.

Another adaptation related to this paper involves imple-
menting the OWL-S ontology to describe WFS and Web Map
Service (WMS) [23]. To cater for Open Geospatial Consortium
(OGC) compliant web services, the OWL-S WSDL grounding
was changed to a simplified OGC equivalent grounding. Their
work shows detailed analysis of WFS and WMS, and an
implementation of their OWL-S adaptation demonstrated its
practicality in the marine domain. Although they state that
OWL-S is a ‘fairly cumbersome specification’, their work
showed that it can be adapted to OGC compliant web services.

Yue et al. [25] explores automated geospatial web services’
composition using semantics. In their approach, the authors

47Copyright (c) IARIA, 2016. ISBN: 978-1-61208-469-5

GEOProcessing 2016 : The Eighth International Conference on Advanced Geographic Information Systems, Applications, and Services

Web
Service

Language
Processor

Interface 1

Interface 2

Query/Data

Query/Data

Query/Data

Natural Language

Natural
Language

Landgate

DELWP

Private
Portal/API

Public
Portal/API

Western
Australia

Victoria

Private
Servers

Public
Earth

Broker
WFS

WFS

WFS

WFS

SPARQL

Data

Data

Data

Ontologies

Main
Process

Figure 1. Automated Broker System.

designed and used ‘DataType’, ‘ServiceType’, and ‘Associa-
tion’ ontologies as semantic schemas. Although some results
have been obtained in their use case, the automation of the
approach needs improvement; domain experts are required in
some aspects and the ontologies’ reasoning needs more work.

At a lower level, work has been done aiming at matching
WSDL descriptions to that of OWL-S semantic annotations
[26]. Facilitating the move from WSDL description of web ser-
vices to OWL-S would promote web services discovery. Their
method includes an ontology repository where a matching
algorithm finds the best match related to specific concepts in a
WSDL description. Using various designed and real examples,
their algorithm has been validated to be practical and to reduce
time and effort.

A different approach is using ontologies to provide a con-
ceptual overview of the data sources. This particular approach
is called Ontology-Based Data Access (OBDA). Its aim is
to provide a query-able ontological view of the data sources
to the users. Some of the current systems harnessing OBDA
includes the Optique System [27] and MASTRO [28]. A recent
evaluation the OBDA approach found that it can be ‘orders of
magnitude faster than standard triple stores’ [29], using proper
optimisation techniques. However, OBDA can also perform
poorly if proper techniques are not used.

A real life application of OBDA using the MASTRO
system was explored by Antonioli et al. [30]. They found
that the mapping definition from the Italian Department of
Treasury case study had to essentially be done manually. They
had to manually analyze the structure of the data sources to
understand the data semantics. This though, only had to be
done once using the MASTRO system, and once for any new
sources [30]. Some query rewriting optimisation has also been
suggested, making previously impractical methods possible.

Regarding ambiguities and uncertainties, Yang et al. [31]
studied the usage of Bayesian Networks. According to them,
Bayesian theory provides a principled representation of un-
certainty, alongside logic to unify observations with previous
knowledge, and learning theory for refining ontologies. Al-
though their approach had improved efficiency and accuracy in
regards to geospatial web services, it targeted mainly discovery

of such services. Furthermore, manual work in conjunction
with venture capitalists were required to build the raw causal
map needed in their work.

IV. AUTOMATED BROKER FOR UNIFYING
UNCONTROLLABLE HETEROGENEOUS DATA SOURCES

To facilitate access to multiple data sources, it is required
to have (1) web services, (2) descriptions of the web services,
and (3) a federated model.

For the web services, two WFS (described using OWL-S)
are used - Landgate and Department of Environment, Land,
Water and Planning (DELWP), Victoria.

As for a federated model, the Foundation Spatial Data
Framework (FSDF) is used in this paper. The FSDF is a
national level dataset developed by the Australian and New
Zealand Land Information Council (ANZLIC) [5]. Its aim is
to provide a number of foundational data themes (geocoded ad-
dressing, administrative boundaries, positioning, place names,
land parcel and property, imagery, transport, water, elevation
and depth, and land cover), each one consisting of a number
of datasets [32]. A part of the administrative boundary dataset
was used as a use case study.

Datasets in the FSDF have been modelled using the Unified
Modelling Language. The FSDF was transformed to an OWL
equivalent using the tool Protégé [33] to allow reasoning and
querying using SPARQL Protocol and RDF Query Language
(SPARQL) - an RDF query language.

As we are using semantic web concepts, ontologies will
thus be the main technique used to describe the knowledge
needed to link up the web services’ descriptions, and federated
model. This combination will be referred to as ontology Θ
from here on.

A. Broker Architecture
The structure of the proposed brokered system has the

federated model acting as a unified view for the user, the broker
in the middle, and the web services at the end. Multiple users
can use the broker system through a web service (e.g., WFS,
Web Processing Service) and adapt it to their own needs.
The exposed web service then translates the user query into a

48Copyright (c) IARIA, 2016. ISBN: 978-1-61208-469-5

GEOProcessing 2016 : The Eighth International Conference on Advanced Geographic Information Systems, Applications, and Services

SPARQL equivalent which is then used to query the ontologies
and relevant data sources.

This structure is portrayed in Figure 1 where the left hand
side are multiple users using the same or different interfaces
plugged into an exposed web service, the middle is the broker
with its various components, and the right hand side are the
data providers and their web services. The broker system is the
mediator between the users and the web services, and while
the users can interact freely with the broker they do not need
knowledge of the data sources.

In general, the broker has to deal with:

1) Querying relevant web services;
2) Processing the user’s query; and
3) Combining the differing data sets from the relevant

suppliers.

B. Querying Web Services
In this paper, web services used are WFS that adhere to

standards (i.e., OGC), and have available URLs. The capabil-
ities of the WFS can be analysed to identify if the serviced
features are related to the query posed. For example, parsing
the ‘Title’ and ‘Description’ tags, a matching algorithm can
determine if a particular feature is relevant or not. If it matches,
then the WFS capabilities are modelled and stored in the OWL-
S ontology for future use. This can be observed in Figure 2
where the OWL-S ontology is connected to a GetCapabilities
ontology.

After obtaining the capabilities of the service, and asserting
that some typeNames (name given to a specific feature) are
useful to the user, a DescribeFeatureType call is made to
the service. This call returns a schema describing the meta-
data stored by the web service. The schema is then parsed
for meta-data related to the user’s query (e.g., to see if a
particular attribute ‘name’ is available in a particular feature).
The DescribeFeatureType schema of that particular feature is
then modelled and stored in the GetCapabilities node found in
Figure 2.

Query/Data

Broker

WFSProcess

OWL-S Geometry

FSDF
(OWL)

GetCapabilities DescribeFeatureType

Ontologies

Figure 2. Ontologies Used.

To automate the process of linking the DescribeFeature-
Type schema to the broker’s ontology, Extensible Stylesheet
Language Transformations (XSLT) are used. These are pro-
grammable style sheets that allow transformation of XML to
any other format. Doing so enable an automatic transformation

of the DescribeFeatureType XML to RDF providing an on the
fly linkage to the ontology used in the broker.

Figure 3 shows the sequence of actions needed to query a
number of URLs.

BEGIN

Get next
WFS URL

CALL
GetCapabilities

Relevant
attribute
found?

CALL
GetFeature

on typeName

FILTER
GeoJson

GET feature
data

END

Yes

Relevant
typeName

found?

CALL
DescribeFeatureType

Yes

No

No

Figure 3. Overview Flowchart.

The resulting RDF triples are added to ontology Θ. Each
WFS URL now has a feature, and that feature has its meta-
data linked to it (Refer to ‘slip:LGATE-069_Type’ in Figure
6).

Once the required attribute has been obtained, the link
is then added to the ontology as an equivalent term. For
example, the term StateElectoralDivision from the FSDF, has
an individual from Landgate’s LGATE-069 feature type, and
the attribute fsdf_name has an equivalent link to LGATE-069’s
name attribute in the ontology.

Figure 6 demonstrates the ontology developed. The light
grey parts are from the OWL-S ontology, its extension can be
seen from the white ellipses and rectangles, the black part is
the start of an OWL implementation of the ISO 19107 Spatial
Schema [34], and the dark grey part is the ontology adapted
from the FSDF model.

To link up all three ontologies - pseudo-FSDF, OWL-S,
and geometry, the following changes have been made:

49Copyright (c) IARIA, 2016. ISBN: 978-1-61208-469-5

GEOProcessing 2016 : The Eighth International Conference on Advanced Geographic Information Systems, Applications, and Services

1) Adding a WFSAtomicProcess class as a subclass of
the OWL-S AtomicProcess;

2) Adding process name individuals for the WF-
SAtomicProcess (i.e., GetCapabilities, DescribeFea-
tureType, and GetFeature);

3) Linking the DescribeFeatureType and GetFeature
WFSAtomicProcesses to the individual ‘slip:LGATE-
069’ as input;

4) Adding WFSProfile as a subclass of OWL-S’ Servi-
ceProfile;

5) Adding DescribeFeatureType’s meta-data as at-
tributes for slip:LGATE-069_Type using the ‘hasFea-
tureTypeComponent’ object property; and

6) Using the geometry ontology for the ‘bbox’ meta-data
for slip:LGATE-069_Type.

C. Processing the Query
A user’s natural language query is transformed to a

SPARQL equivalent query. SPARQL allows constraints to be
placed upon the queries, enabling more detailed querying.

In order to process a SPARQL query, it is first required to
extract its components. In this paper, the two main components
will be the SELECT and FILTER clauses. The SELECT
clause is assumed to mean a specific feature type, and the
FILTER clause is assumed to mean a specific instance of
the feature type found in the SELECT clause. By making this
differentiation, there are thus two main types of queries: (1) a
generic query (2) a detailed query:

1) The generic query is associated with the SELECT
clause, and is assumed to refer to a specific feature
type, not an instance. As such, a GetCapabilities call
to the WFS is all that is required. From the retrieved
XML, it is then possible to filter the title, description,
and keywords to match the query’s details; and

2) The detailed query is determined when a FILTER
clause is found. The clause will determine which
details the user is looking up in a particular feature
type. The generic query needs to be processed first
though. That is, only after getting the feature type
associated with the SELECT clause, can a particular
instance from that feature type be found.

From both generic queries and detailed queries, the base
ontology Θ can then be expanded as the WFS is being
explored.

1) Matching Generic Queries: A generic query is deter-
mined by the SELECT clause of a SPARQL query. That clause
is assumed to be direcly linked to a feature type in a WFS.
An example of such a query is depicted in Figure 4.

SELECT ?feature
WHERE {

?feature rdf:type ex:StateElectoralDivision .
}

Figure 4. SPARQL for Matching Generic Queries.

The query is assumed to be looking for a feature type
that’s related to ‘StateElectoralDivision’. For such queries, the
GetCapabilities of each WFS, has to be checked. The features’
‘name’, ‘title’, ‘abstract’, and ‘keyword’ go through a set
of matching algorithms in order to find any similarity with

the feature ‘StateElectoralDivision’ from this example. These
particular fields have been chosen as the ‘name’ is a mandatory
field in any feature, the ‘title’ is intended to ‘briefly identify the
feature type’, the ‘abstract’ provides more descriptions about
the feature type, while the ‘keyword’ is intended to aid catalog
searching [15].

Figure 5 demonstrates the sequence of processes that take
place, after retrieving the URL of the WFS from the ontology.
After the URL is retrieved, a GetCapabilities call is made
to the server. The returned XML is parsed for the fields
described previously, and a matching algorithm is run to find
any similarities. Given that a particular feature is found to
be similar, the next step is to make a DescribeFeatureType
call for the matching feature, giving back a schema (e.g.,
XML Schema Definition). The schema is parsed for any
attributes, and these are created in the broker’s ontology as
‘hasFeatureTypeComponent’ links to the feature (Refer to
Figure 6).

BEGIN

Get WFS URL

GET next
typeName

Is typeName
relevant?

PARSE XSD

EXTEND
ontology

END

Is typeName
relevant?

CALL
DescribeFeatureType

Yes

No

PARSE XML

Yes

No

Figure 5. Generic Queries Matching Flowchart.

2) Matching Filter Queries: A filter query determined
by the FILTER clause of a SPARQL query. That clause is
assumed to be directly linked to a specific attribute in a WFS’
feature. An example of such a query is depicted in Figure 7.

SELECT ?feature
WHERE {

?feature rdf:type ex:StateElectoralDivision .
?feature ex:name ?name .
FILTER(name = ‘Albany’)

}

Figure 7. SPARQL for Matching Filter Queries.

It is assumed the query is looking for a feature type
whose attribute relating to ‘name’ is related to ‘Albany’. After
parsing the generic query of finding a typeName similar to

50Copyright (c) IARIA, 2016. ISBN: 978-1-61208-469-5

GEOProcessing 2016 : The Eighth International Conference on Advanced Geographic Information Systems, Applications, and Services

Figure 6. Adapted Ontology (Θ) Dependence.

TABLE I. COMPARISON OPERATORS.

WFS Comparison Operator
SPARQL

Comparison
Operator

PropertyIsEqualTo =
PropertyIsNotEqualTo !=
PropertyIsLessThan <
PropertyIsGreaterThan >
PropertyIsLessThanOrEqualTo <=
PropertyIsGreaterThanOrEqualTo >=
PropertyIsLike N/A
PropertyIsBetween < && >

‘StateElectoralDivision’, the next steps are demonstrated in
Figure 8. All the meta-data are retrieved from the particular
feature type using a DescribeFeatureType call. The schema
obtained is filtered to find a similar attribute to that of ‘name’.
Given that a similar attribute is found, the next step is to call
GetFeature from the web service, and filter the attributes for
‘Albany’.

3) SPARQL Filters to WFS Filters: Instead of filtering a
whole feature type within the broker, filter parameters can
be passed into a GetFeature call to the WFS. It enables the
provider’s WFS to run a filter search server side, removing
the filtering overheads from the broker. For simplicity, only
comparison operators (e.g., =, !=, <, >, etc.) are discussed in
this paper but others such as ‘Union’, and regular expressions
are possible.

Table I shows the comparison operators that are common
in WFS and SPARQL.

BEGIN

CALL
DescribeFeatureType

for next typeName

CALL
GetFeature

Is name
similar to
 Albany ?

GET feature

END

Attribute
 name
found?

PARSE next feature
for attribute name

Yes

No

PARSE XSD
for attribute

 name

Yes

No

Figure 8. Filter Queries Matching Flowchart.

51Copyright (c) IARIA, 2016. ISBN: 978-1-61208-469-5

GEOProcessing 2016 : The Eighth International Conference on Advanced Geographic Information Systems, Applications, and Services

Considering Table I, the SPARQL query can thus be
converted to a WFS call equivalent.

SELECT ?feature
WHERE {

?feature rdf:type ex:StateElectoralDivision .
?feature ex:fsdf_name ?name .
FILTER(name = ‘Albany’)

}

Figure 9. SPARQL Name matching.
Given that ‘LGATE-069’ is the equivalent to ‘State-

ElectoralDivision’, and that ‘name’ is the equivalent to
‘fsdf_name’, then the WFS call would be as depicted in Figure
10.

www2.landgate.wa.gov.au\ows\wfspublic_4283\wfs?SERVICE=WFS&
VERSION=1.0.0&REQUEST=getFeature&typeName=LGATE-069&Filter=

<Filter><PropertyIsEqualTo>
<PropertyName>name</PropertyName>
<Literal>Albany</Literal>

</PropertyIsEqualTo></Filter>

Figure 10. Name Filtering Call.

Using the ‘PropertyIsEqualTo’ though, is restrictive, as the
precise name of the anything stored has to be known. This
issue can be solved by using the ‘PropertyIsLike’ operator.
The same query can then be rewritten as depicted in Figure
11.

www2.landgate.wa.gov.a\ows\wfspublic_4283\wfs?SERVICE=WFS&
VERSION=1.0.0&REQUEST=getFeature&typeName=LGATE-069&Filter=

<Filter><PropertyIsLike wildCard=‘*’ singleChar=‘!’>
<PropertyName>name</PropertyName>
<Literal>*Albany*</Literal>

</PropertyIsLike></Filter>

Figure 11. PropertyIsLike Call.

That call would look for any name attribute that has
‘Albany’ in it.

For multiple word names such as ‘Alfred Cove’, a simple
algorithm permutating all the ways it can be written can be
used. For example, the identified ways ‘Alfred Cove’ can be
written as are:

nolistsep

1) Upper case (ALFRED COVE);
2) Lower case (alfred cove);
3) Upper case with underscore (ALFRED_COVE);
4) Lower case with underscore (alfred_cove);
5) Camel case with space (Alfred Cove);
6) Camel case without space (AlfredCove); and
7) Camel case with underscore (Alfred_Cove).

All the seven ways of naming conventions can be pro-
grammed to fit in the WFS GetFeature filter URL as depicted
in Figure 12.

D. Converting XSD to RDF
Converting XML Schema (XSD) to RDF format automat-

ically has been achieved in various disciplines [35][36][37].
In this research, XSLT was used as it enables the trans-

formation of an XML Schema to RDF without needing

www2.landgate.wa.gov.au\ows\wfspublic_4283\wfs?SERVICE=WFS&
VERSION=1.0.0&REQUEST=getFeature&typeName=LGATE-069&Filter=

<Filter><Or>
<PropertyIsLike wildCard=‘*’ singleChar=‘!’>

<PropertyName>name</PropertyName>
<Literal>*ALFRED COVE*</Literal>

</PropertyIsLike>
<PropertyIsLike wildCard=‘*’ singleChar=‘!’>

<PropertyName>name</PropertyName>
<Literal>*alfred cove*</Literal>

</PropertyIsLike>
<PropertyIsLike wildCard=‘*’ singleChar=‘!’>

<PropertyName>name</PropertyName>
<Literal>*ALFRED_COVE*</Literal>

</PropertyIsLike>
<PropertyIsLike wildCard=‘*’ singleChar=‘!’>

<PropertyName>name</PropertyName>
<Literal>*alfred_cove*</Literal>

</PropertyIsLike>
<PropertyIsLike wildCard=‘*’ singleChar=‘!’>

<PropertyName>name</PropertyName>
<Literal>*Alfred Cove*</Literal>

</PropertyIsLike>
<PropertyIsLike wildCard=‘*’ singleChar=‘!’>

<PropertyName>name</PropertyName>
<Literal>*AlfredCove*</Literal>

</PropertyIsLike>
<PropertyIsLike wildCard=‘*’ singleChar=‘!’>

<PropertyName>name</PropertyName>
<Literal>*Alfred_Cove*</Literal>

</PropertyIsLike>
</Or></Filter>

Figure 12. ProperIsLike Name Filtering Call.

any human assistance. The XSLT was developed and used
successfully but does contain some limitations, such as data
type duplicates. It was utilised to automatically link the De-
scribeFeatureType schema of a WFS to the broker’s ontology
as depicted in Figure 2 and Figure 5. The generic steps
undertaken in the XSLT are:

1) For each XSD targetNamespace, convert them to
RDF namespaces;

2) For each XSD complexType, convert them to OWL
Class;

3) For each XSD extension within a xsd complexType,
convert the class to a subclass of the extension;

4) For each sequence within a XSD complexType, con-
vert them to an OWL subClassOf owl:Restriction;

5) For each XSD element within a XSD sequence, con-
vert them to an owl:onProperty with the rdf:resource
being the base URL plus the element’s name;

6) For each minOccurs within the xsd:element, convert
them to owl:minCardinality;

7) For each maxOccurs within the xsd:element, convert
them to owl:maxCardinality; and

8) For each type within the xsd:element, convert them
to an owl:Datatype with the rdfs:range being the
xsd:type and the rdfs:domain being the owl:Class;

Following these mapping guidelines, an RDF file was
automatically generated to extend ontology Θ.

E. Combining Differing Data Sets
The combination of varying data sets is done on a per-

query basis. For each of the queries tasked by the user, the
broker goes through the two steps above: (1) querying web

52Copyright (c) IARIA, 2016. ISBN: 978-1-61208-469-5

GEOProcessing 2016 : The Eighth International Conference on Advanced Geographic Information Systems, Applications, and Services

services, and (2) processing the user query if relevant terms in
the query are not already existent in the ontology. For example,
if the general term in the query’s SELECT is found to have an
equivalence of ‘LGATE-069’ from Landgate in ontology Θ ,
then further processing is not required.

As these processes are carried out, the ontology would be
growing to have further links and equivalent terms, rendering
the processing less and less required as the results of previous
queries are stored. That semantic aspect makes the broker
highly scalable, as the system constructs more links as more
queries are processed.

F. Error Handling

Given that an error occurs in calling a WFS service, an
error message would be returned either in JSON or Hypertext
Markup Language (HTML). A JSON error message can be
parsed to find the specific cause of the problem (e.g., feature
does not exist), while the error code of the HTML provides
a direct indication of it (e.g., Error 500 for internal error).
Depending on the cause of the problem, two main scenarios
can happen (1) the ontology can be modified to cater for the
changes, and (2) the error cannot be handled properly.

Case number one happens when the schema of the WFS
is changed and thus the ontology is not up to date with the
changes. This can be resolved by calling the WFS GetCapa-
bilities, running a matching algorithm to the broker’s ontology
and compare for discrepancies. The mismatches can then be
resolved by updating the ontology to reflect the new schema.

Case number two happens when there is either a problem
on the provider’s side (e.g., server is down), or a problem on
the user’s side (e.g., user input error). In both cases, nothing
can be done as these are errors of the broker’s scope, and the
only solution is to notify the user about it.

G. Performance

Using the on-the-fly approach ensures that only a minimal
amount of information is stored on the broker’s side. Most of
the main data (e.g., coordinates, shapes, etc.) remain at the
data source. The only stored information are the ontologies
that link data providers’ gateway to the global ontology. With
the example of WFS, only information up to the secondary
level (DescribeFeatureType) is stored as part of the ontology,
the third level, which contains most of the data, is left at
the source. The ontologies can moreover be distributed on the
cloud; various servers can be used, making storage problems
minimal. Furthermore, caching will be used to speed searching,
and parallel computing or torrenting technologies could be
explored as well.

V. RESULTS

A case study of the broker system was implemented using
the Python programming language [38]. Python has various
libraries and frameworks already available for usage. For
example, the library rdflib allows the usage of RDF and
ontology graphs, to query, create, edit, and import. Reusability
of such libraries is a forte of Python, especially for proofs of
concept. Furthermore, the framework Django [39] has been
used as it enables easy set up of a web interface to implement
a server locally.

Figure 13. Brokered System Result.

A. Current State
The broker system implemented provides a visual display

for the OWL implementation of the FSDF. A list of classes -
with their respective attributes from the FSDF UML - is shown.
Once a class and an attribute are selected, the user can specify
a value to query. A start button starts the querying process, and
a map is updated automatically when any result is obtained.

Figure 13 shows the returned result from two different
States (Western Australia and Victoria). The red marks are
the locations’ boundaries, which can be seen clearer in Figure
14 and Figure 15 respectively.

VI. CONCLUSION AND FUTURE WORK

This paper discussed the development of a broker system
to automatically and virtually consolidate various spatial data
sources on a per-query basis for easier user consumption. The
aim of the broker is to act as a mediator between users and
data sources, to combine various heterogeneous data sources.

Figure 14. Albany (WA) Result.

Figure 15. Eastern Metropolitan Area (VIC) Result.

This work is far from being completed and it is planned
to extend the broker system to more agencies and operations.
Reasoning to cope with ambiguities is to be developed, as well
as, the automatic expansion of the ontologies. Other future
work will include more filtering abilities such as intersection
of regions, and queries regarding different data sets such as
housing and forests. Furthermore, the web services to be

53Copyright (c) IARIA, 2016. ISBN: 978-1-61208-469-5

GEOProcessing 2016 : The Eighth International Conference on Advanced Geographic Information Systems, Applications, and Services

implemented have to be diversified, as well as the themes from
the FSDF.

ACKNOWLEDGEMENT

This work has been supported by the Cooperative Research
Centre for Spatial Information, whose activities are funded by
the Business Cooperative Research Centres Programme.

REFERENCES

[1] C. Terblanche and P. Wongthongtham, “Ontology-based
employer demand management,” Software: Practice and
Experience, pp. 1–46, Apr 2015.

[2] ACIL Tasman, “The Value of Spatial Information,” ACIL
Tasman Pty Ltd, Tech. Rep. March, 2008.

[3] A. Halevy, “Why Your Data Won’t Mix: Semantic Het-
erogeneity,” Queue, vol. 3, no. 8, pp. 50–58, oct 2005.

[4] D. J. Abel, B. C. Ooi, K.-L. Tan, and S. H. Tan, “Towards
integrated geographical information processing,” Inter-
national Journal of Geographical Information Science,
vol. 12, no. 4, pp. 353–371, jun 1998.

[5] P. Box, B. Simons, S. Cox, and S. Maguire, “A Data
Specification Framework for the Foundation Spatial Data
Framework,” CSIRO, Australia, Tech. Rep., 2015.

[6] J. X. He, “An Ontology-Based Methodology for Geospa-
tial Data Integration,” Ph.D. dissertation, uOttawa, 2010.

[7] I. F. Cruz and H. Xiao, “The role of ontologies in data
integration,” Journal of Engineering Intelligent Systems,
vol. 13, pp. 245–252, 2005.

[8] Esri, “ESRI Shapefile Technical Description,” Computa-
tional Statistics, vol. 16, no. July, pp. 370–371, 1998.

[9] S. Software, “Feature Manipulation Engine,” 2016, URL:
http://www.safe.org/ [accessed: 2016-04-06].

[10] A. Buccella, A. Cechich, and N. R. Brisaboa, “Ontology-
Based Data Integration Methods : A Framework for Com-
parison,” Revista Colombiana de Computación, vol. 6,
no. 1, 2005.

[11] INSPIRE Thematic Working Group Utility and govern-
mental services, “D2.8.III.6 INSPIRE Data Specification
on Utility and governmental services - Draft Technical
Guidelines,” INSPIRE Thematic Working Group, Tech.
Rep. March, 2004.

[12] Anzlic, One ANZ Foundation Spatial Data Framework.
ANZLIC, 2012, no. November.

[13] H. Wache, T. Scholz, H. Stieghahn, and B. Konig-Ries,
“An integration method for the specification of rule-
oriented mediators,” in Proceedings 1999 International
Symposium on Database Applications in Non-Traditional
Environments (DANTE’99) (Cat. No.PR00496), no. 01.
IEEE Comput. Soc, 1999, pp. 109–112.

[14] EuroGEOSS, “EuroGEOSS,” 2016, URL: http://www.
eurogeoss.eu/default.aspx [accessed: 2016-04-06].

[15] P. A. Vretanos, “Web Feature Service Implementation
Specification,” Open Geospatial Consorium Inc., Tech.
Rep., 2005.

[16] P. Staub, “A Model-Driven Web Feature Service for
Enhanced Semantic Interoperability,” OSGeo Journal,
vol. 3, no. December, pp. 38–43, 2007.

[17] J. Partyka, N. Alipanah, L. Khan, B. Thuraisingham, and
S. Shekhar, “Content-based ontology matching for GIS
datasets,” in Proceedings of the 16th ACM SIGSPATIAL

international conference on Advances in geographic in-
formation systems - GIS ’08, no. c. New York, New
York, USA: ACM Press, 2008, pp. 1–4.

[18] M. Uschold and M. Gruninger, “Ontologies: principles,
methods and applications,” The Knowledge Engineering
Review, vol. 11, no. 02, pp. 93–162, jul 1996.

[19] T. R. Gruber, “A translation approach to portable ontol-
ogy specifications,” Knowledge Acquisition, vol. 5, no. 2,
pp. 199–220, jun 1993.

[20] R. Megala and K. Nirmala, “Semantic Queries in Dis-
tributed Relational Database Using Global Ontology Con-
struction.” ICTACT Journal on Soft Computing, pp. 942–
945, 2015.

[21] D. L. McGuinness and F. Van Harmelen, “OWL Web
Ontology Language Overview,” 2009, URL: https://www.
w3.org/TR/owl-features/ [accessed: 2016-04-06].

[22] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDer-
mott, S. Mcllraith, S. Narayanan, M. Paolucci, B. Par-
sia, T. Payne, E. Sirin, N. Srinivasan, and K. Sycara,
“OWL-S: Semantic Markup for Web Services,” URL:
http://www.w3.org/Submission/OWL-S/ [accessed: 2016-
04-06].

[23] K. Stock, A. Robertson, and M. Small, “Representing
OGC Geospatial Web Services in OWL-S Web Service
Ontologies,” International Journal of Spatial data Infras-
tructures Research, vol. 6, 2011.

[24] L. D. Ngan and R. Kanagasabai, “OWL-S Based Seman-
tic Cloud Service Broker,” 2012 IEEE 19th International
Conference on Web Services, pp. 560–567, 2012.

[25] P. Yue, L. Di, W. Yang, G. Yu, and P. Zhao, “Semantics-
based automatic composition of geospatial Web service
chains,” Computers and Geosciences, vol. 33, no. 5, pp.
649–665, 2007.

[26] T. A. Farrag, A. I. Saleh, and H. A. Ali, “Toward SWSs
discovery: Mapping from WSDL to OWL-S based on
ontology search and standardization engine,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 25,
no. 5, pp. 1135–1147, 2013.

[27] P. Haase, I. Horrocks, and D. Hovland, “Optique System:
Towards Ontology and Mapping Management in OBDA
Solutions,” Second International Workshop on Debugging
Ontologies and Ontology Mappings - WoDOOM13, pp.
21–32, 2013.

[28] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,
A. Poggi, M. Rodriguez-Muro, R. Rosati, M. Ruzzi, and
D. F. Savo, “The MASTRO system for ontology-based
data access,” Semantic Web, vol. 2, no. 1, pp. 43–53,
2011.

[29] D. Lanti, M. Rezk, G. Xiao, and D. Calvanese, “The NPD
benchmark: Reality check for OBDA systems,” Proc.
18th International Conference on Extending Database
Technology (EDBT), pp. 617–628, 2015.

[30] N. Antonioli, F. Castanò, C. Civili, S. Coletta, S. Grossi,
D. Lembo, M. Lenzerini, A. Poggi, D. F. Savo, and E. Vi-
rardi, “Ontology-Based Data Access: The Experience at
the Italian Department of Treasury,” CAiSE Industrial
Track, vol. 1017, pp. 9–16, 2013.

[31] X. Yang, W. Cui, Z. Liu, and F. Ouyang, “Study on
uncertainty of geospatial semantic Web services compo-
sition based on broker approach and Bayesian networks,”
in Geoinformatics 2008 and Joint Conference on GIS
and Built Environment: Geo-Simulation and Virtual GIS

54Copyright (c) IARIA, 2016. ISBN: 978-1-61208-469-5

GEOProcessing 2016 : The Eighth International Conference on Advanced Geographic Information Systems, Applications, and Services

Environments, L. Liu, X. Li, K. Liu, X. Zhang, and
A. Chen, Eds., vol. 7143, oct 2008, pp. 714 305–714 305–
8.

[32] Anzlic, “ANZLIC - the Spatial Information Council is
the peak intergovernmental organisation providing lead-
ership in the collection, management and use of spatial
information in Australia and New Zealand.” 2016, URL:
http://www.anzlic.gov.au/ [accessed: 2016-04-06].

[33] “Protégé,” 2016, URL: http://protege.stanford.edu/ [ac-
cessed: 2016-04-06].

[34] S. J. D. Cox, “OWL representation of ISO 19107
(Geographic Information - Spatial Schema),” 2015,
URL: http://def.seegrid.csiro.au/isotc211/iso19107/2003/
geometry [accessed: 2016-04-06].

[35] Rhizomik, “ReDeFer,” 2016, URL: http://rhizomik.net/
html/redefer/#XSD2OWL [accessed: 2016-04-06].

[36] Brishniz, “XML2OWL Demonstration Platform,”
2016, URL: http://xml2owl.sourceforge.net/index.php
[accessed: 2016-04-06].

[37] Incunabulum, “XsdImport - Convert XSD schemas to
OWL,” 2016, URL: http://www.incunabulum.de/projects/
it/xsdimport/ [accessed: 2016-04-06].

[38] “Python,” 2016, URL: https://www.python.org/ [ac-
cessed: 2016-04-06].

[39] “Django: The web framework for perfectionists with
deadlines.” 2016, URL: https://www.djangoproject.com/
[accessed: 2016-04-06].

55Copyright (c) IARIA, 2016. ISBN: 978-1-61208-469-5

GEOProcessing 2016 : The Eighth International Conference on Advanced Geographic Information Systems, Applications, and Services

