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Abstract—The rise of big geospatial data creates the need for 

an environment with powerful computational resources to 

process this large amount of geographical information. Spatial 

Cloud Computing is a solution to this problem as it offers 

facilities to overcome the challenges of a big data environment, 

providing significant computer power and vast storage. 

However, the software to process this data requires great 

performance capacity. These requirements are met by 

SpatialHadoop, a fully-fledged MapReduce framework with 

native support for spatial data. This paper presents a cost-

efficient method for processing geospatial data on public cloud 

providers, optimizing the number of data nodes in a Hadoop 

cluster according to dataset size. Tests have proven that it can 

optimize the use of computational resources for available 

SpatialHadoop datasets. 

Keywords - Big geospatial data; Hadoop; SpatialHadoop; 

Spatial Cloud Computing 

I.  INTRODUCTION 

Big geospatial data is the emerging paradigm for the 
infinite amount of information that has become available to 
users with the development and widespread use of 
Geographical Information System (GIS) softwares, 
delivering hundreds of TiB up to several PiB per hour [1][7]. 
Big data is defined by some authors [2][3] according to  
three essential aspects: i) Variety – referring to the different 
types of data, with more than 80% of them in an unstructured 
form; ii) Volume – the tremendous amounts of data generated 
each second; iii) Velocity – the speed at which new data is 
being produced. Recently, new aspects were included in the 
big data definition [7]: Veracity – how trustworthy the data 
is; Value – referring to the importance that the data has to the 
business; Variability - referring to data whose meaning is 
constantly changing and Visualization – how the data is 
presented, readable and accessible to users. 

The rise of cloud computing and cloud data stores has 
been a precursor to, and a facilitator of the emergence of big 
data [9]. Consequently, to support the computational demand 
big data has caused, mainly for geospatial data, Yang and 
Huang [4] have proposed Spatial Cloud Computing, an 
infrastructure that helps conduct relevant computing and data 
processing, which is characterized by its sufficient 
computing capability, low energy cost, fast response to spike 

computing needs, and a wide accessibility to the public when 
needed.  

An important property of clouds is their capability to 
increase and decrease computational resources without 
impact on applications. NIST [4] identified elasticity as an 
essential characteristic of cloud computing: “capabilities can 
be elastically provisioned and released, in some cases 
automatically, to scale rapidly outward and inward 
commensurate with demand. To the consumer, the 
capabilities available for provisioning often appear to be 
unlimited and can be appropriated in any quantity at any 
time”. 

Moreover, Kramer and Senner [1] assert that the cloud 
offers virtually unlimited resources in terms of processing 
power and memory, and that the faster geospatial data is 
processed, the higher its practical value will be. However, 
public cloud providers, such as Amazon AWS [24], 
Microsoft Azure [25], Google Cloud [26] among others, 
charge computational resources by the minute or by byte 
transferred, which is extremely costly. Therefore, using the 
computational resources in the most efficient way is essential 
to minimize costs. 

Big Geospatial data demands a large number of resources 
to store and process information. The amount of 
computational resources required by this vast volume of 
information grows in an asymptotic way and each wasted 
resource represents a significant financial loss, which could 
have been avoided. Faced with this dilemma, some methods 
have been developed to process big data [2]. Among them, 
Apache Hadoop, a programming framework for distributed 
computing using the divide and conquer (or Map and 
Reduce) method to break down complex big data problems 
into small units of work and process them in parallel. 
Specifically for big geospatial data, some applications have 
been developed using Hadoop concepts [9], such as the 
following: i) “GIS Tools on Hadoop”, that work with the 
ArcGIS product; ii) Parallel-Secondo as a parallel spatial 
Data Base Management System (DBMS) that uses Hadoop 
as a distributed task scheduler; iii) MD-HBase extends 
HBase, a non-relational database for Hadoop, to support 
multidimensional indexes; iv) Hadoop-GIS extends Hive, a 
data warehouse infrastructure built on top of Hadoop with a 
uniform grid index for range queries and self-join. Finally, 
Eldawy and Mokbel [9] presented SpatialHadoop, a fully-
fledged MapReduce framework with native support for 
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spatial data with better performance when compared to all 
the other applications listed.  

This article presents a cost-efficient method for 
determine the cluster size for processing big geospatial data 
using SpatialHadoop on public cloud providers. The goal is 
to optimize the use of computational resources to reduce 
costs. Section II covers concepts of SpatialHadoop. Section 
III presents concepts about Spatial Cloud Computing. 
Section IV presents the system architecture. The 
methodology used to develop this method is explained in 
Section V and the previous work done in this area is 
discussed in Section VI. The tests carried out and results 
obtained are shown in Section VII and Section VIII contains 
the conclusion and some suggestions for future work. 

II. SPATIALHADOOP 

Hadoop is the most popular technique for working with 
big data. It uses a MapReduce paradigm that break big 
problems in small ones and process these jobs in a 
distributed computation [9]. SpatialHadoop was developed 
as a fully-fledged MapReduce framework with native 
support for spatial data. It was built on Hadoop base code, 
adding spatial constructs and the awareness of spatial data 
inside the core functionality of traditional Hadoop. 

 
Figure 1. SpatialHadoop high-level architecture. Adapted by [9] 

 
SpatialHadoop is composed of four main layers, namely 

language, operations, MapReduce and storage. All of them 
execute in a cluster environment with one master node that 
breaks a MapReduce job into smaller tasks, carried out by 
slave nodes [9]. The high-level architecture of 
SpatialHadoop is shown in Fig. 1.  

A. Language Layer 

The language used by SpatialHadoop is Pigeon, a simple 
high-level SQL-like language, derived from Pig Latin. It is 
compliant with the Open Geospatial Consortium’s (OGC) 
simple feature access standard, which is supported in both 
open source and commercial spatial DBMS. Pigeon supports 
OGC standard data types including point, linestring and 
polygon, as well as OGC standard functions for spatial data 
import/export, querying and manipulation. Spatial operations 
are also included.  

The spatial functionality is implemented as user-defined 
functions (UDFs), which are seamless to integrate with 
existing non-spatial operations in Pig Latin and also makes it 

compatible with all recent versions of Pig that support UDFs 
[11]. 

B. Operations Layer 

This layer encapsulates the implementation of various 
spatial operations that use the spatial indexes and the new 
components in the MapReduce layer. According to [10], the 
operations layer is composed of: 

 Basic Operations: among the available spatial 
operations, three of them were chosen as basic 
operations in SpatialHadoop due to their popular use. 
These basic operations are range query, k-nearest 
neighbor (knn) and spatial join [9]. 

 CG_Hadoop: a suite of scalable and efficient 
MapReduce algorithms for various fundamental 
computational geometry problems, namely, polygon 
union, skyline, convex hull, farthest pair, and closest 
pair [12]. These operations take advantage of spatial 
indexes available in SpatialHadoop to achieve better 
performance than traditional Hadoop environments. 

 Spatial Data Mining: operations developed using 
spatial data mining techniques. 

C. MapReduce Layer 

Similar to Hadoop, the MapReduce layer in 
SpatialHadoop is the query processing layer that runs 
MapReduce programs [9]. However, contrary to Hadoop 
where the input files are non-indexed heap files, 
SpatialHadoop supports spatially-indexed input files. In 
Hadoop, the input file goes through a FileSplitter that divides 
it into n splits, where n is set by the MapReduce program, 
based on the number of available slave nodes. Then, each 
split goes through a RecordReader that extracts records as 
key-value pairs that are passed to the map function.  

SpatialHadoop enriches traditional Hadoop systems with 
two main components: i) SpatialFileSplitter - an extended 
splitter that exploits the global index in input files to perform 
early pruning of file blocks not contributing to the answer, 
and ii) SpatialRecordReader - which reads a split originating 
from spatially indexed input files and exploits the local 
indexes to process it efficiently. 

D. Storage Layer 

There are two challenges when using traditional spatial 
indexes in Hadoop. First, traditional indexes are designed for 
the procedural programming paradigm, while SpatialHadoop 
uses the MapReduce programming paradigm. Secondly, 
traditional indexes are designed for local file systems, while 
SpatialHadoop uses the Hadoop Distributed File System 
(HDFS), which is inherently limited as files can be written in 
an append-only manner, and once written, they cannot be 
modified [10]. 

To solve this limitation, SpatialHadoop creates two index 
layers - global and local. The global index is applicable on a 
cluster’s master node, while local indexes organize data in 
each slave node. It is therefore possible for SpatialHadoop to 
support the following spatial index structures [9]: 

 Grid file: a simple flat index that partitions the data 
according to a grid such that records overlapping each 
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grid cell are stored in one file block as a single 
partition. To simplify, we use a uniform grid 
assuming that data is uniformly distributed; 

 R-tree: in this indexing technique records are not 
replicated, which causes partitions to overlap. This 
makes it more efficient for range queries where 
partitions that are completely contained in query 
range can be copied to output and no reduplication 
step is required; 

 R+-tree: a variation of the R-tree where nodes at each 
level are kept disjoint, while records overlapping 
multiple nodes are replicated to each node to ensure 
efficient query answering. In this indexing technique, 
SpatialHadoop adjusts the size of each partition based 
on data distribution such that the contents of each 
partition ensure load balancing. Records in each 
partition are stored together as one HDFS block in 
one machine.  

Eldawy et al. [13] developed four more indexing 
techniques for SpatialHadoop, namely, Z-curve, Hilbert 
curve, Quad tree, and K-d tree, but these techniques are not 
as widely used as the others are. 

Before executing queries and operations, the dataset 
needs to be indexed and this task occurs in the partitioning 
phase. The indexing algorithm runs in three steps, where the 
first step is fixed and the last two steps are customized for 
each partitioning technique. The first step computes the 
number of desired partitions, n, based on file size and HDFS 
block capacity, both of which are fixed for all partitioning 
techniques. The second step reads a random sample, with a 
sampling ratio, from the input file and uses this sample to 
partition the space into n cells such that the number of 
sample points in each cell is at most ⌊k/n⌋, where k is the 
sample size. The third step actually partitions the file by 
assigning each record to one or more cells. Boundary objects 
are handled using either the distribution or replication 
methods. The distribution method assigns an object to 
exactly one overlapping cell and the cell has to be expanded 
to enclose all contained records. The replication method 
avoids expanding cells by replicating each record to all 
overlapping cells but the query processor has to employ a 
duplicate avoidance technique to account for replicated 
records. 

III. SPATIAL CLOUD COMPUTING 

Although computing hardware technologies, including a 
central processing unit (CPU), network, storage, RAM, and 
graphics processing unit (GPU), have been advanced greatly 
in past decades, many computing requirements for 
addressing scientific and application challenges, such as 
applications for big geospatial data processing, go beyond 
existing computing capabilities [4].  

These challenges require the readiness of a computing 
infrastructure that can [20]: i) better support discovery, 
access and utilization of data and data processing so as to 
relieve scientists and engineers of IT tasks, allowing them to 
focus on scientific discoveries; ii) provide real-time IT 
resources to enable real-time applications, such as 
emergency response; iii) deal with access spikes; and iv) 

provide more reliable and scalable service for massive 
numbers of concurrent users to further public knowledge. 

Cloud computing offers facilities to overcome the 
challenges of a big data environment, providing heightened 
computer power and vast storage. In the most used definition 
for cloud computing, NIST [4] indicates five essential 
characteristics, namely: on demand self-service, broad 
network access, resource pooling, rapid elasticity, and 
measured service. 

However, other characteristics are relevant when 
providing a spatial cloud computing environment. Akdogan 
et al. [20] proposed a cost-efficient partitioning of spatial 
data in clouds. This partitioning method considers location-
based services and optimizes the storage of spatial-temporal 
data by making it possible to turn-off idle servers, thereby 
reducing costs. 

Yang et al. [20] defines Spatial Cloud Computing as the 
cloud computing paradigm that is driven by geospatial 
sciences, and optimized by spatiotemporal principles for 
enabling geospatial science discoveries and cloud computing 
within a distributed computing environment. The intention is 
to supply the computational needs for geospatial data 
intensity, computing intensity, concurrent access intensity 
and spatiotemporal intensity. 

A. Public Cloud Providers 

According to NIST [4], there are four deployment models 
for clouds, namely private, community, public and hybrid. 
Specifically to public clouds, [4] defines how the cloud 
infrastructure is provisioned for open use by the general 
public. In this model of cloud deployment, services are 
charged in a pay-per-use method at some level of abstraction 
appropriate to the type of service (e.g., storage, processing or 
bandwidth). When working with big geospatial data, the 
volume of data and the power of processing are always high 
and, consequently, expensive.  

Amazon AWS is, according to the “Gartner Magic 
Quadrant for Cloud Infrastructure as a Service”, the leading 
Public Cloud Provider [27]. It offers “Elastic Map Reduce” 
(EMR) that uses Hadoop fundamentals and is integrated with 
other services available from providers, such as storage, data 
mining, log file analysis, machine learning, scientific 
simulation, and data warehousing. Our tests were conducted 
in an Amazon AWS environment. 

 

IV. SYSTEM ARCHITECTURE 

To support the method proposed in this paper, an 
architecture composed of three layers, namely Web 
Interface, Storage and SpatialHadoop (Fig. 2), was put 
together. 

The main characteristics of each layer are described 
below: 

 Web Interface Layer: a user-friendly interface to 
receive inputs and show results. In this layer, the user 
selects an available dataset (or uploads one if it is 
new) and defines the following parameters for the 
application: queries and operations, indexing (Grid, 
R-Tree, R+-Tree) and stickiness.  
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 Storage Layer: this layer stores all datasets available 
to the application and saves the results after 
application execution.  

 SpatialHadoop Layer: this is the core layer. It is 
responsible for provisioning the SpatialHadoop 
cluster with one master node and n data nodes. The 
quantity of data nodes is defined based on dataset 
size, as shown in Section V. After provisioning the 
cluster, this layer indexes the dataset (based on user 
choice in the Web Interface layer), processes queries 
and operations and saves the results file back in the 
Storage Layer. 
 

 

 
 

Figure 2. System Architecture Overview. 
 

 
In the proposed method, all three layers were designed to 

use a public cloud environment. It is also possible to allocate 
the Web Interface Layer and the Storage Layer to different 
environments. However, it is important to consider that 
public cloud providers usually charge users for each gigabyte 
stored and transferred, and this can affect the total cost.  

 

V. METHODOLOGY  

A common uncertainty for Hadoop environment 
administrators is how to define the cluster size infrastructure. 
In a static environment, like a private cloud, most of the time 
the computational resources are limited and big geospatial 
data grows faster, requiring ever more resources. On the 
other hand, in public cloud providers the computational 
resources are unlimited, but users are charged for them, so it 
is very important to define a cost-effective environment. 

A twenty-node cluster can be necessary to process 
SpatialHadoop queries and operations on a 100Gb dataset, 
but it is overprovisioned to work on a dataset of only 5Gb. 
To solve this problem, a formula to calculate the quantity of 
data nodes based on dataset size is fundamental. Adapting 
the proposal by [6] and [23], the following formula can be 
used to determine the ideal number of data nodes in a 
SpatialHadoop environment on public cloud providers: 

 

DN represents the total data nodes needed; T is the total 
amount of data and d is the disk size in each node.  

It is necessary to calculate T because the total amount of 
data used in a SpatialHadoop application is not only the 
volume of the dataset. To calculate T, the following formula 
can be used: 

 
C represents the compression rate of the dataset, required 

because SpatialHadoop can work with compressed files. 
When no compression is used, the value must be 1. R is the 
number of replicas of data in HDFS and S represents the size 
of the dataset. The notation i refers to the intermediate 
working space dedicated to temporarily storing results of 
Map Tasks. Finally, w represents the percentage of space left 
(wasted) to HDFS.  

To demonstrate the use of these formulas, let us consider 
a real Open Street Map (OSM) dataset of 96Gb of total size 
(2.7 billion records) [28]. Without compression (C = 1), 
without replication (R = 1), considering i = 25% and w = 
20%, the value obtained for T is 106.67. Considering that 
each data node has a disk with 32Gb (d = 32) it is possible to 
conclude that the ideal number of data nodes (DN) is 4. 

Changing any other parameter value can affect the 
number of data nodes in cluster. For example, using the same 
values for parameters C, R, S and w (C = 1, R = 1, S = 96, w 
= 20%), and changing the value for i to 40% the number of 
data nodes (DN) grows to 5. This result will affect 
application performance and, also the total cost of 
environment. 

VI. TESTS AND RESULTS 

A SpatialHadoop environment was built using Amazon 
AWS Elastic MapReduce to test the proposed method. 
Although all three layers of the system architecture – Web 
Interface, Storage and SpatialHadoop – were allocated on a 
cloud provider, the focus of performance and costs used in 
this test scenario were specifically on the SpatialHadoop 
layer.  

Table I presents the instances configurations used to run 
the tests on Amazon AWS.  
 

TABLE I. INSTANCES CONFIGURATIONS ON AMAZON AWS. 

Function vCPUs Memory 
Disk 

(SSD) 
Price 
(US$) 

Master 8 15 160 Gb 0.42 / hour 

Data  4 7.5 80 Gb 0.21 / hour 
 

The datasets used were extracted from Open Street Map 
and Tiger and are available to download on the 
SpatialHadoop site [28]. The clusters created for the tests 
were composed of one master node and the quantity of data 
nodes based on the formula shown in Section V, considering 
the following values to the others parameters: C = 1, R = 3, i 
= 25% and w = 20%. Details about datasets and number of 
data nodes are described in Table II. 

 
 

(1) 

(2) 
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TABLE II. DATASETS AND DATANODES. 

Dataset Size Records Data nodes 

LinearWater 9.0 Gb 8.4 million 1 

Roads 7.7 Gb 20 million 1 

Buildings 26.0 Gb 115 million 2 

Lakes 9.0 Gb 8.4 million 1 

 
Once parameters were defined in the Web Interface 

Layer and the dataset was stored in the Storage Layer, the 
SpatialHadoop Layer was configured to execute the 
following steps:  

 Provisioning Cluster: a defined request is sent to a 
cloud provider, with the number and type of master node, 
and data nodes. 

 Transfer Dataset: copy an existing dataset from 
Storage Layer to data nodes. 

 Index Dataset: apply the user-defined index type to 
dataset.  

 Queries and Operations: executes the user-defined 

queries and operations.  

 Save Results: saves the result file – usually a text 
file – on Storage Layer to be accessed by the user. 

 Turn-off Cluster: to avoid wasting of  
computational resources and increasing financial costs, all 
the clusters (master node and data nodes) are turned off, 
unless some stickiness parameter was defined by the user. 

Table III presents the runtime of each task in a test 
environment. The values present an average of 3 execution 
for the smallest (Roads) and the biggest (Buildngs) datasets. 
The queries – KNN and Range Query – and the indexing 
type Grid were chosen randomly, and could be changed by 
any query or operation and indexing type.  

 
 

TABLE III. TIME MEASURED IN EACH TASK. 

Task 
Smallest 
Dataset 

(seconds) 

Biggest 
Dataset 

(seconds) 

Provisioning Cluster 300 420 

Transfer Dataset 60 120 

Index Dataset 600 3540 

KNN 10 8 

Range Query 8 6 

Save Results 2 2 

Turn-off Cluster 100 164 

TOTAL Time 1080 4260 
 

 
The indexing task is very important to ensure 

SpatialHadoop is high performing. Note that the majority of 
time is spent on the index process, but once it is finished, the 
queries are done very quickly. A comparassion of the 
runtime of the indexing task for the Buildings Dataset, using 
a cluster with 2 datanodes, is presented in Fig. 3.  

Since the cluster to support the Smallest Dataset (1 
master node and 1 data node) costs US$ 0.63/hour, the total 
cost to process these two queries was US$ 0.19. The cost of 
the cluster to support the large dataset (composed of 1 master 

node and 2 data nodes) is US$ 0.84/hr, so the cost of 
processing these queries was US$ 0,99.  

If this cluster had been created without considering the 
dataset´s size – and other parameters defined in the formula – 
it would had been necessary to consider the largest dataset 
available to ensure that any query or operation could be 
executed in this cluster. Considering all datasets available to 
download on the SpatialHadoop webpage [28], the largest 
dataset – an OSM file with 137Gb of size and 717M records 
about road networks represented as individual road segments 
– would require a cluster composed of 1 master node and 6 
data nodes. The total cost of this cluster would be US$ 1.68 
per hour and running the small dataset (18 minutes) would 
cost US$ 0.50, costing 263% more than was really needed 

 
Figure 3. Index task runtime for Buildings Dataset. 

 
Analyzing all datasets availabe on the SpatialHadoop 

webpage [28], and considering the scenario and parameters 
defined in our test environment (C = 1, R = 3, i = 25% and w 
= 20%), only 7 from a total of 33 datasets needed more than 
1 data node to be executed. On the other extreme, only 1 
dataset needed a 6-node cluster. Processing any other 
datasets wastes computational resources if the proposed 
formula is not applied. 
 
 

TABLE IV. TOTAL COST OF CLUSTER. 

Number of Data 
Nodes 

Total cluster 
lifecycle time 

Total Cost 

1 (defined by formula) 20 minutes US$ 0.21 

2 19 minutes US$ 0.27 

4 17 minutes US$ 0.36 
 

 
Table IV presents the total cluster lifecycle time and cost 

to process the queries KNN, Spatial Join and Range Query 
using the Lakes dataset using the number of instances 
proposed by the formula (1), and also using 2 and 4 
instances. However, even though the total time of execution 
is higher, the cost is lower. This occurs because there is a 
low reduction in the indexing task runtime (only 1 minute 
per core added). 
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VII. RELATED WORK 

SpatialHadoop was presented in 2013 by Eldawy and 
Mokbel [14] as the first fully-fledged MapReduce 
framework with native support for spatial data. In this article, 
the authors used a demonstration scenario created on an 
Amazon AWS, with a 20 node cluster to compare 
SpatialHadoop and traditional Hadoop in three operations, 
namely, range query, knn and spatial join.  

Also in 2013, Eldawy et al.  [12] presented CG_Hadoop, 
which is a suite of scalable and efficient MapReduce 
algorithms for various fundamental computational geometry 
problems - polygon union, skyline, convex hull, farthest pair, 
and closest pair – comparing the performance of these 
computational geometry operations on traditional Hadoop 
and SpatialHadoop and concluded that SpatialHadoop 
algorithms significantly outperform Hadoop algorithms as 
they take advantage of the spatial indexing and components 
within SpatialHadoop.  

In recent years, some articles have been published about 
improvements to SpatialHadoop. Mokbel et al. [15] proposed 
a web-based road-network, traffic generator, called, MNTG. 
Alarabi et al. [16] created TAREEG, a MapReduce-based 
web service that uses SpatialHadoop fundamentals for 
extracting spatial data from OpenStreetMap. Eldawy et al. 
[17] used SpatialHadoop to query and visualize spatio-
temporal satellite data in an application called SHAHED. 
Eldawy et al. [18] created HadoopViz, a MapReduce 
framework for extensible visualization of Big Spatial Data. 
All of these studies were developed in static and dedicated 
clusters. 

A modular software architecture for processing big 
geospatial data in the cloud was presented by [1]. Since the 
proposed framework is not affected by whether the cloud 
environment is private or public, a third-party tool – Ansible 
– was used to execute provisioning scripts.  

Finally, in 2016, Das et al. [19] proposed a geospatial 
query resolution framework using an orchestration engine for 
clouds. However, the cloud environment used was private 
and no dynamic allocation of computational resources was 
performed. 

None of these works present a method to optimize the 
use of computational resources and reduce financial costs on 
public cloud providers when using SpatialHadoop to process 
big geospatial data. 

This paper presents a cost-efficient method to process 
geospatial data on public cloud providers, optimizing the 
number of data nodes in a SpatialHadoop cluster according 
to dataset size. 

VIII. CONCLUSION AND FUTURE WORKS 

SpatialHadoop is a MapReduce framework for big 
geospatial data that has high performance but requires a 
computational infrastructure that can be expensive. When 
working on public cloud providers, in which each 
computational resource is charged for, it is necessary to look 
for a cost-effective solution.  

The method proposed in this paper achieves the goal of 
supporting a SpatialHadoop environment on public cloud 

providers, while avoiding the waste of computational 
resources. The formula to define the number of data nodes 
was validated in a test scenario, resulting in a cost savings of 
approximately 263%. 

As future works we suggest optimizations on 
performance that can be obtained using task nodes – for job 
processing only - and data nodes together. In this way, it is 
possible to apply scalability in SpatialHadoop applications 
based on user-defined threads. Formulas to calculate other 
computational resources – CPU and memory – based on 
datasets and queries or operations can also be defined. 
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