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Abstract—In recent years, the cropping of Camelina sativa has
gained popularity among the farmers of rainfed crops. It is an
annual and flexible crop, which can grow in different regions.
The estimate of the crop yield is essential for farmers.
Camelina sativa is a small plant that forms a uniform green
tapestry of grass. Hence, satellite imagery can be used for
monitoring the crops. In this study, we present the use of
Sentinel-2 data to monitor the performance of 6 varieties of
Camelina sativa. Crops have been growing from fall to spring,
and the harvest occurred in early June. We include satellite
imagery from February to June. In this paper, we include a
single image per month. Moreover, due to the size of the plots,
we only consider the data from bands with a spatial resolution
of 10m and 20m. First of all, the differences in spectral
signatures of varieties along the time are presented. Then, we
detail the possibilities of correlation between different
vegetation indices and crop harvest. Finally, a multivariable
statistical analysis to correlate bands of Sentinel-2 with
harvested seeds is shown. This analysis estimates the yield with
high accuracy.

Keywords-Sentinel-2; rainfed crops; multivariable statistical
analysis; NDWI; NDMI; EVI.

I. INTRODUCTION

Intensive agriculture is vital in our modern societies to
produce enough food to sustain the ever-growing population.
These cultures are too big to be managed in the same way
traditional cultures have. Nevertheless, they do need to be
monitored to obtain peak productivity and performance. The
consequences of a large estate not being adequately handled
are proportional to the magnitude of the field. The bigger the
area is, the more losses it will experience with low
performance. Therefore, an urgent need for the development
of a monitoring system for intensive agriculture has arisen.

Nowadays, the most used method for agricultural
monitoring is the use of Wireless Sensor Networks (WSN).
Their purpose is focused on monitoring the soil and the
chemical characteristics of the plants, such as nitrogen
content, though. Instead, our proposed method measures the
yield. Unmanned Aerial Vehicles (UAVs) have been proved
to be helpful devices for Geographic Information System
(GIS) [1]. Environmental variables, such as tree coverage,
can be monitored with the use of imaging techniques. The
process of obtaining these images was done first by hand
until the introduction of UAVs. This innovation allows for
these surveys to be done remotely.

The use of airborne multispectral and hyperspectral
imagery and high-resolution satellite imagery has been

proved to be useful. Moreover, other imaging analysis
techniques have been tested lately [2]. A study developed
this year managed to detect fruits in trees using image
processing [3].

The application of new monitoring techniques to manage
intensive agriculture is critical. Not only would it mean
diminishing the use of our resources, but it would also
translate in an improvement of the yield. Moreover,
monitoring the productivity of the crop would help detect
problems. It is possible that we should be having more yield
than the harvested one. That would mean something is
preventing it from being as productive as it should. Besides,
estimating the yield has some economic benefits. The cost-
benefit ratio could be calculated before the crops are
harvested. This could also mean knowing the price at which
the product could be sold before other companies and being
able to prepare in advance.

The aim of this paper is to determine if the multispectral
imaging data, which is obtained from the satellite Sentinel-
2B and Sentinel-2A, can be used to determine a key
parameter in agricultural productivity and performance. The
said parameter is the number of seeds several Camelina
sativa crops produce, using up to six different varieties. The
Camelina sativa is a crop that is currently being sown in
many dry areas of the world. The plants produce seeds that
are used for oil extraction. This plant from the Brassicaceae
family is annual, which makes its monitoring easier. It
creates a fruit that contains up to sixteen seeds, according to
Mostaza-Colado et al. [4]. In order to accomplish our goal,
we will obtain the spectral signature of the crops using
images taken once per month from February to July. The
images used will be taken at the end of each month with the
last one representing the bare ground after the seeds are
collected. Several vegetation indices will be analyzed using
the information from these images to try and relate them with
productivity. If necessary, we will create our indices using
statistics.

The rest of the paper is structured as follows. The
discussion of the related work is presented in Section 2.
Section 3 deals with the materials and methods that were
used for this experiment. The results are portrayed in Section
4. Finally, Section 5 shows the conclusions of this work.

II. RELATED WORK

In this section, we discuss some papers which deal with
different methods to monitor crops. Moreover, other
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different vegetation indices used nowdays, which could be
useful for our purpose, are mentioned.

Mostaza-Colado et al. [4] performed preliminary tests
to check if Sentinel-2B images could be used to estimate the
growth of Camelina sativa. They attempted to correlate the
Normalized Difference Vegetation Index (NDVI) with the
growth of the plant. They proved a correlation between the
acquisition techniques. However, they could not prove the
existence of a relationship between the NDVI and the yield.

Sankey et al. [5] used a UAV equipped with a Light
Detection and Ranging (LiDAR) sensor, as well as
hyperspectral imaging, to monitor a forest in the southwest
of the USA. They determined that the data could be
analyzed to generate 3D point cloud data, although the
differences between ground and trees were not evident in
the dense parts of the forest. This is not a problem in the
case of intensive cultures, where the coverage is never as
thick as a forest.

Vega et al. [6] used a UAV to monitor a sunflower crop
and determined that their method could be used in precision
agriculture. They managed to extract the NDVI from the
images. Moreover, they correlated the NDVI with aerial
biomass, plant nitrogen, and grain yield. One of the
advantages they remarked from UAVs compared to
satellites is the ability to obtain images on cloudy days.

Ashtekar et al. [7] attempted to map the surface water
dynamics in the upper Krishna River basin. To do so, they
modeled the water dynamics using the Normalized
Difference Water Index (NDWI), taking data from 17 years.
This index allowed them to classify the water as permanent,
seasonal, and new permanent.

A study similar to the one we propose was developed
by Yawata et al. [8]. They used satellite images to extract
the spectral values and then estimated the rice yield
employing a mixed model. Two vegetation indices were
implemented as feature values: the NDVI and the Green
Normalized Difference Vegetation Index (GNDVI). They
managed to reduce the mean absolute error compared to
other estimation methods, such as regression methods.

Selbmann et al. [9] used several indices derived from
Landsat imaging to monitor wildfire consequences in a
wetland tundra ecosystem. The indices they used were the
NDVI, the Enhanced Vegetation Index (EVI), the
Normalized Difference Moisture Index (NDMI), and the
Normalized Burn Ratio (NBR). They managed to relate the
EVI and NDVI with the severity of the fires.

Fassnacht et al. [10] attempted to develop a non-
destructive method to estimate the carotenoid content on
trees. They used the Angular Vegetation Index (AVI) to do
so. Said index had to be combined with two other proposed
carotenoid indices to give an accurate enough output.

The performance of corn crop fields was estimated by
Venancio et al. [11] using the FAO-66 approach and the
Soil Adjusted Vegetation Index (SAVI). They used the
seventh and eight bands from Landsat to forecast the corn
yield at the farm-level in Brazil. The predictions they
obtained showed little difference from the real value
(between -5% and 5%).

Marin et al. [12] managed to determine the grass
coverage in urban lawns with RGB histograms of the lawns.
Brightness values between 40 and 60 extracted from the
green layer could be used to determine the coverage.

Among the studies mentioned above, several have a
similar objective to the one we have. Nevertheless, they
used already existing indices while we will test new
combinations. Moreover, in our experiment, we will be
using Camelina sativa, which is an emerging crop.
Furthermore, we will be using images from several months.
In conclusion, we will estimate the productivity of a
Camelina sativa crop using geoprocessing, no matter its
variety. This will be done using satellite imaging. In order to
obtain the desired results, we will compare the value of the
bands using several vegetation indices. Moreover, we will
create our indices if necessary.

III. MATERIAL AND METHODS

In this section, the utilized images, how they were
obtained, and the methodology applied are described.

A. Image obtention

Among the available open-access images from the
different satellites, we have selected to work with data from
Sentinel-2. The Sentinel-2 was chosen due to its high
spectral resolution, up to 12 bands (B), and four generated
indices. Furthermore, it has a high spatial resolution, which
is 10m (for B2, B3, B4, and B8), 20m (B5, B6, B7, B8A,
B11, and B12), and 60m (B1, B9, and B10). Besides, this
satellite presents a high temporal resolution, which allows
having one set of data every five days. Other satellites that
offer open-access images give a lower temporal, spatial, and
spectral resolution.

The images are obtained from the Copernicus Open
Access Hub webpage [13]. The studied plots with Camelina
sativa are located in the T30TVK of the grid system. All the
images obtained between January and June of 2019 are
downloaded. However, the data from January is not used due
to the vegetation not yet being visible. First, we discard the
images with cloud coverage in the studied area. Next, we
select the date of the pictures to have the first picture at the
end of February, have all the images separated by 30 days
(average), and without cloud coverage. Therefore, the images
used correspond to 28-February, 30-March, 29-April, 29-
May, and 30-June. The first four images will show the
changes in the vegetation, while the last picture will
represent the soil status after the harvest.

B. Data gathering

Once the satellite imagery has been obtained and
selected, the next step is to get the values of the pixel of
different bands for the different Camelina sativa varieties.
The plots were already digitalized in previous studies [4].

Thus, using ArcMap [14], the satellite imagery and the
digitalized plots are opened, see Figure 1. In this figure, we
show the plots, identified in yellow borders, and the area
which is considered for statistical analysis indicated in red.
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This area is smaller to avoid the effect of adjacent surfaces.
Every plot contains a single variety of Camelina sativa.

The tool Zonal Stadistic as a Table [15] is selected to
obtain the values of each band for the different plots. All the
statistics are obtained for every band. These data are then
exported to an Excel file. In Excel, we generate the different
spectral signature for each variety along the time using the
mean and median values, including the standard deviation
calculated in the previous step. The included varieties in this
study were obtained from the Camelina Company España
[16]. Purchased seeds were sowed at the beginning of
December. The varieties are named 1), 2) 3), 4), 5), and 11).

Figure 1. Studied area.

C. Vegetation indices calculation

To obtain a correlation with the harvested seeds, we use
the data from the band 1 (B1) to band 12 (B12) of each
image to calculate different vegetation indices. Now, we are
going to define the utilized indices. Previous works [4] have
evaluated the NDVI of these plots. They did not find any
relation between NDVI and harvested quantities. Thus, in
this paper, we increase the evaluated indices and include the
following:

(i) NDWI [17], which is based on the green and Short
Wave Infrared (SWIR) bands. In the case of Sentinel-2, the
formula to calculate the index is (B3-B8)/(B3+B8). NDWI
gives information about the water content in the plants. This
index can have values between -1 and 1. The lower the
value, the greater the water content. The higher the value, the
lower the vegetation cover and water content.

(ii) NDMI [18], which is based on the Near Infrared
(NIR) and SWIR. In Sentinel, the formula is (B8–
B11)/(B8+B11). This index offers information about
vegetation water content. As the previous index, this one can
adopt values between -1 and 1. The higher the value, the
lower the water stress.

(iii) EVI [19], which was developed by NASA as an
alternative to NDVI and similar indices. This index has two
main advantages over NDVI-like indices: (i) more sensitive
in areas with high biomass and (ii) reduces the influence of
atmospheric conditions. It is calculated using the B2, B4, and
B8. Besides, some constants are used. The formula is

2.5*((B8A-B4)/((B8A+6*B4-7.5*B2)+1)). In contrast to
previous indices, this one is not limited to values from -1 to
1.

D. Obtaining new correlations

Finally, we perform multivariate analysis to find a
possible association between different bands and indices and
the harvested seeds of the different varieties. The main
objective is to have a preliminary result that indicates any
potential band or bands for its future use when creating a
vegetation index that predicts the harvest. In the case that
any band presents a correlation with the harvest, we will use
regression tools to define this correlation.

IV. RESULTS

In this section, we discuss the results of this contribution.
First, the differences in the spectral signatures are detailed.
Next, we present the analysis of the indices. Finally, the
multivariate analysis and its outcomes are discussed.

A. Spectral signatures

After obtaining the satellite imagery, some problems
were detected. First of all, in images from January to April,
the data of band ten was missing. Furthermore, in images
from May and June, the data from the calculated indices
corresponding to the Level 2A specific bands: Scene-average
Water Vapour map (WVP), Aerosol Optical Thickness map
(AOT), and Scene Classification (SCL) were not included.
Therefore, for the analysis of spectral signatures, the data is
not complete for all the time-series. Moreover, we only
include the data with a spatial resolution of 10 and 20m. This
data can be seen in Figure 2; the name in brackets indicates
the variety of Camelina sativa. In this figure, the mean value
of pixel for each band in different moments of the year is
displayed. The months, February to June, are represented in
different colors and indicated as 2 to 6. The colors are to
show the phenological conditions of the crop. In green, we
describe the moments when the Camelina sativa has a green
coloration and is growing. In yellow, we indicate the period
in which plants have very low water content, and they are
dry. In late June, the assigned color is brown because the
plants are completely dry, and the seeds are already
collected.

The first thing that can be noticed when analyzing Figure
2 is that different varieties seem to have different patterns.
This might be caused by differences in the phenological
characteristics of the different species. Next, we present in
detail some of these differences. For example, varieties 3)
and 4) present higher variations in the red band between
February and March than 1) and 2) (which do not show any
change) or 5) and 11) (which decrease to a lesser extent).
From March to April, most of the varieties increase their
mean value in the green band, nonetheless 5) experiences a
decrease.

Apart from that, there are some changes in the region of
705 to 783nm (IR light), which is commonly used for
vegetation characterization. While for most of the varieties,
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during the moment in which plants are green, the minimum
values in those bands are found in March, 2) has similar data
in bands 6 to 8 in February and March. Taking into account
that all the plants were sowed at the same moment, the soil
was homogenized, and the environmental conditions were
the same, the differences found are due to the different

varieties. Thus, spectral signatures can be used to
characterize the crops.

B. Vegetation Indices

The indices above are calculated for the different
varieties and different periods of the year.

Figure 2. Spectral signatures for different varieties and periods (February to June).

Data from index NDWI is displayed in Table I. This
index indicates the changes in the water content of the
surface, in this case, the crop. The results of the NDMI
index are presented in Table II. The NDMI is an indication
of the moisture. For Tables I and II, the varieties were
ordered according to the harvested amount of seeds. The
variety 5) (620kg/Ha) is the one with the lowest harvest and
variety 3) is the one with the highest harvest (1125kg/Ha).

The other varieties have a harvest between 914 and 971
kg/Ha. Both indices are similar, and the results of their
application offer identical data. The results point out that the
healthiest crops are 3), 4), 5), and 11). Nevertheless, there is
no relation between the results of the index and the
harvested quantity.

Next, the results of EVI are presented in Table III. The
higher the value of the index is, the higher the plant vigor is.
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According to EVI, the healthiest crops are 5), 4), and 11).
Again, no relation was found between the index and the
harvested seeds of different varieties.

TABLE I. VALUES OF NDWI FOR DIFFERENT VARIETIES

Month
NDWI per Varieties

5) 2) 1) 4) 11) 3)

2 -0.61 -0.66 -0.66 -0.65 -0.61 -0.64
3 -0.66 -0.65 -0.67 -0.71 -0.65 -0.71
4 -0.76 -0.68 -0.66 -0.73 -0.72 -0.70
5 -0.40 -0.36 -0.37 -0.41 -0.39 -0.39
6 -0.33 -0.31 -0.30 -0.32 -0.31 -0.31

TABLE II. VALUES OF NDMI FOR DIFFERENT VARIETIES

Month
NDMI per Varieties

5) 2) 1) 4) 11) 3)

2 0.20 0.12 0.23 0.22 0.19 0.21
3 0.21 0.12 0.23 0.26 0.21 0.25
4 0.53 0.31 0.40 0.48 0.49 0.40
5 0.01 -0.04 -0.02 0.00 0.00 -0.03
6 -0.05 -0.07 -0.07 -0.06 -0.06 -0.07

TABLE III. VALUES OF EVI FOR DIFFERENT VARIETIES

Month
EVI per Varieties

5) 2) 1) 4) 11) 3)

2 1.08 0.84 1.23 1.18 1.06 1.14
3 1.09 0.88 1.24 1.27 1.06 1.28
4 2.18 1.49 1.86 2.13 2.12 1.87
5 0.51 0.46 0.48 0.75 0.47 0.56
6 0.29 0.27 0.27 0.31 0.27 0.30

Consequently, we can affirm that there is no correlation
between different tested indices and harvested seeds. Thus,
the indices cannot be used for the prediction of harvest.

C. Correlation of bands and the harvest

Since none of the typical vegetation indices tested in this
paper and a previous one [4] has offered a correlation with
the harvest, we will perform a multivariate analysis to find a
relationship. In this analysis, we will include the harvest
quantity in kg/Ha of the six varieties and the value of the
included bands in this paper (from February to June).

A multivariate analysis with up to 95 variables (16 bands
+ 3 indices per 5 months, and the harvest) is conducted with
Statgraphics Centurion. The results of the analysis indicate
that two bands are correlated with the harvest. The first band
is the WVP of April and the second one is on the B1 of June.
The one that presents a higher correlation and is meaningful
in terms of prediction is the WVP of April (WVP4).
According to Statgraphics, the p-value of that correlation is
0.0117, and the correlation coefficient is -0.9103. Figure 3
shows the correlation between the three WVP analyzed and
the harvest. There, we can see the correlation that exists
among harvest and WVP.

The last step is to perform a simple regression with
Statgraphics to obtain a mathematical model that correlates
both variables. First, we verify the comparison of regression

models available in the software. The one that offers a higher
correlation is the reciprocal-Y squared-X model. The graphic
that shows this correlation, the mathematical model, and the
intervals (prediction and confidence) are shown in Figure 4.

The mathematical equation of this model is Eq (1); its
correlation coefficient is 0.926, and the squared-R 85.81. The
standard error is 0.0001 and the mean absolute error is
0.00007. Finally, the p-value of the model is 0.0079. All this
data confirms that the model is accurate and it can be used to
predict in the future the harvest of Camelina sativa crops
based on data of WVP.

(1)

Figure 3. Spectral signatures for different varieties and periods (February
(2) to April (4)).

It should be considered that the different varieties of
Camelina sativa present different seeds size. According to
[16], varieties such as 3) and 5) are the ones that give the
bigger seeds, and 36 is the one that presents the higher height
and larger inflorescences. It is possible that due to the
characteristics of the seeds, some have been lost before the
harvest because of the wind and other adverse
meteorological conditions. On the other hand, 1), 3) and 6)
have a smaller size and the loss of seeds due to the wind is
minimized. It must be considered that the decision of the
harvesting moment is crucial in order to reduce seed loss.
This loss might have an impact on the prediction model
presented in this paper.

V. CONCLUSION

In this paper, we present the use of satellite imagery for
the monitoring of different varieties of Camelina sativa.
According to the results of the spectral signatures, we
identify a different phenology in different varieties. They
have different patterns in visible and IR bands. We calculate
NDWI, NDMI, and EVI indices to find a possible correlation
between indices and harvest. None of the typical vegetation
indices tested in this paper present a correlation.

Nevertheless, a multivariate analysis was carried out with
Statgraphics. The results point out that the WVP4 is
correlated with the harvest. The regression model was
obtained with a correlation coefficient of 0. 926. Thus, we
have demonstrated the usefulness of the satellite imagery for
Camelina sativa monitoring and harvest prediction.

For future work, we will extend our study and include
more images to evaluate the best moment for WVP
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measurement to have a more accurate model. Moreover, to
avoid the disturbances of clouds and other atmospheric
factors, the utility of images obtained with a drone with a
thermal camera will be evaluated. Furthermore, the study
would be run for several years to eliminate a possible year-
specific effect.
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Figure 4. Spectral signatures for different varieties and periods (February to June).
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