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Abstract—In this paper, we present a fast and efficient visible 

trajectory planning for unmanned vehicles in a 3D urban 

environment based on local point clouds data. Our trajectory 

planning method is based on a two-step visibility analysis in 

3D urban environments using predicted visibility from point 

clouds data. The first step in our unique concept is to extract 

basic geometric shapes. We focus on three basic geometric 

shapes from point clouds in urban scenes: planes, cylinders 

and spheres, extracting these geometric shapes using efficient 

Random Sample Consensus (RANSAC) algorithms with a 

high success rate of detection. The second step is a prediction 

of these geometric entities in the next time step, formulated as 

states vectors in a dynamic system using Kalman Filter (KF). 

Our planner is based on the optimal time horizon concept as a 

leading feature ofour greedy search method, making our local 

planner safer. We demonstrate our visibility and trajectory 

planning method in simulations, showing predicted trajectory 

planning in 3D urban environments based on real Light 

Detection and Ranging (LiDAR) point clouds data. 
 

Keywords-Visibility; 3D; Urban environment; Spatial 

analysis. 

I. INTRODUCTION AND RELATED WORK 

In this paper, we study a fast and efficient visible 

trajectory planning for unmanned vehicles in a 3D urban 

environment, based on local point clouds data. Recently, 

urban scene modeling has become more and more precise, 

using Terrestrial/ground-based LiDAR on unmanned 

vehicles to generate point clouds data for modeling roads, 

signs, lamp posts, buildings, trees and cars. Visibility 

analysis in complex urban scenes is commonly treated as an 

approximated feature due to computational complexity.  

Our trajectory planning method is based on a two-step 

visibility analysis in 3D urban environments using predicted 

visibility from point clouds data. The first step in our unique 

concept is to extract basic geometric shapes. We focus on 

three basic geometric shapes from point clouds in urban 

scenes: planes, cylinders and spheres, extracting these 

geometric shapes using efficient RANSAC algorithms with a 

high success rate of detection. The second step is a 

prediction of these geometric entities in the next time step, 

formulated as states vectors in a dynamic system using KF.  

Visibility analysis based on this approximated scene 

prediction is done efficiently, based on our analytic solutions 

for visibility boundaries. With this capability, we present a 

local on-line planner generating visible trajectories, 

exploring the most visible and safe node in the next time 

step, using our predicted visibility analysis, which is based 

on local point clouds data from the unmanned LiDAR 

vehicle. Our planner is based on the optimal time horizon 

concept as a leading feature ofour greedy search method for 

making our local planner safer.  

For the first time, we propose a solution for the basic 

limitation of the Velocity Obstacle (VO) search and planning 

method, i.e., when all the available dynamic velocities for 

the next time step are blocked in the velocity space and there 

is no feasible node at the next time step of the greedy search. 

Computation of the minimum time horizon is formulated as a 

minimum time problem that generates optimal trajectories in 

near-real time to the goal, exploring the safest and most 

visible node in the next time step. We demonstrate our 

visibility and trajectory planning method in simulations 

showing predicted trajectory planning in 3D urban 

environments using real LiDAR data from the Ford Campus 

Project [1].  

  

II. VISIBILITY ANALYSIS FROM POINT CLOUDS DATA 

As mentioned, visibility analysis in complex urban scenes 

is commonly treated as an approximated feature due to its 

computational complexity. Recently, urban scene modeling 

has become more and more exact, using Terrestrial/ground-

based LiDAR generating dense point clouds data for 

modeling roads, signs, lamp posts, buildings, trees and cars. 

Automatic algorithms detecting basic shapes and their 

extraction have been studied extensively, and are still a very 

active research field [2]. 

In this part, we present a unique concept for predicted and 

approximated visibility analysis in the next attainable 

vehicle's state at a one-time step ahead in time, based on 

local point clouds data which is a partial data set. 

We focus on three basic geometric shapes in urban scenes: 

planes, cylinders and spheres, which are very common and 

can be used for the majority of urban entities in modeling 
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scenarios. Based on point clouds data generated from the 

current vehicle's position in state k-1, we extract these 

geometric shapes using efficient RANSAC algorithms [3] 

with high success rate detection tested in real point cloud 

data. 

After extraction of these basic geometric shapes from 

local point clouds data, our unified concept, and our main 

contribution, focus on the ability to predict and approximate 

urban scene modeling at the next view point Vk, i.e., at the 

attainable location of the vehicle in the next time step. Scene 

prediction is based on the geometric entities and the KF), 

which is commonly used in dynamic systems for tracking 

target systems [4],[5]. We formulate the geometric shapes as 

states vectors in a dynamic system and predict the scene 

structure the in the next time step, k. 

Based on the predicted scene in the next time step, 

visibility analysis is carried out from the next view point 

model [6], which is, of course, an approximated one. As the 

vehicle reaches the next viewpoint Vk, point clouds data are 

measured and scene modeling and states vectors are updated, 

which is an essential procedure for reliable KF prediction. 

A. Shapes Extraction 

1) Geometric Shapes: 

The urban scene is a very complex one in the matter of 

modeling applications using ground LiDAR, and the 

generated point clouds arevery dense. Despite these 

inherentcomplications, feature extraction can be made very 

efficient by using basic geometric shapes. We define three 

kinds of geometric shapes: planes, cylinders and spheres, 

with a minimal number of parameters for efficient time 

computation. 

Plane: center point (x,y,z) and unit direction vector from 

center point.  

Cylinder: center point (x,y,z), radius and unit direction 

vector of the cylinder axis. Cylinder height dimension will 

be consider later on as part of the simulation. 

Sphere: center point (x,y,z), radius and unit direction vector 

from center point. 

2) RANSAC: 

The RANSAC [7] is a well-known paradigm, extracting 

shapes from point clouds using a minimal set of a shape's 

primitives generated by random drawing in a point clouds 

set. Minimal set is defined as the smallest number of points 

required to uniquely define a given type of geometric 

primitive.  

For each of the geometric shapes, points are 

testedtoapproximate the primitive of the shape (also known 

as "score of the shape"). At the end of this iterative process, 

extracted shapes are generated from the current point clouds 

data. 

Based on the RANSAC concept, the geometric shapes 

detailed above can be extracted from a given point clouds 

data set. In order to improve the extraction process and 

reduce the number of points validating shape detection, we 

compute the approximated surface normal for each point 

and test the relevant shapes.  

Given a point-clouds with associated normals 

, the output of the RANSAC algorithm is a set of 

primitive shapes  and a set of remaining points 

. 

B. Predicted Scene – Kalman Filter 

In this part, we present the global KF approach for our 

discrete dynamic system at the estimated state, k, based on 

the defined geometric shapes formulation defined in the 

previous sub-section. 

Generally, the Kalman Filter can be described as a filter that 

consists of three major stages: Predict, Measure, and Update 

the state vector. The state vector contains different state 

parameters, and provides an optimal solution for the whole 

dynamic system [5]. We model our system as a linear one 

with discrete dynamic model, as described in (1): 

 

                                   (1) 

 

where  is the state vector, F is the transition matrix and k 

is the state.  

The state parameters for all of the geometric shapes are 

defined with shape center , and unit direction vector , 

of the geometric shape, from the current time step and 

viewpoint to the predicted one. 

In each of the current states k, geometric shape center , is 

estimated based on the previous update of shape center 

location , and the previous updated unit direction vector 

, multiplied by small arbitrary scalar factor c, described 

in (2): 

 

                              (2) 

 

Direction vector can be efficiently estimated by 

extracting the rotation matrix T, between the last two states 

k, k-1. In case of an inertial system fixed on the vehicle, a 

rotation matrix can be simply found from the last two states 

of the vehicle translations in (3): 

 

                                     (3) 

 

The 3D rotation matrix T tracks the continuous extracted 

plans and surfaces to the next viewpoint , making it 

possible to predict a scene model where one or more of the 

geometric shapes are cut from current point clouds data in 

state k-1. The discrete dynamic system can be written as 

formulated in (4): 
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           (4) 

 

where the state vector  is  vector, and the transition 

squared matrix is . The dynamic system can be 

extended to additional state variables representing someof 

the geometric shape parameters such as radius, length etc. 

We define the dynamic system as the basic one for generic 

shapes that can be simply modeled with center and direction 

vector. Sphere radius and cylinder Z boundaries are defined 

in an additional data structure of the scene entities. 

 

III. FAST AND APPROXIMATED VISIBILITY ANALYSIS 

In this section, we present an analytic analysis of the 

visibility boundaries of planes, cylinders and spheres for the 

predicted scene presented in the previous sub-section, which 

leads to an approximated visibility. For the plane surface, 

fast and efficient visibility analysis was already presented in 

[6]. 

In this part, we extend the previous visibility analysis 

concept [6] and include cylinders as continuous curves 

parameterization . 

Cylinder parameterization can be described in (5): 

  

      ,         (5) 

 

We define the visibility problem in a 3D environment for 

more complex objects as: 

 

     (6) 

 

where 3D model parameterization is , and the 

viewpoint is given as . Extending the 3D cubic 

parameterization, we also consider the case of the cylinder. 

Integrating (5) to (6) yields: 

 

                        (7) 

 

(8) 

 

As can be noted, these equations are not related to Z axis, 

and the visibility boundary points are the same for each x-y 

cylinder profile, as seen in (7), (8). . 

The visibility statement leads to complex equation, which 

does not appear to be a simple computational task. This 

equation can be efficiently solved by finding where the 

equation changes its sign and crosses zero value; we used 

analytic solution to speed up computation time and to avoid 

numeric approximations. We generate two values of  

generating two silhouette points in a very short time 

computation. Based on an analytic solution to the cylinder 

case, a fast and exact analytic solution can be found for the 

visibility problem from a viewpoint. 

We define the solution presented in (8) as x-y-z coordinates 

values for the cylinder case as Cylinder Boundary Points 

(CBP). CBP, defined in (9), are the set of visible silhouette 

points for a 3D cylinder, as presented in Figure 1: 

 

(9) 

 

        
                    (a)                                         (b)  

Figure 1.  Cylinder Boundary Points (CBP) using Analytic Solution 

marked as blue points, Viewpoint Marked in Red: (a) 3D View (Visible 
Boundaries Marked with Red Arrows); (b) Topside View. 

In the same way, sphere parameterization can be described 

as formulated in (10): 

 

               (10) 

 

We define the visibility problem in a 3D environment for 

this object in (11): 
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     (11) 

 

where the 3D model parameterization is , and the 

viewpoint is given as . Integrating (10) to (11) 

yields: 

 

   (12) 

 

wherer is definedfrom sphere parameter, and 

arechanges from visibility point along Z axis, as described 

in (12). The visibility boundary points for a sphere, together 

with the analytic solutions for planes and cylinders, allow us 

to compute fast and efficient visibility in a predicted scene 

from local point cloud data, which are updated in the next 

state. 

This extended visibility analysis concept, integrated with 

a well-known predicted filter and extraction method, can be 

implemented in real time applications with point clouds 

data. 

 

IV. FAST VISIBLE TRAJECTORY PLANNING 

In this part, we focus on the efficiency of our analytic time 

horizon solution via classic VO, as demonstrated in 

simulations.  

We use a planner similar to the one presented by [8] with 

the same cost function, and the Omni-directional robot 

model mentioned above. For one obstacle, our planner can 

ensure safety, but the planner is not a complete one. By 

using an analytic search, the planner computes near-time 

optimal and safe trajectory to the goal.  

 

 
Figure 2.  Avoiding Two Obstacles Using Analytic Time Horizon. 

As a result, conservative trajectories are computed, 

althoughin some casesa safe trajectory to the goal cannot be 

found and collision eventually occurs. In a two-obstacles 

case, shown in Figure 2, the robot, represented by a point, 

starts near point (0,-4) at zero speed, attempting to reach the 

goal at point (0,4) (marked by a yellow triangle) at zero 

speed, while avoiding two static obstacles. The trajectory is 

dotted with a red dot representing the current position of the 

robot. The bounded velocity space, representing VO as 

yellow cycles and velocity vector (with green triangles), can 

be seen in Figure 3, relating to the state position in space as 

shown in Figure 2. 

 
Figure 3.  Blocked Velocity Space Avoiding Two Obstacles. 

 
Figure 4.  Final Trajectory Avoiding Two Obstacles Using Analytic Time 

Horizon. 

 
Figure 5.  Escaping Blocked Velocity Space Using Analytic Time 

Horizon. 

 

 
Figure 6.  Conservative Solution of Avoiding Two Obstacles. 

A. The Planner 

As mentioned above, our planner is based on an iterative 

local planning method. By using RANSAC algorithm, point 

clouds data are extractedat each time step into three possible 

objects: plane, cylinder and sphere. The scene is formulated 

as a dynamic system using KF analysis for objects' 

0 0 0'( , , ) ( ( , , ) ( , , )) 0C x y z C x y z V x y z  
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prediction. The objects are approximated for the next time 

step, and each safe attainable state that can be explored is 

set as candidate viewpoint. The cost for each node is set as 

total visible surfaces, based on the analytic visibility 

boundary, where the optimal and safe node is explored for 

the next time step. 

At each time step, the planner computes the next Attainable 

Velocities (AV). The safe nodes not colliding with objects 

such as cubes, cylinders and spheres, i.e., nodes outside VO, 

are explored. Where all nodes are inside VO, a unified 

analytic solution for time horizon is presented, generating an 

escape option for these radical cases without 

affectingvisibility analysis. The planner computes the cost 

for these safe nodes based on predicted visibility and 

chooses the node with the optimal cost for the next time 

step. We repeat this procedure while generating the most 

visible trajectory. 

 

1) Attainable Velocities 

The set of maneuvers that are dynamically feasible over a 

time step is represented by AV. At each time step during the 

trajectory planning, we map the attainable velocities that the 

robot can choose under the effort control envelope. 

Attainable Velocities,         , are integrated from the 

current state (  ,  ) by applying all admissible controls 

      . The geometric shape of AV depends on system 

dynamics. In our case,as described in (13): 

 

       

                                                 
                                                                                          (13) 

where        . 

 

                                                

 

The attainable velocities at time      apply to the position 

         Thus, the attainable velocities, when intersected 

with VO that correspond to the same position, would 

indicate those velocities that are safe if selected at time 

    . 

 

2) Cost Function 

Our search is guided by minimum invisible parts from 

viewpoint V to the approximated 3D urban environment 

model in the next time step,       set by KF after 

extracting objects from point clouds data using the 

RANSAC algorithm. The cost function for each node is a 

combination of IRV and ISV, with different weights as 

functions of the required task.  

The cost function presented in (14) is computed for each 

safe node, i.e., node outside VO, considering the robot's 

future location at the next time step (        ,     
   ) as viewpoint: 

 

                           ) +              )    (14)  

where     are coefficients affecting the trajectory's 

character, as shown in (14). The cost function           

produces the total sum of invisible parts from the viewpoint 

to the 3D urban environment, meaning that the velocity at 

the next time step with the minimum cost function value is 

the most visible node in our local search, based on our 

approximation. 

We divide point invisibility value into Invisible Surfaces 

Value (ISV) and Invisible Roofs Value (IRV). This 

classification allows us to plan delicate and accurate 

trajectoriesupon demand. We define ISV and IRS as the 

total sum of the invisible roofs and surfaces (respectively). 

Invisible Surfaces Value (ISV) of a viewpoint is defined as 

the total sum of the invisible surfaces of all the objects in a 

3D environment, as described in (15): 

 

            (15) 

 

In the same way, we define Invisible Roofs Value (IRV) as 

the total sum of all the invisible roofs' surfaces, as described 

in (16):  

                (16) 

 

Extended analysis of the analytic solution for visibility 

analysis for known 3D urban environments can be found in 

[6]. 

V. SIMULATIONS 

We implemented the presented algorithm and tested some 

urban environments on a 1.8GHz Intel Core CPU with 

Matlab. We computed the visible trajectories using our 

planner, with real raw data records from LiDAR as part of 

the Ford Campus Project. 

Point clouds data are generated by Velodyne HDL-64E 

LiDAR [9]. Velodyne HDL-64E LiDAR has two blocks of 

lasers, each consisting of 32 laser diodes aligned vertically, 

resulting in an effective 26:8 Vertical Field Of View (FOV). 

The entire unit can spin about its vertical axis at speeds of 

up to 900 rpm (15 Hz) to provide a full 360-degree 

azimuthal field of view. The maximum range of the sensor 

is 120 m and it captures about 1 million range points per 

second. We captured our data set with the laser spinning at 

10 Hz. 

Due to these huge amounts of data, we planned a limited 

trajectory in this urban environment for a limited distance. 

In Figure 7, point clouds data from the start point can be 

seen, also marked as start point "S" in Figure 10. Planes 

extracted by RANSAC can be recognized. As part of the 

Ford Project, these point clouds are also projected to the 

panoramic cameras’ systems, making it easier to understand 

the scene, as seen in Figure 8.  

As described earlier, at each time step the planner predicts 

the objects in the scene using KF. In Figure 9(a), objects in 
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the scene are presented from a point clouds data set. These 

point clouds are predicted using KF, and predicted to the 

next time step in Figure 9(b).  

 

Figure 7.  Point Clouds Data set at Start Point. 

 
Figure 8.  Point Clouds Data Projected to Panoramic Camera Set at Start 

Point. 

   
(a)                                            (b) 

Figure 9.   (a) Objects in point clouds data set. (b) Predicted objects using 

KF in the next time step. 

 

Figure 10.  Vehicle Planned Trajectory Colored in Purple. 

The planned trajectory is presented in Figure 10 by a purple 

line. The starting point, marked as "S", is presented in 

Figure 10, where the cloud points in this state are presented 

in Figure 8. An arbitrary state during the planned trajectory, 

which is marked with an arrow, is also presented in Figure 

10, where point clouds prediction using KF in this state are 

presented in Figure 9. For this trajectory,        , 

robot velocity is set to       
  

  
   In this case, the robot 

avoided two other cars, without handling cases of analytic 

optimal time solution for deadlocks with bounded velocity 

space.  

VI. CONCLUSION AND FUTURE WORK 

In this research, we have presented an efficient trajectory 

planning algorithm for visible trajectories in a 3D urban 

environment for an Omni-directional model, based on an 

incomplete data set from LiDAR, predicting the scene at the 

next time step and approximating visibility. 

We extend our analytic visibility analysis method to 

cylinders and spheres, which allows us to efficiently set the 

visibility boundary of predicted objects in the next time 

step, generated by KF and RANSAC methods. Based on 

these fast computation capabilities, the on-line planner can 

approximate the most visible state as part of a greedy search 

method. 

As part of our planner, we extended the classical VO 

method, where the velocity space is bounded and the robot 

velocity cannot escape from the VO in the current state. 

Further research will focus on advanced geometric shapes, 

which will allow precise urban environment modeling, 

facing real-time implementation with on-line data 

processing from LiDAR.  
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