
A Cost-Efficient Method for Big Geospatial Data on Public Cloud Providers

Joao Bachiega Junior, Marco Antonio Sousa Reis *

Aletéia Patrícia Favacho de Araújo, Maristela Holanda **

Department of Computer Science

University of Brasilia

Brasília/DF, Brazil

* e-mail: {joao.bachiega.jr, marco.antonio.sousa.reis}@gmail.com

** e-mail: {aleteia, mholanda}@unb.br

Abstract—The rise of big geospatial data creates the need for

an environment with powerful computational resources to

process this large amount of geographical information. Spatial

Cloud Computing is a solution to this problem as it offers

facilities to overcome the challenges of a big data environment,

providing significant computer power and vast storage.

However, the software to process this data requires great

performance capacity. These requirements are met by

SpatialHadoop, a fully-fledged MapReduce framework with

native support for spatial data. This paper presents a cost-

efficient method for processing geospatial data on public cloud

providers, optimizing the number of data nodes in a Hadoop

cluster according to dataset size. Tests have proven that it can

optimize the use of computational resources for available

SpatialHadoop datasets.

Keywords - Big geospatial data; Hadoop; SpatialHadoop;

Spatial Cloud Computing

I. INTRODUCTION

Big geospatial data is the emerging paradigm for the
infinite amount of information that has become available to
users with the development and widespread use of
Geographical Information System (GIS) softwares,
delivering hundreds of TiB up to several PiB per hour [1][7].
Big data is defined by some authors [2][3] according to
three essential aspects: i) Variety – referring to the different
types of data, with more than 80% of them in an unstructured
form; ii) Volume – the tremendous amounts of data generated
each second; iii) Velocity – the speed at which new data is
being produced. Recently, new aspects were included in the
big data definition [7]: Veracity – how trustworthy the data
is; Value – referring to the importance that the data has to the
business; Variability - referring to data whose meaning is
constantly changing and Visualization – how the data is
presented, readable and accessible to users.

The rise of cloud computing and cloud data stores has
been a precursor to, and a facilitator of the emergence of big
data [9]. Consequently, to support the computational demand
big data has caused, mainly for geospatial data, Yang and
Huang [4] have proposed Spatial Cloud Computing, an
infrastructure that helps conduct relevant computing and data
processing, which is characterized by its sufficient
computing capability, low energy cost, fast response to spike

computing needs, and a wide accessibility to the public when
needed.

An important property of clouds is their capability to
increase and decrease computational resources without
impact on applications. NIST [4] identified elasticity as an
essential characteristic of cloud computing: “capabilities can
be elastically provisioned and released, in some cases
automatically, to scale rapidly outward and inward
commensurate with demand. To the consumer, the
capabilities available for provisioning often appear to be
unlimited and can be appropriated in any quantity at any
time”.

Moreover, Kramer and Senner [1] assert that the cloud
offers virtually unlimited resources in terms of processing
power and memory, and that the faster geospatial data is
processed, the higher its practical value will be. However,
public cloud providers, such as Amazon AWS [24],
Microsoft Azure [25], Google Cloud [26] among others,
charge computational resources by the minute or by byte
transferred, which is extremely costly. Therefore, using the
computational resources in the most efficient way is essential
to minimize costs.

Big Geospatial data demands a large number of resources
to store and process information. The amount of
computational resources required by this vast volume of
information grows in an asymptotic way and each wasted
resource represents a significant financial loss, which could
have been avoided. Faced with this dilemma, some methods
have been developed to process big data [2]. Among them,
Apache Hadoop, a programming framework for distributed
computing using the divide and conquer (or Map and
Reduce) method to break down complex big data problems
into small units of work and process them in parallel.
Specifically for big geospatial data, some applications have
been developed using Hadoop concepts [9], such as the
following: i) “GIS Tools on Hadoop”, that work with the
ArcGIS product; ii) Parallel-Secondo as a parallel spatial
Data Base Management System (DBMS) that uses Hadoop
as a distributed task scheduler; iii) MD-HBase extends
HBase, a non-relational database for Hadoop, to support
multidimensional indexes; iv) Hadoop-GIS extends Hive, a
data warehouse infrastructure built on top of Hadoop with a
uniform grid index for range queries and self-join. Finally,
Eldawy and Mokbel [9] presented SpatialHadoop, a fully-
fledged MapReduce framework with native support for

25Copyright (c) IARIA, 2017. ISBN: 978-1-61208-539-5

GEOProcessing 2017 : The Ninth International Conference on Advanced Geographic Information Systems, Applications, and Services

spatial data with better performance when compared to all
the other applications listed.

This article presents a cost-efficient method for
determine the cluster size for processing big geospatial data
using SpatialHadoop on public cloud providers. The goal is
to optimize the use of computational resources to reduce
costs. Section II covers concepts of SpatialHadoop. Section
III presents concepts about Spatial Cloud Computing.
Section IV presents the system architecture. The
methodology used to develop this method is explained in
Section V and the previous work done in this area is
discussed in Section VI. The tests carried out and results
obtained are shown in Section VII and Section VIII contains
the conclusion and some suggestions for future work.

II. SPATIALHADOOP

Hadoop is the most popular technique for working with
big data. It uses a MapReduce paradigm that break big
problems in small ones and process these jobs in a
distributed computation [9]. SpatialHadoop was developed
as a fully-fledged MapReduce framework with native
support for spatial data. It was built on Hadoop base code,
adding spatial constructs and the awareness of spatial data
inside the core functionality of traditional Hadoop.

Figure 1. SpatialHadoop high-level architecture. Adapted by [9]

SpatialHadoop is composed of four main layers, namely

language, operations, MapReduce and storage. All of them
execute in a cluster environment with one master node that
breaks a MapReduce job into smaller tasks, carried out by
slave nodes [9]. The high-level architecture of
SpatialHadoop is shown in Fig. 1.

A. Language Layer

The language used by SpatialHadoop is Pigeon, a simple
high-level SQL-like language, derived from Pig Latin. It is
compliant with the Open Geospatial Consortium’s (OGC)
simple feature access standard, which is supported in both
open source and commercial spatial DBMS. Pigeon supports
OGC standard data types including point, linestring and
polygon, as well as OGC standard functions for spatial data
import/export, querying and manipulation. Spatial operations
are also included.

The spatial functionality is implemented as user-defined
functions (UDFs), which are seamless to integrate with
existing non-spatial operations in Pig Latin and also makes it

compatible with all recent versions of Pig that support UDFs
[11].

B. Operations Layer

This layer encapsulates the implementation of various
spatial operations that use the spatial indexes and the new
components in the MapReduce layer. According to [10], the
operations layer is composed of:

 Basic Operations: among the available spatial
operations, three of them were chosen as basic
operations in SpatialHadoop due to their popular use.
These basic operations are range query, k-nearest
neighbor (knn) and spatial join [9].

 CG_Hadoop: a suite of scalable and efficient
MapReduce algorithms for various fundamental
computational geometry problems, namely, polygon
union, skyline, convex hull, farthest pair, and closest
pair [12]. These operations take advantage of spatial
indexes available in SpatialHadoop to achieve better
performance than traditional Hadoop environments.

 Spatial Data Mining: operations developed using
spatial data mining techniques.

C. MapReduce Layer

Similar to Hadoop, the MapReduce layer in
SpatialHadoop is the query processing layer that runs
MapReduce programs [9]. However, contrary to Hadoop
where the input files are non-indexed heap files,
SpatialHadoop supports spatially-indexed input files. In
Hadoop, the input file goes through a FileSplitter that divides
it into n splits, where n is set by the MapReduce program,
based on the number of available slave nodes. Then, each
split goes through a RecordReader that extracts records as
key-value pairs that are passed to the map function.

SpatialHadoop enriches traditional Hadoop systems with
two main components: i) SpatialFileSplitter - an extended
splitter that exploits the global index in input files to perform
early pruning of file blocks not contributing to the answer,
and ii) SpatialRecordReader - which reads a split originating
from spatially indexed input files and exploits the local
indexes to process it efficiently.

D. Storage Layer

There are two challenges when using traditional spatial
indexes in Hadoop. First, traditional indexes are designed for
the procedural programming paradigm, while SpatialHadoop
uses the MapReduce programming paradigm. Secondly,
traditional indexes are designed for local file systems, while
SpatialHadoop uses the Hadoop Distributed File System
(HDFS), which is inherently limited as files can be written in
an append-only manner, and once written, they cannot be
modified [10].

To solve this limitation, SpatialHadoop creates two index
layers - global and local. The global index is applicable on a
cluster’s master node, while local indexes organize data in
each slave node. It is therefore possible for SpatialHadoop to
support the following spatial index structures [9]:

 Grid file: a simple flat index that partitions the data
according to a grid such that records overlapping each

26Copyright (c) IARIA, 2017. ISBN: 978-1-61208-539-5

GEOProcessing 2017 : The Ninth International Conference on Advanced Geographic Information Systems, Applications, and Services

grid cell are stored in one file block as a single
partition. To simplify, we use a uniform grid
assuming that data is uniformly distributed;

 R-tree: in this indexing technique records are not
replicated, which causes partitions to overlap. This
makes it more efficient for range queries where
partitions that are completely contained in query
range can be copied to output and no reduplication
step is required;

 R+-tree: a variation of the R-tree where nodes at each
level are kept disjoint, while records overlapping
multiple nodes are replicated to each node to ensure
efficient query answering. In this indexing technique,
SpatialHadoop adjusts the size of each partition based
on data distribution such that the contents of each
partition ensure load balancing. Records in each
partition are stored together as one HDFS block in
one machine.

Eldawy et al. [13] developed four more indexing
techniques for SpatialHadoop, namely, Z-curve, Hilbert
curve, Quad tree, and K-d tree, but these techniques are not
as widely used as the others are.

Before executing queries and operations, the dataset
needs to be indexed and this task occurs in the partitioning
phase. The indexing algorithm runs in three steps, where the
first step is fixed and the last two steps are customized for
each partitioning technique. The first step computes the
number of desired partitions, n, based on file size and HDFS
block capacity, both of which are fixed for all partitioning
techniques. The second step reads a random sample, with a
sampling ratio, from the input file and uses this sample to
partition the space into n cells such that the number of
sample points in each cell is at most ⌊k/n⌋, where k is the
sample size. The third step actually partitions the file by
assigning each record to one or more cells. Boundary objects
are handled using either the distribution or replication
methods. The distribution method assigns an object to
exactly one overlapping cell and the cell has to be expanded
to enclose all contained records. The replication method
avoids expanding cells by replicating each record to all
overlapping cells but the query processor has to employ a
duplicate avoidance technique to account for replicated
records.

III. SPATIAL CLOUD COMPUTING

Although computing hardware technologies, including a
central processing unit (CPU), network, storage, RAM, and
graphics processing unit (GPU), have been advanced greatly
in past decades, many computing requirements for
addressing scientific and application challenges, such as
applications for big geospatial data processing, go beyond
existing computing capabilities [4].

These challenges require the readiness of a computing
infrastructure that can [20]: i) better support discovery,
access and utilization of data and data processing so as to
relieve scientists and engineers of IT tasks, allowing them to
focus on scientific discoveries; ii) provide real-time IT
resources to enable real-time applications, such as
emergency response; iii) deal with access spikes; and iv)

provide more reliable and scalable service for massive
numbers of concurrent users to further public knowledge.

Cloud computing offers facilities to overcome the
challenges of a big data environment, providing heightened
computer power and vast storage. In the most used definition
for cloud computing, NIST [4] indicates five essential
characteristics, namely: on demand self-service, broad
network access, resource pooling, rapid elasticity, and
measured service.

However, other characteristics are relevant when
providing a spatial cloud computing environment. Akdogan
et al. [20] proposed a cost-efficient partitioning of spatial
data in clouds. This partitioning method considers location-
based services and optimizes the storage of spatial-temporal
data by making it possible to turn-off idle servers, thereby
reducing costs.

Yang et al. [20] defines Spatial Cloud Computing as the
cloud computing paradigm that is driven by geospatial
sciences, and optimized by spatiotemporal principles for
enabling geospatial science discoveries and cloud computing
within a distributed computing environment. The intention is
to supply the computational needs for geospatial data
intensity, computing intensity, concurrent access intensity
and spatiotemporal intensity.

A. Public Cloud Providers

According to NIST [4], there are four deployment models
for clouds, namely private, community, public and hybrid.
Specifically to public clouds, [4] defines how the cloud
infrastructure is provisioned for open use by the general
public. In this model of cloud deployment, services are
charged in a pay-per-use method at some level of abstraction
appropriate to the type of service (e.g., storage, processing or
bandwidth). When working with big geospatial data, the
volume of data and the power of processing are always high
and, consequently, expensive.

Amazon AWS is, according to the “Gartner Magic
Quadrant for Cloud Infrastructure as a Service”, the leading
Public Cloud Provider [27]. It offers “Elastic Map Reduce”
(EMR) that uses Hadoop fundamentals and is integrated with
other services available from providers, such as storage, data
mining, log file analysis, machine learning, scientific
simulation, and data warehousing. Our tests were conducted
in an Amazon AWS environment.

IV. SYSTEM ARCHITECTURE

To support the method proposed in this paper, an
architecture composed of three layers, namely Web
Interface, Storage and SpatialHadoop (Fig. 2), was put
together.

The main characteristics of each layer are described
below:

 Web Interface Layer: a user-friendly interface to
receive inputs and show results. In this layer, the user
selects an available dataset (or uploads one if it is
new) and defines the following parameters for the
application: queries and operations, indexing (Grid,
R-Tree, R+-Tree) and stickiness.

27Copyright (c) IARIA, 2017. ISBN: 978-1-61208-539-5

GEOProcessing 2017 : The Ninth International Conference on Advanced Geographic Information Systems, Applications, and Services

 Storage Layer: this layer stores all datasets available
to the application and saves the results after
application execution.

 SpatialHadoop Layer: this is the core layer. It is
responsible for provisioning the SpatialHadoop
cluster with one master node and n data nodes. The
quantity of data nodes is defined based on dataset
size, as shown in Section V. After provisioning the
cluster, this layer indexes the dataset (based on user
choice in the Web Interface layer), processes queries
and operations and saves the results file back in the
Storage Layer.

Figure 2. System Architecture Overview.

In the proposed method, all three layers were designed to

use a public cloud environment. It is also possible to allocate
the Web Interface Layer and the Storage Layer to different
environments. However, it is important to consider that
public cloud providers usually charge users for each gigabyte
stored and transferred, and this can affect the total cost.

V. METHODOLOGY

A common uncertainty for Hadoop environment
administrators is how to define the cluster size infrastructure.
In a static environment, like a private cloud, most of the time
the computational resources are limited and big geospatial
data grows faster, requiring ever more resources. On the
other hand, in public cloud providers the computational
resources are unlimited, but users are charged for them, so it
is very important to define a cost-effective environment.

A twenty-node cluster can be necessary to process
SpatialHadoop queries and operations on a 100Gb dataset,
but it is overprovisioned to work on a dataset of only 5Gb.
To solve this problem, a formula to calculate the quantity of
data nodes based on dataset size is fundamental. Adapting
the proposal by [6] and [23], the following formula can be
used to determine the ideal number of data nodes in a
SpatialHadoop environment on public cloud providers:

DN represents the total data nodes needed; T is the total
amount of data and d is the disk size in each node.

It is necessary to calculate T because the total amount of
data used in a SpatialHadoop application is not only the
volume of the dataset. To calculate T, the following formula
can be used:

C represents the compression rate of the dataset, required

because SpatialHadoop can work with compressed files.
When no compression is used, the value must be 1. R is the
number of replicas of data in HDFS and S represents the size
of the dataset. The notation i refers to the intermediate
working space dedicated to temporarily storing results of
Map Tasks. Finally, w represents the percentage of space left
(wasted) to HDFS.

To demonstrate the use of these formulas, let us consider
a real Open Street Map (OSM) dataset of 96Gb of total size
(2.7 billion records) [28]. Without compression (C = 1),
without replication (R = 1), considering i = 25% and w =
20%, the value obtained for T is 106.67. Considering that
each data node has a disk with 32Gb (d = 32) it is possible to
conclude that the ideal number of data nodes (DN) is 4.

Changing any other parameter value can affect the
number of data nodes in cluster. For example, using the same
values for parameters C, R, S and w (C = 1, R = 1, S = 96, w
= 20%), and changing the value for i to 40% the number of
data nodes (DN) grows to 5. This result will affect
application performance and, also the total cost of
environment.

VI. TESTS AND RESULTS

A SpatialHadoop environment was built using Amazon
AWS Elastic MapReduce to test the proposed method.
Although all three layers of the system architecture – Web
Interface, Storage and SpatialHadoop – were allocated on a
cloud provider, the focus of performance and costs used in
this test scenario were specifically on the SpatialHadoop
layer.

Table I presents the instances configurations used to run
the tests on Amazon AWS.

TABLE I. INSTANCES CONFIGURATIONS ON AMAZON AWS.

Function vCPUs Memory
Disk

(SSD)
Price
(US$)

Master 8 15 160 Gb 0.42 / hour

Data 4 7.5 80 Gb 0.21 / hour

The datasets used were extracted from Open Street Map
and Tiger and are available to download on the
SpatialHadoop site [28]. The clusters created for the tests
were composed of one master node and the quantity of data
nodes based on the formula shown in Section V, considering
the following values to the others parameters: C = 1, R = 3, i
= 25% and w = 20%. Details about datasets and number of
data nodes are described in Table II.

(1)

(2)

28Copyright (c) IARIA, 2017. ISBN: 978-1-61208-539-5

GEOProcessing 2017 : The Ninth International Conference on Advanced Geographic Information Systems, Applications, and Services

TABLE II. DATASETS AND DATANODES.

Dataset Size Records Data nodes

LinearWater 9.0 Gb 8.4 million 1

Roads 7.7 Gb 20 million 1

Buildings 26.0 Gb 115 million 2

Lakes 9.0 Gb 8.4 million 1

Once parameters were defined in the Web Interface

Layer and the dataset was stored in the Storage Layer, the
SpatialHadoop Layer was configured to execute the
following steps:

 Provisioning Cluster: a defined request is sent to a
cloud provider, with the number and type of master node,
and data nodes.

 Transfer Dataset: copy an existing dataset from
Storage Layer to data nodes.

 Index Dataset: apply the user-defined index type to
dataset.

 Queries and Operations: executes the user-defined

queries and operations.

 Save Results: saves the result file – usually a text
file – on Storage Layer to be accessed by the user.

 Turn-off Cluster: to avoid wasting of
computational resources and increasing financial costs, all
the clusters (master node and data nodes) are turned off,
unless some stickiness parameter was defined by the user.

Table III presents the runtime of each task in a test
environment. The values present an average of 3 execution
for the smallest (Roads) and the biggest (Buildngs) datasets.
The queries – KNN and Range Query – and the indexing
type Grid were chosen randomly, and could be changed by
any query or operation and indexing type.

TABLE III. TIME MEASURED IN EACH TASK.

Task
Smallest
Dataset

(seconds)

Biggest
Dataset

(seconds)

Provisioning Cluster 300 420

Transfer Dataset 60 120

Index Dataset 600 3540

KNN 10 8

Range Query 8 6

Save Results 2 2

Turn-off Cluster 100 164

TOTAL Time 1080 4260

The indexing task is very important to ensure

SpatialHadoop is high performing. Note that the majority of
time is spent on the index process, but once it is finished, the
queries are done very quickly. A comparassion of the
runtime of the indexing task for the Buildings Dataset, using
a cluster with 2 datanodes, is presented in Fig. 3.

Since the cluster to support the Smallest Dataset (1
master node and 1 data node) costs US$ 0.63/hour, the total
cost to process these two queries was US$ 0.19. The cost of
the cluster to support the large dataset (composed of 1 master

node and 2 data nodes) is US$ 0.84/hr, so the cost of
processing these queries was US$ 0,99.

If this cluster had been created without considering the
dataset´s size – and other parameters defined in the formula –
it would had been necessary to consider the largest dataset
available to ensure that any query or operation could be
executed in this cluster. Considering all datasets available to
download on the SpatialHadoop webpage [28], the largest
dataset – an OSM file with 137Gb of size and 717M records
about road networks represented as individual road segments
– would require a cluster composed of 1 master node and 6
data nodes. The total cost of this cluster would be US$ 1.68
per hour and running the small dataset (18 minutes) would
cost US$ 0.50, costing 263% more than was really needed

Figure 3. Index task runtime for Buildings Dataset.

Analyzing all datasets availabe on the SpatialHadoop

webpage [28], and considering the scenario and parameters
defined in our test environment (C = 1, R = 3, i = 25% and w
= 20%), only 7 from a total of 33 datasets needed more than
1 data node to be executed. On the other extreme, only 1
dataset needed a 6-node cluster. Processing any other
datasets wastes computational resources if the proposed
formula is not applied.

TABLE IV. TOTAL COST OF CLUSTER.

Number of Data
Nodes

Total cluster
lifecycle time

Total Cost

1 (defined by formula) 20 minutes US$ 0.21

2 19 minutes US$ 0.27

4 17 minutes US$ 0.36

Table IV presents the total cluster lifecycle time and cost

to process the queries KNN, Spatial Join and Range Query
using the Lakes dataset using the number of instances
proposed by the formula (1), and also using 2 and 4
instances. However, even though the total time of execution
is higher, the cost is lower. This occurs because there is a
low reduction in the indexing task runtime (only 1 minute
per core added).

29Copyright (c) IARIA, 2017. ISBN: 978-1-61208-539-5

GEOProcessing 2017 : The Ninth International Conference on Advanced Geographic Information Systems, Applications, and Services

VII. RELATED WORK

SpatialHadoop was presented in 2013 by Eldawy and
Mokbel [14] as the first fully-fledged MapReduce
framework with native support for spatial data. In this article,
the authors used a demonstration scenario created on an
Amazon AWS, with a 20 node cluster to compare
SpatialHadoop and traditional Hadoop in three operations,
namely, range query, knn and spatial join.

Also in 2013, Eldawy et al. [12] presented CG_Hadoop,
which is a suite of scalable and efficient MapReduce
algorithms for various fundamental computational geometry
problems - polygon union, skyline, convex hull, farthest pair,
and closest pair – comparing the performance of these
computational geometry operations on traditional Hadoop
and SpatialHadoop and concluded that SpatialHadoop
algorithms significantly outperform Hadoop algorithms as
they take advantage of the spatial indexing and components
within SpatialHadoop.

In recent years, some articles have been published about
improvements to SpatialHadoop. Mokbel et al. [15] proposed
a web-based road-network, traffic generator, called, MNTG.
Alarabi et al. [16] created TAREEG, a MapReduce-based
web service that uses SpatialHadoop fundamentals for
extracting spatial data from OpenStreetMap. Eldawy et al.
[17] used SpatialHadoop to query and visualize spatio-
temporal satellite data in an application called SHAHED.
Eldawy et al. [18] created HadoopViz, a MapReduce
framework for extensible visualization of Big Spatial Data.
All of these studies were developed in static and dedicated
clusters.

A modular software architecture for processing big
geospatial data in the cloud was presented by [1]. Since the
proposed framework is not affected by whether the cloud
environment is private or public, a third-party tool – Ansible
– was used to execute provisioning scripts.

Finally, in 2016, Das et al. [19] proposed a geospatial
query resolution framework using an orchestration engine for
clouds. However, the cloud environment used was private
and no dynamic allocation of computational resources was
performed.

None of these works present a method to optimize the
use of computational resources and reduce financial costs on
public cloud providers when using SpatialHadoop to process
big geospatial data.

This paper presents a cost-efficient method to process
geospatial data on public cloud providers, optimizing the
number of data nodes in a SpatialHadoop cluster according
to dataset size.

VIII. CONCLUSION AND FUTURE WORKS

SpatialHadoop is a MapReduce framework for big
geospatial data that has high performance but requires a
computational infrastructure that can be expensive. When
working on public cloud providers, in which each
computational resource is charged for, it is necessary to look
for a cost-effective solution.

The method proposed in this paper achieves the goal of
supporting a SpatialHadoop environment on public cloud

providers, while avoiding the waste of computational
resources. The formula to define the number of data nodes
was validated in a test scenario, resulting in a cost savings of
approximately 263%.

As future works we suggest optimizations on
performance that can be obtained using task nodes – for job
processing only - and data nodes together. In this way, it is
possible to apply scalability in SpatialHadoop applications
based on user-defined threads. Formulas to calculate other
computational resources – CPU and memory – based on
datasets and queries or operations can also be defined.

REFERENCES

[1] M. Krämer and I. Senner, "A modular software architecture
for processing of big geospatial data in the cloud." In
Computers & Graphics, pp. 69-81, 2015.

[2] S. Seref and S. Duygu, "Big data: A review." In International
Conference on Collaboration Technologies and Systems
(CTS), pp. 42-47, 2013.

[3] J. S. Ward and A. Barker, "Undefined by data: a survey of big
data definitions." arXiv:1309.5821, 2013.

[4] P. Mell and T. Grance, “Draft NIST working definition of
cloud computing,” [Online]. Available from:
http://csrc.nist.gov/groups/SNS/cloud-computing/index.html
[acessed: 2016-11-01]

[5] N. R. Herbst, S. Kounev, and R. Reussner, "Elasticity in cloud
computing: What it is, and what it is not." Proceedings of the
10th International Conference on Autonomic Computing
(ICAC 13), pp. 23-27, 2013.

[6] Hadoop Online Tutorial. Formula to calculate NDFS nodes
storage. [Online]. Avilable from: http://hadooptutorial.info/
formula-to-calculate-hdfs-nodes-storage/ [acessed: 2016-11-
03]

[7] J. Pramila, "Cloud Architecture for Big Data." International
Journal of Engineering and Computer Science, pp. 12757 –
12765, June, 2015.

[8] E. S. A. Ahmed, and A. S. Rashid, "A Survey of Big Data
Cloud Computing Security." International Journal of
Computer Science and Software Engineering (IJCSSE), pp.
78-85, 2014.

[9] A. Eldawy and M. F. Mokbel, "Spatialhadoop: A mapreduce
framework for spatial data." In 2015 IEEE 31st International
Conference on Data Engineering, pp. 1352-1363, 2015.

[10] A. Eldawy, "SpatialHadoop: towards flexible and scalable
spatial processing using mapreduce." Proceedings of the 2014
SIGMOD PhD symposium, pp. 46-50, 2014.

[11] A. Eldawy and M. F. Mokbel, "Pigeon: A spatial mapreduce
language". In 2014 IEEE 30th International Conference on
Data Engineering, pp. 1242-1245, 2014.

[12] A. Eldawy, Y. Li, M. F. Mokbel, and R. Janardan,
“CG_Hadoop: computational geometry in MapReduce.” The
21st ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, pp. 294-303,
June, 2014.

[13] A. Eldawy, A. Alarabi, and M. F. Mokbel, "Spatial
partitioning techniques in SpatialHadoop." Proceedings of the
VLDB Endowment, pp. 1602-1605, 2015.

[14] A. Eldawy and M. F. Mokbel, "A demonstration of
SpatialHadoop: an efficient mapreduce framework for spatial
data." Proceedings of the VLDB Endowment, pp. 1230-1233,
2013.

[15] M. F. Mokbel et al., "A demonstration of MNTG-A web-
based road network traffic generator," In 2014 IEEE 30th
International Conference on Data Engineering, pp. 1246-
1249, March, 2014.

30Copyright (c) IARIA, 2017. ISBN: 978-1-61208-539-5

GEOProcessing 2017 : The Ninth International Conference on Advanced Geographic Information Systems, Applications, and Services

[16] L. Alarabi, A. Eldawy, R. Alghamdi, and M. F. Mokbel,
“TAREEG: a MapReduce-based web service for extracting
spatial data from OpenStreetMap”. In 2014 ACM SIGMOD
International Conference on Management of data, pp. 897-
900, 2014.

[17] A. Eldawy et al., “Shahed: A mapreduce-based system for
querying and visualizing spatio-temporal satellite data”. In
2015 IEEE 31st International Conference on Data
Engineering, pp. 1585-1596, April, 2015.

[18] A. Eldawy, M. Mokbel, and C. Jonathan, "HadoopViz: A
MapReduce framework for extensible visualization of big
spatial data." In 2016 IEEE International. Conference on Data
Engineering (ICDE), pp. 601-612, 2016.

[19] J. D. Das, A. Ghosh, and R. A. Buyya, “Geospatial
Orchestration Framework on Cloud for Processing User
Queries”. In 2016 IEEE International Conference on Cloud
Computing for Emerging Markets, pp. 19-21, 2016.

[20] A. Akdogan, “Cost-efficient partitioning of spatial data on
cloud”. In 2015 IEEE International Conference on Big Data,
pp. 501-506, 2015

[21] C. Yang et al., “Spatial cloud computing: how can the
geospatial sciences use and help shape cloud computing?”
International Journal of Digital Earth, pp. 305-329, 2011.

[22] C. Qu, R. N. Calheiros, and R. Buyya, "Auto-scaling Web
Applications in Clouds: A Taxonomy and Survey."
arXiv:1609.09224. 2016.

[23] Distributed System Archicteture. Hadoop cluster size.
[Online]. Available from: https://0x0fff.com/hadoop-cluster-
sizing/ [acessed: 2016-10-26]

[24] Amazon AWS. [Online]. Available from:
https://aws.amazon.com [acessed: 2016-11-04]

[25] Microsoft Azure. [Online] Available from:
https://azure.microsoft.com [acessed: 2016-11-04]

[26] The Google Cloud Provider. [Online] Available from:
https://cloud.google.com [acessed: 2016-11-04]

[27] Magic Quadrant for Cloud Infrastructure as a Service,
Worldwide. [Online]. Available from:
https://www.gartner.com/doc/ reprints?id=1-
2G2O5FC&ct=150519. [acessed: 2016-11-02]

[28] SpatialHadoop Datasets. [Online]. Available from:
http://spatialhadoop.cs.umn.edu/datasets.html [acessed :
2016-11-03]

31Copyright (c) IARIA, 2017. ISBN: 978-1-61208-539-5

GEOProcessing 2017 : The Ninth International Conference on Advanced Geographic Information Systems, Applications, and Services

